簡易檢索 / 詳目顯示

研究生: Sanjay Kumar
Sanjay Kumar
論文名稱: 自增強聚酯複合材料之雙邊開孔應變集中及其鋁複合積層板機械性能之研究
Strain concentration of double-edge hole self-reinforced polyester composites and mechanical properties of fiber metal laminates based on self-reinforced polyester
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 郭俊良
Chun-Liang Kuo
吳昌謀
Chang-Mou Wu
鄭國彬
Zheng Guobin
陳錦江
Jieng Chiang Chen
陳炤彰
Chao-Chang Chen
蔡佳霖
Jia-Lin Tsai
劉顯光
Hsien-Kuang Liu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 150
中文關鍵詞: 自增強聚酯複合材料雙邊緣孔應力/應變集中數位影像相關係數法纖維與金屬複合層板機械性能
外文關鍵詞: self-reinforced PET composites, Double edge hole, Stress/strain concentration, Digital image correlation, Fiber metal laminate, Mechanical properties
相關次數: 點閱:158下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當複合材料應用於汽車和工業零件的行業中,複合材料零件通常通過機械固件連接,常設計具有圓孔的連接結構件,這些孔存在應力與應變集中,從而降低了複合材料的承載能力和壽命。因此,本論文研究應變與應力集中 (strain/stress concentration;SC) 對具有孔之自增強聚對苯二甲酸乙二酯 (self-reinforced poly (ethylene terephthalate);srPET) 複合材料性能的影響。
    本論文使用數位影像相關係數法 (digital image correlation;DIC),研究具有雙邊半圓孔 (double-edge semi-circular holes;DESH) 的自增強聚酯複合材料(srPET)在不同寬度與直徑比 (width-to-diameter;W/D) 之變形範圍內應變集中因數 (strain concentration factors;Kɛ) 變化。Kɛ的值與彈性變形範圍內的理論集中係數 (theoretical concentration factor;Kt) 一致。由於塑性變形,其迅速升高,因此Kɛ的變化根據屈服範圍的分佈(從孔邊緣開始) 分為不同的階段。Kɛ 在彈性和塑性區域都隨著 W/D 的減小而下降,但當 W/D 比等於 1.5 時有一個例外,因此 W/D 大於 1.5 被推薦用於設計安全的結構韌性複合材料。在孔效應中,DESH 的 Kɛ在彈性和塑性區域均低於圓形孔 (circular holes;CH) ,故應選用具有 DESH 的複合材料作為結構應用的替代品。
    第二部分為複合材料在衝擊載荷下的低能量吸收特性之研究,採用熱壓法製備兩種延展性材料,鋁和自增強聚酯複合材料和鋁的纖維與金屬複合層板 (fiber metal laminates ;FML)。在拉伸、彎曲、短梁剪切 (short beam shear;SBS)、落錘衝擊和衝擊後壓縮 (CAI) 測試下研究 FML 之力學行為。FML與 srPET 複合材料相比,FML 表現出優異的拉伸性能和極高的剛性,其拉伸強度和模量比 srPET 複合材料高出 9% 和 6 倍。FML 有高比率(83%)的吸收能量與衝擊能量,此類型的 FML 在施加高能量 (high applied energy;HE) 時提供了出色的特定吸收能量與抗穿孔力。FML在 HE 衝擊下與具施加低能量 (Low applied energy;LE) 的相比,獲得了幾乎相同的 CAI 強度但具有較高的 CAI 模量。 這些結果展現,基於環保 srPET 的 FML 具有用於各種工業應用的輕質吸收能結構的潛力。


    In industries where composites can be applied in automobiles and industrial parts, they are usually joined to mechanical fasteners. Their design often includes circular holes, which introduce stress/strain concentration (SC), consequently reducing the load carrying capacity and life of the composite. Therefore, the study of SC of composites becomes important, thus, the effect of SC on the performance of srPETs with holes was studied.
    The study investigated variations in strain concentration factors (Kɛ) within the full deformation range of self-reinforced poly (ethylene terephthalate) composites (srPETs) with double-edge semi-circular holes (DESH) using digital image correlation (DIC) at different width-to-diameter (W/D) ratios. The value of Kɛ agrees with the theoretical concentration factor (Kt) within the elastic deformation range; then, it increases rapidly to a peak because of plastic deformation. Therefore, the change in Kɛ was divided into different stages based on the spread of the yield extent (starting from the hole edge). The decrease in Kɛ was accompanied by a decrease in W/D in both the elastic and plastic regions; however, there was an exception when the W/D was equal to 1.5. Therefore, the geometric configuration W/D greater than 1.5 was recommended for designing secure structural ductile composites. The Kɛ of DESH is lower than that of CH in both the elastic and plastic regions for the hole effect. Thus, preference should be given to composites with DESH as an alternative for structural applications.
    However, another major concern of the researcher was the low energy absorbing characteristics of the composites under impact loading. Thus, this dissertation studied the development of fiber metal laminates based on two ductile materials—aluminum and srPET composite—in its second section. FMLs were developed using the hot press manufacturing method. The mechanical behavior of the FML was examined under tensile, flexural, short beam shear (SBS), drop weight impact, and compression after impact (CAI) tests. FML showed superior tensile properties and extremely rigid behavior compared to srPET composites, providing 9% higher tensile strength and modulus 6 times higher than srPET composites. This type of FML provides excellent specific absorbed energy without impactor penetration at high applied energy (HE), because the ratio of absorbed energy to impact energy of the FML was very high (83%). The CAI test found insensitive behavior of srPET under compression. However, it also demonstrated that the FML affected at HE yielded almost the same CAI strength and higher CAI modulus than the FML affected at low applied energy (LE). These results showed that FML based on environmentally friendly srPET offers potential for use in lightweight energy-absorbing structures for various industrial applications.

