簡易檢索 / 詳目顯示

研究生: 黃智偉
CHIH-WEI HUANG
論文名稱: 石墨烯奈米層板之合成及探討無機二氧化矽/有機高分子核殼型顆粒、矽烷接枝之蒙特納石黏土、及石墨烯奈米層板對不飽和聚酯、乙烯基酯、及環氧樹脂之體積收縮、機械性質及微觀型態結構之影響
Synthesis of functionalized exfoliated graphene nanoplatelets and effects of inorganic silica /organic polymer core-shell particle, silane-grafted montmorillonite, and functionalized exfoliated graphene nanoplatelet on the volume shrinkage, mechanical properties and cured sample morphology for unsaturated polyester, vinyl ester, and epoxy resins
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 陳崇賢
Chorng-Shyan Chern
邱文英
Wen-Yen Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 289
中文關鍵詞: 核殼型顆粒(CSP)蒙特納石黏土(MMT)熱還原氧化石墨烯(TRGO)不飽和聚酯樹脂(UP)乙烯基酯(VER)體積收縮微觀型態結構機械性質
外文關鍵詞: Core-Shell Particle(CSP), Montmorillonite (MMT), Thermal reduction of graphene oxide, TRGO, unsaturated polyester(UP), vinyl ester resin (VER), volume shrinkage;morphology, mechanical properties
相關次數: 點閱:668下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

藉由silane偶極劑來接枝二氧化矽或有機改質蒙特納黏土,以增加其添加劑與苯乙烯/不飽和聚酯(或乙烯基酯)之相容性,並利用傅立葉紅外線光譜儀量測silane接枝二氧化矽與silane改質蒙特納黏土之表面特性。
吾人亦利用廣角度X光散射儀(Wide-angle X-ray scattering,WAXS),測定不同氧化反應時間處理後,其石墨粉、氧化石墨烯、熱還原氧化石墨烯三者之整體層間距離變化。
本研究的目的主要為探討三種特用添加劑,分別為:(1)奈米級核殼型顆粒(core-shell Particle,CSP) (2)有機改質蒙特納黏土(Montmorillonite caly,MMT) 及(3)熱還原氧化石墨烯(Thermal reduction of graphene oxide,TRGO),其對苯乙烯/不飽和聚酯(或乙烯基酯)/特殊添加劑之三成份系統之反應前相容性、微觀型態結構、抗體積收縮特性及機械性質等之影響研究。


The synthesis of silane-grafted silica nanoparticles size (d = 15 nm) and montmorillonite clay (MMT) with the subsequent characterization of the grafting efficiency, grafting density, as well as the surface silanol groups conversion have been carried out. The silane coupling agents used for the treatment are γ-methacryloxy propyl trimethoxy silane (MPS). The number of silane coupling agents grafted on the MMT or silica surface and their silanol groups conversion were characterized by Fourier Transform Infrared Spectroscopy (FTIR).
The synthesis of graphite oxide(GO) and thermal reduction of graphene oxide(TRGO) with different reaction time have been carried out. The interplanar spacing of graphite oxide(GO) and thermal reduction of graphene oxide(TRGO) with different reaction time was measurement by Wide-angle X-ray scattering.
The effects of three additives, including (1) nano-scale core-shell particle additive, (2) organo- montmorillonite clay, (3) Thermal reduction of graphene oxide, on the cured sample morphology, volume shrinkage characteristics and mechanical properties of the Styrene(St)/Unsaturated polyester (or Vinyl ester resin)/additives ternary systems after the cure have been investigated.