    Chapter 1 : Introduction 1 1.1 Composite materials 1 1.2 Classifications of the composite materials 2 1.3 Advantages, necessity, and benefits of the composite materials 2 1.4 Fiber reinforced polymer composites 3 1.5 Manufacturing of the fiber reinforced polymer composites 6 1.5.1 Manufacturing of the thermoplastic polymer matrix composites 6 1.5.2 Uncommingling 7 1.5.3 Compression molding 9 1.5.4 Self-reinforced polymer composites 9 1.6 Method to determine the stress 14 1.6.1 Electrical strain gauges 14 1.6.2 Photo elasticity 14 1.6.3 Digital image correlation (DIC) 17 1.7 Impact on material 18 1.7.1 Low-velocity impacts 19 1.7.2 Compression after impact (CAI) 20 Chapter 2 : Literature review 23 2.1 The open hole tensile properties of the composites 23 2.2 Interaction of holes in composites 25 2.3 Fiber metal laminate (FML) 28 2.3.1 Aramid reinforced aluminum laminate (ARALL) 30 2.3.2 Glass reinforced aluminum laminate (GLARE) 31 2.3.3 Carbon reinforced aluminum laminate (CARALL) 32 2.3.4 FMLs based on aluminum alloy and self-reinforced polymer composites 33 2.4 Motivation and objective 35 Chapter 3 : Stress/strain concentration of double-edge hole ductile composites in the full range of deformation by digital image correlation 38 3.1 Introduction 38 3.2 Experimental procedure 41 3.2.1 Materials and specimen preparation 41 3.2.2 Experimental setup 44 3.3 Results and discussion 49 3.3.1 Tensile properties of srPETs with circular hole (CH) and double-edge semi-circular hole (DESH) 49 3.3.2 Strain concentration factor of PMMA with CH and DESH 51 3.3.3 Strain concentration factor of srPETs with CH and DESH 53 3.3.4 Stress concentration factor of srPETs with CH and DESH 59 3.3.5 Dissipation of strain concentration factors versus a/r for srPETs with CH and DESH specimens 60 3.4 Summary 64 Chapter 4 : Mechanical properties of fiber metal laminates based on two ductile materials- aluminum and srPET composite 66 4.1 Introduction 66 4.2 Materials and experimental details 69 4.2.1 Materials 69 4.2.2 Sample preparation 70 4.2.3 Uniaxial tensile testing 70 4.2.4 Flexural test 71 4.2.5 Short beam shear test 71 4.2.6 Impact test 72 4.2.7 Compression-after-impact (CAI) test 73 4.3 Results and discussion 74 4.3.1 Tensile properties of fiber metal laminate (FMLs) 74 4.3.2 Flexural properties of FMLs 78 4.3.3 Short beam shear properties of FMLs 80 4.3.4 Impact properties of srPETs and FMLs 81 4.3.5 Specific absorbed energy of srPETs and FMLs 84 4.3.6 Compression after impact (CAI) of srPETs and FMLs 89 4.4 Summary 92 Chapter 5 : Conclusion and future scope 93 5.1 Conclusion 93 5.2 Future scope 94 References……………………………………………………………………………….. 98

    [1] Rajak, D. K.; Pagar, D. D.; Kumar, R.; Pruncu, C. I.: Recent progress of reinforcement materials: A comprehensive overview of composite materials. Journal of Materials Research and Technology, 8, 6354–6374 (2019). http://doi:10.1016/j.jmrt.2019.09.068.
    [2] Edwards, K. L.: An overview of the technology of fibre-reinforced plastics for design purposes. Materials and Design, 19, 1–10 (1998). http://doi:10.1016/s0261-3069(98)00007-7.
    [3] Alemour, B.; Badran, O.; Hassan, M. R.: A review of using conductive composite materials in solving lightening strike and ice accumulation problems in aviation. Journal of Aerospace Technology and Management, 11, 1–23 (2019). http://doi:10.5028/jatm.v11.1022.
    [4] Friedrich, K.; Almajid, A. A.: Manufacturing aspects of advanced polymer composites for automotive applications. Applied Composite Materials, 20, 107–128 (2013). http://doi:10.1007/s10443-012-9258-7.
    [5] Pendhari, S. S.; Kant, T.; Desai, Y. M.: Application of polymer composites in civil construction: A general review. Composite Structures, 84, 114–124 (2008). http://doi:10.1016/j.compstruct.2007.06.007.
    [6] Shubhra, Q. T. H.; Alam, A. K. M. M.; Quaiyyum, M. A.: Mechanical properties of polypropylene composites: A review. Journal of Thermoplastic Composite Materials, 26, 362–391 (2013). http://doi:10.1177/0892705711428659.
    [7] Shi, X. H.; Li, X. L.; Li, Y. M.; Li, Z.; Wang, D. Y.: Flame-retardant strategy and mechanism of fiber reinforced polymeric composite: A review. Composites Part B: Engineering, 233, 109663 (2022). http://doi:10.1016/j.compositesb.2022.109663.
    [8] Parikh, H. H.; Gohil, P. P.: Tribology of fiber reinforced polymer matrix composites - A review. Journal of Reinforced Plastics and Composites, 34, 1340–1346 (2015). http://doi:10.1177/0731684415591199.
    [9] Smits, J.: Fiber-Reinforced Polymer Bridge Design in the Netherlands: Architectural Challenges toward Innovative, Sustainable, and Durable Bridges. Engineering, 2, 518–527 (2016). http://doi:10.1016/J.ENG.2016.04.004.
    [10] Asmatulu, E.; Twomey, J.; Overcash, M.: Recycling of fiber-reinforced composites and direct structural composite recycling concept. Journal of Composite Materials, 48, 593–608 (2014). http://doi:10.1177/0021998313476325.
    [11] Utekar, S.; V K, S.; More, N.; Rao, A.: Comprehensive study of recycling of thermosetting polymer composites – Driving force, challenges and methods. Composites Part B: Engineering, 207, 1–11 (2021). http://doi:10.1016/j.compositesb.2020.108596.
    [12] Fredi, G.; De Col, A.; Dorigato, A.; Lopez-Cuesta, J. M.; Fambri, L.; Pegoretti, A.: Combined effect of fumed silica and metal hydroxides as fire retardants in PE single-polymer composites. AIP Conference Proceedings, 1981 (2018). http://doi:10.1063/1.5045883.
    [13] Fakirov, S.: Nano- and microfibrillar single-polymer composites: A review. Macromolecular Materials and Engineering, 298, 9–32 (2013). http://doi:10.1002/mame.201200226.
    [14] Fakirov, S.: Nano-/microfibrillar polymer-polymer and single polymer composites: The converting instead of adding concept. Composites Science and Technology, 89, 211–225 (2013). http://doi:10.1016/j.compscitech.2013.10.007.
    [15] Dorigato, A.; Fredi, G.; Fambri, L.; Lopez-Cuesta, J. M.; Pegoretti, A.: Polyethylene-based single polymer laminates: Synergistic effects of nanosilica and metal hydroxides. Journal of Reinforced Plastics and Composites, 38, 62–73 (2019). http://doi:10.1177/0731684418802974.
    [16] Kmetty, Á.; Bárány, T.; Karger-Kocsis, J.: Self-reinforced polymeric materials: A review. Progress in Polymer Science (Oxford), 35, 1288–1310 (2010). http://doi:10.1016/j.progpolymsci.2010.07.002.
    [17] Karger-Kocsis, J.; Bárány, T.: Single-polymer composites (SPCs): Status and future trends. Composites Science and Technology, 92, 77–94 (2014). http://doi:10.1016/j.compscitech.2013.12.006.
    [18] Jordan, N. D.; Bassett, D. C.; Olley, R. H.; Hine, P. J.; Ward, I. M.: The hot compaction behaviour of woven oriented polypropylene fibres and tapes. II. Morphology of cloths before and after compaction. Polymer, 44, 1133–1143 (2003). http://doi:10.1016/S0032-3861(02)00810-8.
    [19] Hine, P. J.; Ward, I. M.; Maaty, M. I. A. El; Olley, R. H.; Bassett, D. C.: Hot compaction of 2-dimensional woven melt spun high modulus polyethylene fibres. Journal of Materials Science, 35, 5091–5099 (2000). http://doi:10.1023/A:1004835816735.
    [20] Hine, P. J.; Ward, I. M.: Hot compaction of woven poly(ethylene terephthalate) multifilaments. Journal of Applied Polymer Science, 91, 2223–2233 (2004). http://doi:10.1002/app.13343.
    [21] Hine, P. J.; Olley, R. H.; Ward, I. M.: The use of interleaved films for optimising the production and properties of hot compacted, self reinforced polymer composites. Composites Science and Technology, 68, 1413–1421 (2008). http://doi:10.1016/j.compscitech.2007.11.003.
    [22] Zhuang, X.; Yan, X.: Investigation of damage mechanisms in self-reinforced polyethylene composites by acoustic emission. Composites Science and Technology, 66, 444–449 (2006). http://doi:10.1016/j.compscitech.2005.07.013.
    [23] Abraham, T.; Banik, K.; Karger-Kocsis, J.: All-PP composites (PURE®) with unidirectional and cross-ply lay-ups: Dynamic mechanical thermal analysis. Express Polymer Letters, 1, 519–526 (2007). http://doi:10.3144/expresspolymlett.2007.74.
    [24] Bárány, T.; Izer, A.; Karger-Kocsis, J.: Impact resistance of all-polypropylene composites composed of alpha and beta modifications. Polymer Testing, 28, 176–182 (2009). http://doi:10.1016/j.polymertesting.2008.11.011.
    [25] Abraham, T. N.; Wanjale, S. D.; Bárány, T.; Karger-Kocsis, J.: Tensile mechanical and perforation impact behavior of all-PP composites containing random PP copolymer as matrix and stretched PP homopolymer as reinforcement: Effect of β nucleation of the matrix. Composites Part A: Applied Science and Manufacturing, 40, 662–668 (2009). http://doi:10.1016/j.compositesa.2009.03.001.
    [26] Zhang, J. M.; Reynolds, C. T.; Peijs, T.: All-poly(ethylene terephthalate) composites by film stacking of oriented tapes. Composites Part A: Applied Science and Manufacturing, 40, 1747–1755 (2009). http://doi:10.1016/j.compositesa.2009.08.008.
    [27] Zhang, J. M.; Peijs, T.: Self-reinforced poly(ethylene terephthalate) composites by hot consolidation of Bi-component PET yarns. Composites Part A: Applied Science and Manufacturing, 41, 964–972 (2010). http://doi:10.1016/j.compositesa.2010.03.012.
    [28] Fakirov, S.; Duhovic, M.; Maitrot, P.; Bhattacharyya, D.: From PET nanofibrils to nanofibrillar single-polymer composites. Macromolecular Materials and Engineering, 295, 515–518 (2010). http://doi:10.1002/mame.200900387.
    [29] Schneider, C.; Kazemahvazi, S.; Åkermo, M.; Zenkert, D.: Compression and tensile properties of self-reinforced poly(ethylene terephthalate)-composites. Polymer Testing, 32, 221–230 (2013). http://doi:10.1016/j.polymertesting.2012.11.002.
    [30] Matabola, K. P.; de Vries, A. R.; Luyt, A. S.; Kumar, R.: Studies on single polymer composites of poly(methyl methacrylate) reinforced with electrospun nanofibers with a focus on their dynamic mechanical properties. Express Polymer Letters, 5, 635–642 (2011). http://doi:10.3144/expresspolymlett.2011.61.
    [31] Pegoretti, A.; Zanolli, A.; Migliaresi, C.: Preparation and tensile mechanical properties of unidirectional liquid crystalline single-polymer composites. Composites Science and Technology, 66, 1970–1979 (2006). http://doi:10.1016/j.compscitech.2006.01.012.
    [32] Pegoretti, A.; Zanolli, A.; Migliaresi, C.: Flexural and interlaminar mechanical properties of unidirectional liquid crystalline single-polymer composites. Composites Science and Technology, 66, 1953–1962 (2006). http://doi:10.1016/j.compscitech.2006.01.015.
    [33] Gao, C.; Meng, L.; Yu, L.; Simon, G. P.; Liu, H.; Chen, L.; Petinakis, S.: Preparation and characterization of uniaxial poly(lactic acid)-based self-reinforced composites. Composites Science and Technology, 117, 392–397 (2015). http://doi:10.1016/j.compscitech.2015.07.006.
    [34] Bhattacharyya, D.; Maitrot, P.; Fakirov, S.: Polyamide 6 single polymer composites. Express Polymer Letters, 3, 525–532 (2009). http://doi:10.3144/expresspolymlett.2009.65.
    [35] Rojanapitayakorn, P.; Mather, P. T.; Goldberg, A. J.; Weiss, R. A.: Optically transparent self-reinforced poly(ethylene terephthalate) composites: Molecular orientation and mechanical properties. Polymer, 46, 761–773 (2005). http://doi:10.1016/j.polymer.2004.11.032.
    [36] Diani, J.; Gall, K.: Finite Strain 3D Thermoviscoelastic Constitutive Model. Society, , 1–10 (2006). http://doi:10.1002/pen. https://doi.org/10.1002/pen.23485
    [37] Fakirov, S.; Duhovic, M.; Bhattacharyya, D.: Nanofibrillar single polymer composites of poly(ethylene terephthalate). Macromolecular Materials and Engineering, 295, 95–99 (2010). http://doi:10.1002/mame.200900237.
    [38] Romhány, G.; Wu, C. M.; Lai, W. Y.; Karger-Kocsis, J.: Fracture behavior and damage development in self-reinforced PET composites assessed by located acoustic emission and thermography: Effects of flame retardant and recycled PET. Composites Science and Technology, 132, 76–83 (2016). http://doi:10.1016/j.compscitech.2016.06.014.
    [39] Wu, C. M.; Lin, P. C.; Kumar, S.; Chen, J. C.: Long-term open-hole tensile creep properties of self-reinforced PET composites measured by digital image correlation. Materials Chemistry and Physics, 278, 125633 (2022). http://doi:10.1016/j.matchemphys.2021.125633.
    [40] Kumar, S.; Wu, C. M.; Lai, W. Y.; Lin, P. C.: Pin hole tensile and fatigue properties of self-reinforced PET composites. Composite Structures, 255, 1–9 (2021). http://doi:10.1016/j.compstruct.2020.112981.
    [41] Wu, C. M.; Lin, P. C.; Murakami, R.: Long-term creep behavior of self-reinforced PET composites. Express Polymer Letters, 11, 820–831 (2017). http://doi:10.3144/expresspolymlett.2017.78.
    [42] Wu, C. M.; Lai, W. Y.: Mechanical and open hole tensile properties of self-reinforced PET composites with recycled PET fiber reinforcement. Journal of Applied Polymer Science, 133, 1–8 (2016). http://doi:10.1002/app.43682.
    [43] Higson, G. R.: Recent advances in strain gauges. Journal of Scientific Instruments, 41, 405–414 (1964). http://doi:10.1088/0950-7671/41/7/301.
    [44] Stehlin, P.: Strain distribution in and around strain gauges. The Journal of Strain Analysis for Engineering Design, 7, 228–235 (1972). http://doi:10.1243/03093247V073228.
    [45] Voigt, J. U.; Flachskampf, F. A.: Strain and strain rate: New and clinically relevant echo parameters of regional myocardial function. Zeitschrift fur Kardiologie, 93, 249–258 (2004). http://doi:10.1007/s00392-004-0047-7.
    [46] Junqing, Z.; Hongjian, Z.; Xinyang, S.; Yuhang, J.: Evaluation on compressive properties of composite laminates with a hole reinforced by metal plate. Composite Structures, 258, 1–9 (2021). http://doi:10.1016/j.compstruct.2020.113423.
    [47] Magnier, A.; Wu, T.; Tinkloh, S. R.; Tröster, T.; Scholtes, B.; Niendorf, T.: On the reliability of residual stress measurements in unidirectional carbon fibre reinforced epoxy composites. Polymer Testing, 97, 1–12 (2021). https://doi.org/10.1016/j.polymertesting.2021.107146
    [48] Sun, J.; Jing, Z.; Wu, J.; Wang, W.; Zhang, D.; Zhao, J.: Strain rate effects on dynamic tensile properties of open-hole composite laminates. Composites Communications, 19, 226–232 (2020). http://doi:10.1016/j.coco.2020.04.004.