摘要 I ABSTRACT I 致謝 II 目錄 III 圖目錄 VI 表目錄 XVIII 第1章 緒論 1 1-1 不飽和聚酯(UP) 1 1-2 乙烯基酯樹脂(VINYL ESTER RESIN , VER) 2 1-3 增韌劑 3 1-4 抗收縮劑 5 1-5 蒙特納石黏土及其高分子奈米複合材料 7 1-6 石墨烯/高分子奈米複合材料 8 1-7 研究範疇 15 第2章 文獻回顧 16 2-1 自由基聚合反應 16 2-2 不飽和聚酯(UP)樹脂之合成 19 2-3 不飽和聚酯(UP)樹脂與苯乙烯(ST)之交聯共聚合反應 20 2-4 苯乙烯(ST) /不飽和聚酯(UP) /抗收縮劑(LPA)三成份系統之相溶性研究 23 2-5 低收縮不飽和聚酯樹脂之抗收縮補償機構 24 2-6 低收縮不飽和聚酯樹脂系統聚合固化後微觀結構之研究 26 2-7 抗收縮劑對UP樹脂固化後體積收縮影響之研究 28 2-8 不飽和聚酯硬化後的機械性質研究 30 2-9 核殼性橡膠增韌劑 32 2-10 蒙特納石黏土-不飽和聚酯高分子奈米複合材料研究 35 2-11 石墨烯/高分子奈米複合材料之研究 38 2-12 氧化石墨(GO)及熱還原氧化石墨(TRGO)的製備 39 第3章 實驗方法與設備 40 3-1 實驗原料 40 3-1-1 不飽和聚酯樹脂、環氧樹脂與乙烯基酯樹脂 40 3-1-2 特用添加劑 47 3-1-2-1 蒙特納石黏土(Montmorillonite Clay, MMT) 47 3-1-3 實驗藥品 48 3-2 實驗儀器 51 3-3 實驗步驟 54 3-3-1 MMT clay之鈉活性化處理[29] 54 3-3-2 Silane-treated MMT製備[29] 54 3-3-3 熱還原氧化石墨烯製備[111,112] 55 3-3-4 有機化改質MMT(or Silica) 鑑定 56 3-3-4-1 FTIR定量分析 56 3-3-4-1-1 Silane 56 3-3-4-1-2 未反應之Silane /Na+MMT(or Silica)混合物 56 3-3-4-1-3 Silane-teated MMT(or Silica) 56 3-3-4-2 WAXS 散射實驗 57 3-3-5 Neat ST/UP(VER) 溶液與固化試片製備 58 3-3-6 ST/UP(VER)/additive(Silane-grafted MMT, MPS-treated Silica,TRGO)之三成分溶液與固化試片製備 60 3-3-7 體積變化量測-密度法 62 3-3-8 ST/UP(VER)/additive之三成分系統相分離特性 62 3-3-9 掃描式電子顯微鏡(SEM)觀測樣品製備 63 3-3-10 穿透式電子顯微鏡(TEM)觀測樣品製備 63 3-3-11 拉伸測試 64 3-3-12 耐衝擊測試 65 3-3-13 波松比測試 66 3-3-14 破壞韌性測試 67 3-3-15 破壞能量 67 第4章 結果與討論 68 4-1 有機化改質之MMT OR SILICA鑑定 68 4-1-1 FTIR定量分析 68 4-1-1-1 Silane-treated MMT表面接枝之silane偶合劑濃度 68 4-1-1-2 MPS-grafted silica (d=15 nm) 87 4-1-1-3 TRGO 103 4-2 WAXS的測量 107 4-2-1 有機化改質MMT之WAXS鑑定 107 4-2-2 脫層石墨烯奈米層板之WAXS鑑定 109 4-3 ST/UP(ORVER)/ADDITIVE三成份系統固化前之靜態相分離特性 112 4-4 SEM微觀型態結構 117 4-4-1 ST/MA-PA-PG(AN=20, 30)/MPS-grafted MMT三成份系統 117 4-4-2 ST/VER(n=0.11, 2)/ MPS-grafted MMT三成份系統 130 4-4-3 ST/ VER(n=2)/MPS-grafted Silica 15nm三成分系統 143 4-4-4 ST/ VER(n=2)/TRGO三成分系統 150 4-5 TEM微觀型態結構 154 4-5-1 ST/VER(n=0.11)/ MPS-grafted MMT三成分系統 154 4-5-2 ST/VER(n=2)/MPS-grafted MMT三成分系統 160 4-5-3 ST/MA-PA-PG(AN=20)/ MPS-grafted MMT三成分系統 167 4-5-4 ST/VER(n=2)/MPS-grafted Silica 15nm三成分系統 174 4-6 體積收縮特性 181 4-6-1 Neat ST/VER(n=2) 雙成份系統 181 4-6-2 ST/MA-PA-PG(AN=20 or 30)/MPS-grafted MMT三成份系統 184 4-6-3 ST/VER(n=0.11 or n=2)/MPS-grafted