    [49] Barrowman, E. M.: High Elongation Strain Measurements. (1982).
    [50] Suh, J. G.; Hawong, J. S.; Shin, D. C.: A study of the development of the stress optic law of photoelastic experiment considering residual stress. KSME International Journal, 17, 1674–1681 (2003). http://doi:10.1007/BF02983597.
    [51] Lim, H. S.; Shin, D. C.; Hawong, J. S.: Analysis for interior stress in various curvature radiuses on D-ring seal using hybrid photoelastic experimental method. Journal of Mechanical Science and Technology, 31, 3679–3683 (2017). http://doi:10.1007/s12206-017-0709-9.
    [52] Kawata, K.; Hashimoto, S.; Masuda, Y.; Hayasi, R.: High-speed photoelastic stress analysis of axially-impacted finite column. Experimental Mechanics, 47, 465–471 (2007). http://doi:10.1007/s11340-006-9006-8.
    [53] Ju, Y.; Wang, L.; Xie, H.; Ma, G.; Zheng, Z.; Mao, L.: Visualization and Transparentization of the Structure and Stress Field of Aggregated Geomaterials Through 3D Printing and Photoelastic Techniques. Rock Mechanics and Rock Engineering, 50, 1383–1407 (2017). http://doi:10.1007/s00603-017-1171-9.
    [54] Hyer, M.; Liu, D.: Photoelastic determination of stresses in multiple-pin connectors. Experimental Mechanics, 23, 249–256 (1983). http://doi:10.1007/bf02319250.
    [55] Akhmetzyanov, M.; Albaut, G.: Study of large plastic strains and fracture in metal elements by photoelastic coating method. International Journal of Fracture, 128, 223–231 (2004). http://doi:10.1023/B:FRAC.0000040985.71418.1e.
    [56] Ahmad, R.; Hasan, A. O.; Al-Rawashdeh, H.: Photoelastic Stress Analysis of Crankpin Fillets of a Crankshaft. Journal of Failure Analysis and Prevention, 19, 476–487 (2019). http://doi:10.1007/s11668-019-00618-w.
    [57] Dunlap, R. W.; Hucke, E. E.; Ragone, D. V.: Local stress measurement using the thermoelastic effect. Experimental Mechanics, 8, 154–163 (1968). http://doi:10.1007/bf02326342.
    [58] Woolard, D. F.: W & M ScholarWorks Thermoelastic and photoelastic full-field stress measurement. Theses, 1, 1–154 (1999).
    [59] J. W. Dally and W. F. Riley, Experimental Stress Analysis. McGraw-Hill, 1987.
    [60] Wang, W. C.; Chen, Y. M.; Lin, M. S.; Wu, C. P.: Investigation of the stress field of a near-surface circular hole. Experimental Mechanics, 45, 244–249 (2005). http://doi:10.1177/0014485105054848.
    [61] Malezhik, M. P.; Malezhik, O. P.; Zirka, A. I.; Chernyshenko, I. S.: Dynamic photoelastic study of wave fields in elastic plates with stress concentrators. International Applied Mechanics volume, 41, 84–92 (2005). https://doi.org/10.1007/s10778-006-0048-5
    [62] Rubayi, N. A.; Nana, A. D.: Photoelastic stress analysis of an elliptical hole in a thick plate subjected to uniform in-plane compressive Loading. Experimental Mechanics, 25, 105–114 (1985). http://doi:10.1007/BF02328799.
    [63] Meguid, S. A.; Tan, M. A.: Photoelastic analysis of the singular stress field in a bimaterial wedge. Experimental Mechanics, 40, 68–74 (2000). http://doi:10.1007/BF02327550.
    [64] Carolina, S.; Carolina, S.: Peters W. (2013).
    [65] Chu, T. C.; Ranson, W. F.; Sutton, M. A.: Applications of digital-image-correlation techniques to experimental mechanics. Experimental Mechanics, 25, 232–244 (1985). http://doi:10.1007/BF02325092.
    [66] Sutton, M.; Mingqi, C.; Peters, W.; Chao, Y.; McNeill, S.: Application of an optimized digital correlation method to planar deformation analysis. Image and Vision Computing, 4, 143–150 (1986). http://doi:10.1016/0262-8856(86)90057-0.
    [67] Sutton, a; Chu, T. C.; Anderson, J.; Carolina, S.: Application Of Digital Correlation Methods To Rigid Body Mechanics. (2014). https://doi.org/10.1117/12.7973231
    [68] Grytten, F.: Low-Velocity Penetration of Aluminium Plates; ISBN 9788247168264.
    [69] Razali., N.: Impact Damage on Composite Structures – A Review. International Journal of Engineering and Science (IJES), 7, 8–20 (2014).
    [70] ASTM: ASTM D7136/D7136M - Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event. Annual Book of ASTM Standards, i, 1–16 (2012). http://doi:10.1520/D7136.
    [71] ASTM D7137M-12: Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates. ASTM International, i (2012). http://doi:10.1520/D7137.
    [72] Nikfar, B.; Njuguna, J.: Compression-after-impact (CAI) performance of epoxy-carbon fibre-reinforced nanocomposites using nanosilica and rubber particle enhancement. IOP Conference Series: Materials Science and Engineering, 64 (2014). http://doi:10.1088/1757-899X/64/1/012009.
    [73] Standard Test Method for Open Hole Tensile Strength of Polymer Matrix Composite Laminates.
    [74] Vieille, B.; Taleb, L.: About the influence of temperature and matrix ductility on the behavior of carbon woven-ply PPS or epoxy laminates: Notched and unnotched laminates. Composites Science and Technology, 71, 998–1007 (2011). http://doi:10.1016/j.compscitech.2011.03.006.
    [75] Mariatti, M.; Nasir, M.; Ismail, H.; Bäcklund, J.: Effect of hole drilling techniques on tensile properties of continuous fiber impregnated thermoplastic (COFIT) plain weave composites. Journal of Reinforced Plastics and Composites, 23, 1173–1186 (2004). http://doi:10.1177/0731684404037043.
    [76] O’Higgins, R. M.; McCarthy, M. A.; McCarthy, C. T.: Comparison of open hole tension characteristics of high strength glass and carbon fibre-reinforced composite materials. Composites Science and Technology, 68, 2770–2778 (2008). http://doi:10.1016/j.compscitech.2008.06.003.
    [77] Yudhanto, A.; Watanabe, N.; Iwahori, Y.; Hoshi, H.: The effects of stitch orientation on the tensile and open hole tension properties of carbon/epoxy plain weave laminates. Materials and Design, 35, 563–571 (2012). http://doi:10.1016/j.matdes.2011.09.013.
    [78] Vieille, B.; Aucher, J.; Taleb, L.: Comparative study on the behavior of woven-ply reinforced thermoplastic or thermosetting laminates under severe environmental conditions. Materials and Design, 35, 707–719 (2012). http://doi:10.1016/j.matdes.2011.10.037.
    [79] Hao, A.; Yuan, L.; Chen, J. Y.: Notch effects and crack propagation analysis on kenaf/polypropylene nonwoven composites. Composites Part A: Applied Science and Manufacturing, 73, 11–19 (2015). http://doi:10.1016/j.compositesa.2015.02.016.
    [80] Gobi Kannan, T.; Wu, C. M.; Cheng, K. B.: Influence of laminate lay-up, hole size and coupling agent on the open hole tensile properties of flax yarn reinforced polypropylene laminates. Composites Part B: Engineering, 57, 80–85 (2014). http://doi:10.1016/j.compositesb.2013.09.042.
    [81] Khechai, A.; Tati, A.; Guerira, B.; Guettala, A.; Mohite, P. M.: Strength degradation and stress analysis of composite plates with circular, square and rectangular notches using digital image correlation. Composite Structures, 185, 699–715 (2018). http://doi:10.1016/j.compstruct.2017.11.060.
    [82] Nijs, A.; Selezneva, M.; Swolfs, Y.; Hirano, N.; Taketa, I.; Karaki, T.; Verpoest, I.; Gorbatikh, L.: Notch-sensitivity of hybrid carbon-fibre/self-reinforced polypropylene composites. Composites Science and Technology, 200, 108422 (2020). http://doi:10.1016/j.compscitech.2020.108422.
    [83] El-Dessouky, H. M.; Saleh, M. N.; Gautam, M.; Han, G.; Scaife, R. J.; Potluri, P.: Tailored fibre placement of commingled carbon-thermoplastic fibres for notch-insensitive composites. Composite Structures, 214, 348–358 (2019). http://doi:10.1016/j.compstruct.2019.02.043.
    [84] Santhosh, U.; Ahmad, J.; John, R.; Ojard, G.; Miller, R.; Gowayed, Y.: Modeling of stress concentration in ceramic matrix composites. Composites Part B: Engineering, 45, 1156–1163 (2013). http://doi:10.1016/j.compositesb.2012.07.034.
    [85] Özaslan, E.; Acar, B.; Güler, M. A.: Experimental and numerical investigation of stress concentration and strength prediction of carbon/epoxy composites. Procedia Structural Integrity, 13, 535–541 (2018). http://doi:10.1016/j.prostr.2018.12.088.
    [86] Pothnis, J. R.; Kalyanasundaram, D.; Gururaja, S.: Enhancement of open hole tensile strength via alignment of carbon nanotubes infused in glass fiber - epoxy - CNT multi-scale composites. Composites Part A: Applied Science and Manufacturing, 140, 1–12 (2021). http://doi:10.1016/j.compositesa.2020.106155.
    [87] Stanier, D.; Radhakrishnan, A.; Gent, I.; Roy, S. S.; Hamerton, I.; Potluri, P.; Scarpa, F.; Shaffer, M.; Ivanov, D. S.: Matrix-graded and fibre-steered composites to tackle stress concentrations. Composite Structures, 207, 72–80 (2019). http://doi:10.1016/j.compstruct.2018.09.019.
    [88] Zhou, Y.; Lin, Q.; Hong, J.; Yang, N.: Optimal design of functionally graded material for stress concentration reduction. Structures, 29, 561–569 (2021). http://doi:10.1016/j.istruc.2020.11.053.
    [89] Nie, G. J.; Batra, R. C.: Reducing stress concentration factor by strengthening circular hole with functionally graded incompressible material layer. Thin-Walled Structures, 144, 106223 (2019). http://doi:10.1016/j.tws.2019.106223.
    [90] Zheng, C.; Li, X.; Mi, C.: Reducing stress concentrations in unidirectionally tensioned thick-walled spheres through embedding a functionally graded reinforcement. International Journal of Mechanical Sciences, 152, 257–267 (2019). http://doi:10.1016/j.ijmecsci.2018.12.055.
    [91] Giare, G. S.; Shabahang, R.: The reduction of stress concentration around the hole in an isotropic plate using composite materials. Engineering Fracture Mechanics, 32, 757–766 (1989). http://doi:10.1016/0013-7944(89)90172-0.
    [92] Providakis, C. P.; Sotiropoulos, D. A.: A BEM approach to the stress concentration reduction in visco-plastic plates by multiple holes. Computers and Structures, 64, 313–317 (1997). http://doi:10.1016/S0045-7949(96)00152-6.
    [93] Khoshravan, M. R.; Samaei, M.; Paykani, A.: Numerical investigation on the position of holes for reducing stress concentration in composite plates with bolted and riveted joints. Theoretical and Applied Mechanics Letters, 1, 041005 (2011). http://doi:10.1063/2.1104105.
    [94] Meguid, S. A.: Finite element analysis of defence hole systems for the reduction of stress concentration in a uniaxially-loaded plate with two coaxial holes. Engineering Fracture Mechanics, 25, 403–413 (1986). http://doi:10.1016/0013-7944(86)90254-7.
    [95] Duthinh, D.: Connections of Fiber-Reinforced Polymer (FRP) Structural Members: A Review of the State of The Art Internal Report (NISTIR), (2000).
    [96] Özaslan, E.; Güler, M. A.; Yetgin, A.; Acar, B.: Stress analysis and strength prediction of composite laminates with two interacting holes. Composite Structures, 221, 110869 (2019). http://doi:10.1016/j.compstruct.2019.04.041.
    [97] Singh, M.; Saini, J. S.; Bhunia, H.; Singh, P.: Application of Taguchi method in the optimization of geometric parameters for double pin joint configurations made from glass–epoxy nanoclay laminates. Journal of Composite Materials, 51, 2689–2706 (2017). http://doi:10.1177/0021998316678920.
    [98] Singh, M.; Saini, J. S.; Bhunia, H.: To study the contribution of different geometric parameters on the failure load for multi holes pin joints prepared from glass/epoxy nanoclay laminates. Journal of Composite Materials, 52, 629–644 (2018). http://doi:10.1177/0021998317712572.
    [99] Ubaid, J.; Kashfuddoja, M.; Ramji, M.: Strength prediction and progressive failure analysis of carbon fiber reinforced polymer laminate with multiple interacting holes involving three dimensional finite element analysis and digital image correlation. International Journal of Damage Mechanics, 23, 609–635 (2014). http://doi:10.1177/1056789513504123.
    [100] Ali Kouka, M.; Abbassi, F.; Demiral, M.; Ahmad, F.; Soula, M.; Al Housni, F.: Behaviour of woven-ply PPS thermoplastic laminates with interacting circular holes under tensile loading: An experimental and numerical study. Engineering Fracture Mechanics, 251, 107802 (2021). http://doi:10.1016/j.engfracmech.2021.107802.
    [101] Nanda Kishore, A.; Malhotra, S. K.; Siva Prasad, N.: Failure analysis of multi-pin joints in glass fibre/epoxy composite laminates. Composite Structures, 91, 266–277 (2009). http://doi:10.1016/j.compstruct.2009.04.043.
    [102] Pisano, A. A.; Fuschi, P.; De Domenico, D.: Failure modes prediction of multi-pin joints FRP laminates by limit analysis. Composites Part B: Engineering, 46, 197–206 (2013). http://doi:10.1016/j.compositesb.2012.09.071.
    [103] Pisano, A. A.; Fuschi, P.; De Domenico, D.: Peak load prediction of multi-pin joints FRP laminates by limit analysis. Composite Structures, 96, 763–772 (2013). http://doi:10.1016/j.compstruct.2012.09.038.