MMT三成份系統 188 4-6-4 ST/VER(n=2)/MPS-grafted Silica 15nm三成份系統 191 4-6-5 ST/VER( n=2)/TRGO三成份系統 194 4-7 機械性質研究 197 4-7-1 Neat ST/VER(n=2)雙成份系統之機械性質測試 197 4-7-1-1 Neat ST/VER(n=2)雙成分系之耐衝擊強度 197 4-7-1-2 Neat ST/VER(n=2)雙成分系之楊氏模數 200 4-7-1-3 Neat St/VER(n=2) 雙成分系之抗張強度 203 4-7-1-4 Neat St/VER(n=2) 雙成分系之斷裂拉伸率 206 4-7-2 ST/ MA-PA-PG(AN=30)/MPS-grafted MMT之機械性質測試 209 4-7-2-1 ST/MA-PA-PG(AN=30)/MPS-grafted MMT之耐衝擊強度 209 4-7-2-2 ST/MA-PA-PG(AN=30)/MPS-grafted MMT之楊氏模數 212 4-7-2-3 ST/MA-PA-PG(AN=30)/MPS-grafted MMT之抗張強度 215 4-7-2-4 ST/MA-PA-PG(AN=30)/MPS-grafted MMT之斷裂拉伸率 218 4-7-3 ST/MA-PA-PG(AN=20)/MPS-grafted MMT之機械性質測試 221 4-7-3-1 ST/MA-PA-PG(AN=20)/MPS-grafted MMT之耐衝擊強度 221 4-7-3-2 ST/MA-PA-PG(AN=20)/MPS-grafted MMT之楊氏模數 224 4-7-3-3 ST/MA-PA-PG(AN=20)/MPS-grafted MMT之抗張強度 227 4-7-3-4 ST/MA-PA-PG(AN=20)/MPS-grafted MMT之斷裂拉伸率 230 4-7-4 ST/VER(n=0.11)/MPS-grafted MMT之機械性質測試 233 4-7-4-1 ST/ VER(n=0.11)/MPS-grafted MMT之耐衝擊強度 233 4-7-4-2 ST/VER(n=0.11)/MPS-grafted MMT之楊氏模數 236 4-7-4-3 ST/ VER(n=0.11)/MPS-grafted MMT之抗張強度 239 4-7-4-4 ST/ VER(n=0.11)/MPS-grafted MMT之斷裂拉伸率 242 4-7-5 ST/ VER(n=2)/MPS-grafted MMT之機械性質測試 245 4-7-5-1 ST/ VER(n=2)/MPS-grafted MMT之耐衝擊強度 245 4-7-5-2 ST/ VER(n=2)/MPS-grafted MMT之楊氏模數 248 4-7-5-3 ST/ VER(n=2)/MPS-grafted MMT之抗張強度 251 4-7-5-4 ST/ VER(n=2)/MPS-grafted MMT之斷裂拉伸率 254 4-7-6 ST/ VER(n=2)/MPS-grafted Silica 15nm之機械性質測試 257 4-7-6-1 ST/ VER(n=2)/MPS-grafted Silica 15nm之耐衝擊強度 257 4-7-6-2 ST/ VER(n=2)/MPS-grafted Silica15nm之楊氏模數 260 4-7-6-3 ST/ VER(n=2)/MPS-grafted Silica15nm之抗張強度 263 4-7-6-4 ST/ VER(n=2)/MPS-grafted Silica15nm之斷裂拉伸率 266 4-7-7 ST/ VER(n=2)/ TRGO之機械性質測試 269 4-7-7-1 ST/ VER(n=2)/ TRGO之耐衝擊強度 269 4-7-7-2 ST/ VER(n=2)/ TRGO之楊氏模數 272 4-7-7-3 ST/ VER(n=2)/ TRGO之抗張強度 275 4-7-7-4 ST/ VER(n=2)/ TRGO之斷裂拉伸率 278 第5章 結論 281 第6章 未來工作 284 第7章 參考文獻 285

1.R.B. Burn, Polyester Molding Compounds,Marcel Dekker, Inc, New York,
1982.
2.R.E. Young, in “Unsaturated Polyester Technology,“ ed. P.F. Bruins, Gordon
and Breach Science Publishers, 1976.
3.M.E. Kelly, in “Unsaturated Polyester Technology,“ ed. P.F. Bruins, Gordon and
Breach Science Publishers, 1976, P370.