    [104] Xu, X. W.; Yue, T. M.; Man, H. C.: Stress analysis of finite composite laminate with multiple loaded holes. International Journal of Solids and Structures, 36, 919–931 (1999). http://doi:10.1016/S0020-7683(97)00343-0.
    [105] Xu, X. W.; Man, H. C.; Yue, T. M.: Strength prediction of composite laminates with multiple elliptical holes. International Journal of Solids and Structures, 37, 2887–2900 (2000). http://doi:10.1016/S0020-7683(99)00033-5.
    [106] Karakuzu, R.; Taylak, N.; Içten, B. M.; Aktaş, M.: Effects of geometric parameters on failure behavior in laminated composite plates with two parallel pin-loaded holes. Composite Structures, 85, 1–9 (2008). http://doi:10.1016/j.compstruct.2007.10.003.
    [107] Karakuzu, R.; Çalişkan, C. R.; Aktaş, M.; Içten, B. M.: Failure behavior of laminated composite plates with two serial pin-loaded holes. Composite Structures, 82, 225–234 (2008). http://doi:10.1016/j.compstruct.2007.01.002.
    [108] Ghezzo, F.; Giannini, G.; Cesari, F.; Caligiana, G.: Numerical and experimental analysis of the interaction between two notches in carbon fibre laminates. Composites Science and Technology, 68, 1057–1072 (2008). http://doi:10.1016/j.compscitech.2007.07.023.
    [109] Sinmazçelik, T.; Avcu, E.; Bora, M. Ö.; Çoban, O.: A review: Fibre metal laminates, background, bonding types and applied test methods. Materials and Design, 32, 3671–3685 (2011). http://doi:10.1016/j.matdes.2011.03.011.
    [110] Ding, Z.; Wang, H.; Luo, J.; Li, N.: A review on forming technologies of fibre metal laminates. International Journal of Lightweight Materials and Manufacture, 4, 110–126 (2021). http://doi:10.1016/j.ijlmm.2020.06.006.
    [111] Vermeeren, C. A. J. R.: An Historic Overview of the Development of Fibre Metal Laminates. Applied Composite Materials, 10, 189–205 (2003). http://doi:10.1023/A:1025533701806.
    [112] Reyes, V. G.; Cantwell, W. J.: The high velocity impact response of composite and FML-reinforced sandwich structures. Composites Science and Technology, 64, 35–54 (2004). http://doi:10.1016/S0266-3538(03)00197-0.
    [113] Carosena Meola, et. al., Chapter 1 - “Composite Materials in the Aeronautical Industry”, Infrared Thermography in the Evaluation of Aerospace Composite Materials, Woodhead Publishing, (2017).
    [114] Mmcs, S.: Metal matrix, fibre–metal and ceramic matrix composites for aerospace applications. Introduction to Aerospace Materials, , 394–410 (2012). http://doi:10.1533/9780857095152.394.
    [115] Valery V, Chapter 3 - “Mechanics of Laminates”, Advanced Mechanics of Composite Materials and Structures, Elsevier, (2018).
    [116] Asundi, A.; Choi, A. Y. N.: Fiber metal laminates: An advanced material for future aircraft. Journal of Materials Processing Technology, 63, 384–394 (1997). http://doi:10.1016/S0924-0136(96)02652-0.
    [117] Kim, C. W.; Oh, D. J.: Progressive delamination with and without crack propagation in aramid fiber reinforced metal laminates containing a circular notch. Materials Science and Engineering A, 483–484, 251–253 (2008). http://doi:10.1016/j.msea.2006.10.193.
    [118] Vlot, A.: Impact properties of Fibre Metal Laminates. Composites Engineering, 3, 911–927 (1993). http://doi:10.1016/0961-9526(93)90001-Z.
    [119] Carrillo, J. G.; Gonzalez-Canche, N. G.; Flores-Johnson, E. A.; Cortes, P.: Low velocity impact response of fibre metal laminates based on aramid fibre reinforced polypropylene. Composite Structures, 220, 708–716 (2019). http://doi:10.1016/j.compstruct.2019.04.018.
    [120] Marissen, R.: Fatigue crack growth predictions in Aramid reinforced aluminum laminates (ARALL). Journal of Aircraft, 25, 135–140 (1988). http://doi:10.2514/3.45553.
    [121] Science, E.; Laboratories, A.: Time-Dependent Response of Aramid-Epoxy-Aluminum Sheet, ARALL, Laminates. 10 (1989). https://doi.org/10.1002/pc.750100509
    [122] Sun, C. T.; Dicken, A.; Wu, H. F.: Characterization of impact damage in ARALL laminates. Composites Science and Technology, 49, 139–144 (1993). http://doi:10.1016/0266-3538(93)90053-J.
    [123] Kawai, M.; Hachinohe, A.: Two-stress level fatigue of unidirectional fiber-metal hybrid composite: GLARE 2. International Journal of Fatigue, 24, 567–580 (2002). http://doi:10.1016/S0142-1123(01)00108-6.
    [124] Hoo Fatt, M. S.; Lin, C.; Revilock, D. M.; Hopkins, D. A.: Ballistic impact of GLARETM fiber-metal laminates. Composite Structures, 61, 73–88 (2003). http://doi:10.1016/S0263-8223(03)00036-9.
    [125] Botelho, E. C.; Almeida, R. S.; Pardini, L. C.; Rezende, M. C.: Elastic properties of hygrothermally conditioned glare laminate. International Journal of Engineering Science, 45, 163–172 (2007). http://doi:10.1016/j.ijengsci.2006.08.017.
    [126] Morinière, F. D.; Alderliesten, R. C.; Benedictus, R.: Energy distribution in GLARE and 2024-T3 aluminium during low-velocity impact. 28th Congress of the International Council of the Aeronautical Sciences 2012, ICAS 2012, 3, 1945–1953 (2012).
    [127] Young, J. B.; Landry, J. G. N.; Cavoulacos, V. N.: Crack growth and residual strength characteristics of two grades of glass-reinforced aluminium “Glare.” Composite Structures, 27, 457–469 (1994). http://doi:10.1016/0263-8223(94)90271-2.
    [128] Lin, C. T.; Kao, P. W.; Yang, F. S.: Fatigue behaviour of carbon fibre-reinforced aluminium laminates. Composites, 22, 135–141 (1991). http://doi:10.1016/0010-4361(91)90672-4.
    [129] Vlot, A.; Gunnink, W.: Fibre Metal Laminates: an Introduction. Netherlands Kluwer Acad Publ (2001), 1, 532.
    [130] Xia, Y.; Wang, Y.; Zhou, Y.; Jeelani, S.: Effect of strain rate on tensile behavior of carbon fiber reinforced aluminum laminates. Materials Letters, 61, 213–215 (2007). http://doi:10.1016/j.matlet.2006.04.043.
    [131] Mohammed, I.; Abu Talib, A. R.: Mechanical properties of carbon fibre reinforced aluminium laminates using two different layering pattern for aero engine application. Advances in Materials and Processing Technologies, 5, 123–131 (2019). http://doi:10.1080/2374068X.2018.1530427.
    [132] Bellini, C.; Di Cocco, V.; Iacoviello, F.; Sorrentino, L.: Performance evaluation of CFRP/Al fibre metal laminates with different structural characteristics. Composite Structures, 225, 111117 (2019). http://doi:10.1016/j.compstruct.2019.111117.