4.F. Fekete, “Unsaturated Polyester Technology,“ ed. P.F. Bruins, Gordon and
Breach Science Publishers, 1976, P28.
5.E. Martuscelli, P. Musto, G.. Ragosta, G. Scarinzi, and E. Bertotti, J.Polym.Sci., Part B:Polym.Phys., 1993. 31, 619.
6.S.B. Pandit and V.M. Nadkarni, Ind. Eng. Chem Res., 1994. 33, 2778.
7.The B.F. Goodrich Co. WO93/21274 Oct. 28,1993.
8.Crc for Polymers Pty. Ltd., WO97/43339 Nov. 20,1997.
9.吳嘉鴻, 碩士論文,台灣科技大學, 2003.
10.黃俊翰, 碩士論文,台灣科技大學, 2009.
10.(a) 戴孟祥, 碩士論文, 台灣科技大學, 2010.
11.陳曉蘭, 碩士論文,台灣科技大學, 2010.
12.許毓倫, 碩士論文,台灣科技大學, 2011.
13.E.J. Bartkus and C.H Kroekel, Appl.Polym.Symp., 1970. 15, 113.
14.K.E.Atkins, in”Sheet Molding Compound :Science and Technology”Ed., H.G.
Kia, Hanser Publishers, 1993. Ch4.
15.V.A. Pattison, R.R. Hindersinn, and W.T. Schwartz,J. , Appl.Polym.Sci., 1974.
18, 2763.
16.V.A. Pattison, R.R. Hindersinn, and W.T. Schwartz,J. , Appl.Polym.Sci., 1975.
19, 3045.
17.L. Suspene, D. Fourquier, and Y. S. Yang, Polymer, 1991. 32, 1593.
18.Y. J. Huang and C. M. Liang, Polymer, 1996. 37, 401.
19.L. J. Lee, W. Li , and K.H. Hsu, Polymer, 2000. 41, 711.
20.C.B. Bucknall, I.K. Partridge, and M.J. Phillips, Polymer, 1991. 32, 636.
21.Y. J. Huang, T. S. Chen, J. G. Huang, and F. H. Lee, J. Appl. Polym. Sci., 2003. 89, 3336.
22.J.P. Dong , J.H. Lee , D.H. Lai, and Y. J. Huang, Appl. Polym.Sci., 2005. 98,
264.
23.C.P. Hsu, M. Kinkelaar, P. Hu, and L.J. Lee., Polym.Eng.Sci., 1991. 31, 1450.
24.Y.J. Huang, C.J. Chu, and J.P. Dong, J. Appl. Polym. Sci., 2000. 78, 543.
25.Y.J. Huang and C.C. Su, J. Appl. Polym. Sci., 1995. 55, 323.
26.J.P. Dong, J.G. Huang, F.H. Lee, J.W. Roan and Y.J. Huang, J.Appl.Polym.Sci.,
2004. 91, 3388.
27.Y.J. Huang and W.C. Jiang, Polymer, 1998. 39, 6631.
28. B. M. Novak, Adv. Mater., 1993. 5, 422.
29.X. Kornmann, L. A. Berghund, J. Sterte, and E. P. Giannelis, Polym. Eng. Sci., 1998. 38, 1351.
30.Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and Kamigaito,
J.Polym.Sci. Part A: Polym.Chem, 1993. 31, 983.
31.E. P. Giannelis, Adv. Mater., 1996. 8, 29.
32.A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, A. Fujushima, T. Kurauchi, and
O. Kamigaito, J. Mater. Res., 1993. 8, 1179.
33.P. B. Messersmith and E. P. Giannelis, Chem. Mater., 1994. 6, 1719.
34.W. Gilman and T. Kashiwagi, SAMPE Journal, 1997. 33, 42.
35.H. Kim, A.A. Abdada, and C.W. Macosko, Macromolecules,2010, 43, 6515
36.盧天智, 碩士論文,台灣科技大學, 1991.
37.H.R. Allcock and F.W. Lampe, ”Contemporary Polymer Chemistry”, 2nd Ed.,
Prentice Hall, Englewood Cliffs, 1990, 50.
38.Y.S. Yang and L.J. Lee, Polymer, 1988. 29, 1793.
39. K. Horie, I. Mita, and H. Kambe, J.Polym.Sci.PartA-1:Polym. Chem., 1969. 7,
2561.