    [133] Rajan, B. M. C.; Kumar, A. S.: The Influence of the Thickness and Areal Density on the Mechanical Properties of Carbon Fibre Reinforced Aluminium Laminates (CARAL). Transactions of the Indian Institute of Metals, 71, 2165–2171 (2018). http://doi:10.1007/s12666-018-1348-2.
    [134] Moussavi-Torshizi, S. E.; Dariushi, S.; Sadighi, M.; Safarpour, P.: A study on tensile properties of a novel fiber/metal laminates. Materials Science and Engineering A, 527, 4920–4925 (2010). http://doi:10.1016/j.msea.2010.04.028.
    [135] Lin, C. T.; Kao, P. W.: Fatigue delamination growth in carbon aluminium laminates. Composites Part A, 27, 9–15 (1996). https://doi.org/10.1016/1359-835X(95)00006-N
    [136] Alcock, B.; Cabrera, N. O.; Barkoula, N. M.; Loos, J.; Peijs, T.: The mechanical properties of unidirectional all-polypropylene composites. Composites Part A: Applied Science and Manufacturing, 37, 716–726 (2006). http://doi:10.1016/j.compositesa.2005.07.002.
    [137] Alcock, B.; Cabrera, N. O.; Barkoula, N. M.; Spoelstra, A. B.; Loos, J.; Peijs, T.: The mechanical properties of woven tape all-polypropylene composites. Composites Part A: Applied Science and Manufacturing, 38, 147–161 (2007). http://doi:10.1016/j.compositesa.2006.01.003.
    [138] Carrillo, J. G.; Cantwell, W. J.: Mechanical properties of a novel fiber-metal laminate based on a polypropylene composite. Mechanics of Materials, 41, 828–838 (2009). http://doi:10.1016/j.mechmat.2009.03.002.
    [139] Carrillo, J. G.; Cantwell, W. J.: A comparison of ply-level and sublaminate-level scaling of fibre-metal laminates with in-plane dimensions. Advanced Composites Letters, 16, 233–236 (2007). http://doi:10.1177/096369350701600604.
    [140] Carrillo, J. G.; Cantwell, W. J.: Scaling effects in the tensile behavior of fiber-metal laminates. Composites Science and Technology, 67, 1684–1693 (2007). http://doi:10.1016/j.compscitech.2006.06.018.
    [141] Múgica, J. I.; Aretxabaleta, L.; Ulacia, I.; Aurrekoetxea, J.: Impact characterization of thermoformable fibre metal laminates of 2024-T3 aluminium and AZ31B-H24 magnesium based on self-reinforced polypropylene. Composites Part A: Applied Science and Manufacturing, 61, 67–75 (2014). http://doi:10.1016/j.compositesa.2014.02.011.
    [142] Santiago, R.; Cantwell, W.; Alves, M.: Impact on thermoplastic fibre-metal laminates: Experimental observations. Composite Structures, 159, 800–817 (2017). http://doi:10.1016/j.compstruct.2016.10.011.
    [143] Lee, B. E.; Park, E. T.; Kim, J.; Kang, B. S.; Song, W. J.: Analytical evaluation on uniaxial tensile deformation behavior of fiber metal laminate based on SRPP and its experimental confirmation. Composites Part B: Engineering, 67, 154–159 (2014). http://doi:10.1016/j.compositesb.2014.06.031.
    [144] Abdullah, M. R.; Prawoto, Y.; Cantwell, W. J.: Interfacial fracture of the fibre-metal laminates based on fibre reinforced thermoplastics. Materials and Design, 66, 446–452 (2015). http://doi:10.1016/j.matdes.2014.03.058.
    [145] Santiago, R. C.; Cantwell, W. J.; Jones, N.; Alves, M.: The modelling of impact loading on thermoplastic fibre-metal laminates. Composite Structures, 189, 228–238 (2018). http://doi:10.1016/j.compstruct.2018.01.052.
    [146] Rajak, D. K.; Pagar, D. D.; Menezes, P. L.; Linul, E.: Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers, 11 (2019). http://doi:10.3390/polym11101667.
    [147] Kazemi, M. E.; Shanmugam, L.; Lu, D.; Wang, X.; Wang, B.; Yang, J.: Mechanical properties and failure modes of hybrid fiber reinforced polymer composites with a novel liquid thermoplastic resin, Elium®. Composites Part A: Applied Science and Manufacturing, 125, 105523 (2019). http://doi:10.1016/j.compositesa.2019.105523.
    [148] Li, H.; Wu, T.; Gao, Z.; Wang, X.; Ma, H.; Han, Q.; Qin, Z.: An iterative method for identification of temperature and amplitude dependent material parameters of fiber-reinforced polymer composites. International Journal of Mechanical Sciences, 184, 105818 (2020). http://doi:10.1016/j.ijmecsci.2020.105818.
    [149] Hua, Y.; Yang, Y. C.; Yamanaka, A.; Ni, Q. Q.: Low friction coefficient property of super fiber-reinforced composites. Advanced Composite Materials, 20, 133–147 (2011). http://doi:10.1163/092430410X523953.
    [150] Holbery, J.; Houston, D.: Natural-fiber-reinforced polymer composites in automotive applications. Jom, 58, 80–86 (2006). http://doi:10.1007/s11837-006-0234-2.
    [151] May, D.; Goergen, C.; Friedrich, K.: Multifunctionality of polymer composites based on recycled carbon fibers: A review. Advanced Industrial and Engineering Polymer Research, 4, 70–81 (2021). http://doi:10.1016/j.aiepr.2021.01.001.
    [152] Job, S.: Recycling composites commercially. Reinforced Plastics, 58, 32–34 (2014). http://doi:10.1016/S0034-3617(14)70213-9.
    [153] Yang, Y.; Boom, R.; Irion, B.; van Heerden, D. J.; Kuiper, P.; de Wit, H.: Recycling of composite materials. Chemical Engineering and Processing: Process Intensification, 51, 53–68 (2012). http://doi:10.1016/j.cep.2011.09.007.
    [154] López, F. A.; Rodríguez, O.; Alguacil, F. J.; García-Díaz, I.; Centeno, T. A.; García-Fierro, J. L.; González, C.: Recovery of carbon fibres by the thermolysis and gasification of waste prepreg. Journal of Analytical and Applied Pyrolysis, 104, 675–683 (2013). http://doi:10.1016/j.jaap.2013.04.012.
    [155] Ma, S.; Webster, D. C.: Degradable thermosets based on labile bonds or linkages: A review. Progress in Polymer Science, 76, 65–110 (2018). http://doi:10.1016/j.progpolymsci.2017.07.008.
    [156] Wong, K. H.; Pickering, S. J.; Rudd, C. D.: Recycled carbon fibre reinforced polymer composite for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 41, 693–702 (2010). http://doi:10.1016/j.compositesa.2010.01.012.
    [157] Meira Castro, A. C.; Ribeiro, M. C. S.; Santos, J.; Meixedo, J. P.; Silva, F. J. G.; Fiúza, A.; Dinis, M. L.; Alvim, M. R.: Sustainable waste recycling solution for the glass fibre reinforced polymer composite materials industry. Construction and Building Materials, 45, 87–94 (2013). http://doi:10.1016/j.conbuildmat.2013.03.092.
    [158] Cestari, S. P.; Silva Freitas, D. de F.; Rodrigues, D. C.; Mendes, L. C.: Recycling processes and issues in natural fiber-reinforced polymer composites. Green Composites for Automotive Applications, , 285–299 (2018). http://doi:10.1016/B978-0-08-102177-4.00012-4.