40.江文慶, 碩士論文,台灣科技大學, 1996.
41.Y.J. Huang and C.C. Su, J. Appl. Polym. Sci., 1995. 55, 305.
42.Y.J. Huang and J.C. Horng, Polymer, 1998. 39, 3683.
43.Y.J. Huang and L.D. Chen, Polymer, 1998. 39, 7049.
44.蘇進成, 碩士論文,台灣科技大學, 1992.
45.林立翔, 碩士論文,台灣科技大學, 1992.
46.Y.J. Huang and C.C. Su, Polymer, 1994. 35, 2397.
47.Y.J. Huang, T.J. Lu, and W. Hwu, Polym. Eng. Sci., 1993. 33, 1.
48.C.B. Bucknall, I.K. Partridge, and M.J. Phillips, Polymer, 1991. 32, 786.
49.T. Mitani, H. Shiraishi, K. Honda, and G.E. Owen, 44th Annual Conference
Composite Institute,SPI,Session 12-F, 1989.
50.W.D. Cook and O. Delatycki, J.Polym.Sci.,Polym.Phys.Ed., 1974. 12, 2111.
51.W.D. Cook and O. Delatycki, J.Polym.Sci.,Polym.Phys.Ed., 1974. 12, 1925.
52.Y.J. Huang, S.C. Lee, and J.P. Dong, J. Appl. Polym. Sci., 2000. 78, 558.
53.Y.J. Huang, T.S. Chen, J.G. Huang, and F.H. Lee, J.Appl.Polym.Sci., 2003. 89,
3347.
54.D.S. Kim, K. Cho, J.H. An, and C.E. Park, J. Mater. Sci., 1994. 29, 1854.
55.J.S. Ullett and R.P. Chartoff, Polym. Eng. Sci., 1995. 35, 1086.
56.M. Abbate, E. Martuscelli, P. Musto, G. Ragosta, and G. Scarinzi, J.Appl.
Polym. Sci., 1995. 58, 1825.
57.M.L.L. Maspochand and A.B. Matinez, Polym.Eng. Sci., 1998. 38, 290.
58.N. A. Miller and C. D. Stirling, Polym. Comps., 2001. 9, 31.
59.K. F. Lin and Y.D. Shieh, J. Appl. Polym. Sci., 1998. 69, 2069.
60.K.F. Lin and Y.D. Shieh, J. Appl. Polym. Sci., 1998. 70, 2313.
61.P. Hazot, C. Pichot, and A. Maazouz,, Macromol Chem. Phys., 2000. 201, 632.
62.B.J.P. Jansen, S. Rastogi, H.E.H. Meijer, and P.J.Lemstra, Macromolecules,
2001. 34, 3998.
63.H.J. Sue, E.I. Garciameitin, and D.M. Picklman, in Polymer Toughening, Ch. 5,
ed., C.B. Arends, Marcel Dekker, 1996.
64.The Dow Chemical Company US Patent 4,778,851 Oct. 18 1998.
65.J.Y. Qian, R.A.Pearson, V.L. Dimonie, and M.S. El-Aasser, J. Appl. Polym.
Sci., 1995. 58, 439.
66.D. J. Suh, Y. T. Lim, and O. O. Park, Polymer, 2000. 41, 8557.
67.R. K. Bharadwaj, A. R. Mehrabi, C. Hamilton, C. Trujillo, M. Murga, R. Fun,
A. Chavira, and A. K. Thompsor, Polymer, 2002. 43, 3669.
68. The Dow Chemical Company US Patent 6,287,922 Sep.11, 2001.
69.A. Al-khanabashi, M. El-Gamal, and A. Moet, J. Appl. Polym. Sci., 2005. 98,
767.
70.梁繼文, 礦物學(下), 1984.
71.T. Lan and T.J Dinnavaia, Chem. Mater, 1994. 6, 2216.
72.H. Kim, Y. Miura, and C.W. Macosko, Chem. Mater., 22, 3441 (2010).
73.H. Kim and C.W. Macosko, Macromolecules, 41, 3317 (2008).
74.W. Huang, X. Ouyang, and L.J. Lee, ACS Nano, 6, 10178 (2012).
75.J.Z. Xu, C. Chen, Y. Wang, H. Tang, Z.M. Li, and B.S. Hsiao, Macromolecules,
44, 2808 (2011).
76.J.R. Potts, O. Shankar, L. Du, and R.S. Ruoff, Macromolecules, 45, 6045
(2012).
77.S. Wang, M. Tambraparni, J. Qiu, J. Tipton, and . Dean, Macromolecules, 42,
5251 (2009).
78. S. Ganguli, A.K. Roy, D.P. Anderson, Carbon, 46, 806 (2008).
79.M. Martin-Gallego, R. Verdejo, M.A. Lopez-Manchado, and M. Sangermanno,
Polymer, 52, 4664 (2011).
80.S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia,
Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon, 45, 1558 (2007).
81.W.S. Hummers, and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).
82.H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrere-Alonso, D.H.
Adamson, R.K. Prud’homme, R. Car, R.A. Savile, and I.A. Aksay, J. Phys.
Chem. B, 110, 8535 (2006).
83.Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, and H,. Zhao, Langmuir, 25, 11808 (2009).
84.F. Beckert, C. Friedrich, R. Thomann, and R. Mulhaupt, Macromolecules, 45,
7083 (2012).
85.Patrick W. K. Lam, Polym. Eng. Sci., 1989, 29(10),690-698
86.邱淑微,碩士論文,台灣科技大學,2011.
87.Yuliana Tassia, MS Thesis, National Taiwan University of Science and
Technology, 2013.
88. 林悅蘋,碩士論文,台灣科技大學,2014
89. 鍾孟儒,碩士論文,台灣科技大學,2014.
90. 劉伊姍,碩士論文,台灣科技大學,2011.
91. S.Y. Pusatcioglu, A.L.Fricke., and J.C. Hasseler, J. Appl. Polym. Sci., 24, 937(1979).
92. C. D. Han, and K. W. Lem, J. Appl. Polym. Sci., 28, 749(1983).
93. J. F. Stevenson, Polym. Eng. Sci., 26(11), 746 (1989).
94. J. F. Stevenson, SPE. ANTEC. Papers, 26, 452(1980).
95. L. J. Lee, Polym. Eng. Sci., 21, 483 (1981).
96. Y. J. Huang, and L. J. Lee, AIChE. J., 31, 1585(1985).
97. C. D. Han, and D. S. Lee, J. Appl. Polym. Sci., 37, 2859(1987).
98.C. S. Chern, and D. C. Sundberg, ACS. Polym. PREP, 26(1), 296(1985).
99.G. L. Batch, and C. W. Mocosko, SPE. ANTEC Paper, 974(1987).
100.Y. J. Huang, J. D. Fan, and L. J. Lee, Polym. Eng. Sci., 30(11), 684(1990)
101.Patrick W. K. Lam, Polym. Eng. Sci., 1989. 29(10), 690-698.
102.K.Horie, I Mita, and H.Kambe, J. Polym. Sci. : Part A1: Polymer Physics,1970, 2839.
103.江昆達, 碩士論文, 台灣科技大學, 2008.
104.S. L. Rosen, Fundamental Principles of Polymeric Materials, 2ed, Wiley, New York, 1993, 321-337.
105.J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics,2nd Ed., Wiley, New York, 2011.
106.B.D Cullity, Elements of X-ray Diffraction. 2nd Ed, Addison-wesley, Reading,
MA, 1978.
107.L.H. Sperling, “Introduction to Physical Polymer Science”, 4th Ed.,Wiley ,
New York, 2006, P.91-101.
108.D.C. Harris, Quantitative Chemical Analysis, 8th Ed., W.H. Freeman and
Company, New York, 2010, Chap. 9.
109.J.W. Robinson, E.M.S. Frame, and G.M. Frame II, Undergraduate Instrumental Analysis, 6th Ed., Marcel Dekker, New York, 2005, p. 227-279.
110.M. Takayanagi, K. Emada, and T. Kajiyama, J. Polym. Sci. Part C, 1966. 15,263.
111.BY William S. Hummers, Jr., and Richard E. Offeman, Preparation Of
Graphitic Oxide, 1958
112.Hannes C. Schniepp, Je-Luen Li, Michasel J. McAllister, Hiroaki Sai, Margarita Herrera-Alonso, Douglas H. Adamson, Robert K. , Roberto Car , Dudley A.Saville, and Ilhan A. Aksay , Journal Of Physical Chemistry B, 2006, 8535-8539.

QR CODE