    [159] Pimenta, S.; Pinho, S. T.: Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook. Waste Management, 31, 378–392 (2011). http://doi:10.1016/j.wasman.2010.09.019.
    [160] Park, S. H.; Kim, S. H.: Poly (ethylene terephthalate) recycling for high value added textiles. Fashion and Textiles, 1, 1–17 (2014). http://doi:10.1186/s40691-014-0001-x.
    [161] George, N.; Kurian, T.: Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate) Waste. Industrial and Engineering Chemistry Research, 53, 14185–14198 (2014). http://doi:10.1021/ie501995m.
    [162] Esfandiari, A.; Kaghazchi, T.; Soleimani, M.: Preparation and evaluation of activated carbons obtained by physical activation of polyethyleneterephthalate (PET) wastes. Journal of the Taiwan Institute of Chemical Engineers, 43, 631–637 (2012). http://doi:10.1016/j.jtice.2012.02.002.
    [163] YOUNG., W. C.: Roark’s Formulas For Stress And Strain; McGraw-Hill: New York Chicago.
    [164] Zheng, M.; Yin, Z.; Teng, H.; Liu, J.; Wang, Y.: Elastoplastic Behavior of Highly Ductile Materials. Elastoplastic Behavior of Highly Ductile Materials, , 65–74 (2019). http://doi:10.1007/978-981-15-0906-3.
    [165] Shi, S. Q.; Puls, M. P.: A simple method of estimating the maximum normal stress and plastic zone size at a shallow notch. International Journal of Pressure Vessels and Piping, 64, 67–71 (1995). http://doi:10.1016/0308-0161(94)00070-Y.
    [166] Jaroslav Polak: Stress and Strain Concentration Factor Evaluation Using the Equivalent Energy Concept. Materials Science and Engineering, 61, 195–200 (1983). https://doi.org/10.1016/0025-5416(83)90100-3
    [167] Molski, K.; Glinka, G.: A method of elastic-plastic stress and strain calculation at a notch root. Materials Science and Engineering, 50, 93–100 (1981). https://doi.org/10.1016/0025-5416(81)90089-6
    [168] Romanowicz, P. J.; Szybiński, B.; Wygoda, M.: Application of DIC method in the analysis of stress concentration and plastic zone development problems. Materials, 13, 1–38 (2020). https://doi.org/10.3390/ma13163460
    [169] Murakami, Y.: Theory of elasticity and stress concentration. Theory of Elasticity and Stress Concentration, 1–445 (2016). http://doi:10.1002/9781119274063.
    [170] Nagpal, S.; Jain, N.; Sanyal, S.: Stress concentration and its mitigation techniques in flat plate with singularities-a critical review. Engineering Journal, 16, 1–15 (2012). http://doi:10.4186/ej.2012.16.1.1.
    [171] Moreton, D. N.: An Introduction to Measurements using Strain Gauges Karl Hoffmann. Strain, 37, 127–127 (2001). http://doi:10.1111/j.1475-1305.2001.tb01242.x.
    [172] Weiland, J.; Sadeghi, M. Z.; Thomalla, J. V.; Schiebahn, A.; Schroeder, K. U.; Reisgen, U.: Analysis of back-face strain measurement for adhesively bonded single lap joints using strain gauge, Digital Image Correlation and finite element method. International Journal of Adhesion and Adhesives, 97, 102491 (2020). http://doi:10.1016/j.ijadhadh.2019.102491.
    [173] Silva, A. L.; Varanis, M.; Mereles, A. G.; Oliveira, C.; Balthazar, J. M.: A study of strain and deformation measurement using the Arduino microcontroller and strain gauges devices. Revista Brasileira de Ensino de Fisica, 41 (2019). http://doi:10.1590/1806-9126-RBEF-2018-0206.
    [174] Marques Dos Santos, F. L.; Peeters, B.; Lau, J.; Desmet, W.; Goes, L. C. S.: The use of strain gauges in vibration-based damage detection. Journal of Physics: Conference Series, 628 (2015). http://doi:10.1088/1742-6596/628/1/012119.
    [175] Rendler, N. J.; Vigness, I.: Hole-drilling strain-gage method of measuring residual stresses. Experimental Mechanics, 6, 577–586 (1966). http://doi:10.1007/bf02326825.
    [176] Kim, M.; Park, T. Y.; Hong, S.: Experimental determination of the plastic deformation and fracture behavior of polypropylene composites under various strain rates. Polymer Testing, 93, 107010 (2021). http://doi:10.1016/j.polymertesting.2020.107010.
    [177] Flores-Johnson, E. A.; Vázquez-Rodríguez, J. M.; Herrera-Franco, P. J.; González-Chi, P. I.: Photoelastic evaluation of fiber surface-treatments on the interfacial performance of a polyester fiber/epoxy model composite. Composites Part A: Applied Science and Manufacturing, 42, 1017–1024 (2011). http://doi:10.1016/j.compositesa.2011.04.005.
    [178] Vázquez-Rodríguez, J. M.; Flores-Johnson, E. A.; Herrera-Franco, P. J.; Gonzalez-Chi, P. I.: Photoelastic and numerical analyses of the stress distribution around a fiber in a pull-out test for a thermoplastic fiber/epoxy resin composite. Polymer Composites, 39, E2397–E2406 (2018). http://doi:10.1002/pc.24709.
    [179] Szebényi, G.; Hliva, V.: Detection of delamination in polymer composites by digital image correlation-experimental test. Polymers, 11 (2019). http://doi:10.3390/polym11030523.
    [180] Wu, C. M.; Kumar, S.; Lin, P. C.; Chen, J.-C.: Strain and stress concentration of ductile composites in full-range deformation by digital image correlation. Mechanics of Advanced Materials and Structures, 1-10 (2022).
    https://doi.org/10.1080/15376494.2022.2084192
    [181] Peterson, R. E.: Stress concentration design factors : charts and relations useful in making strength calculations for machine parts and structural elements. Wlley New York (1953).
    [182] Zhang, Y.; Guo, Q.; Chen, X.; Xie, J.; Chen, L.: Effect of apertures on tensile property of warp-reinforced 2.5D woven composites notched plates. Composite Structures, 252, 112693 (2020). http://doi:10.1016/j.compstruct.2020.112693.
    [183] Makhutov, N. A.; Reznikov, D. O.: Generalization of Neuber’s rule for the assessment of local stresses and strains in stress concentration zones for a wide range of applied strains. Procedia Structural Integrity, 14, 199–206 (2019). http://doi:10.1016/j.prostr.2019.05.026.
    [184] Froes, F. H.: Advanced metals for aerospace and automotive use. Materials Science and Engineering A, 184, 119–133 (1994). http://doi:10.1016/0921-5093(94)91026-X.
    [185] Zhu, L.; Li, N.; Childs, P. R. N.: Light-weighting in aerospace component and system design. Propulsion and Power Research, 7, 103–119 (2018). http://doi:10.1016/j.jppr.2018.04.001.
    [186] Zheng, K.; Politis, D. J.; Wang, L.; Lin, J.: A review on forming techniques for manufacturing lightweight complex—shaped aluminium panel components. International Journal of Lightweight Materials and Manufacture, 1, 55–80 (2018). http://doi:10.1016/j.ijlmm.2018.03.006.
    [187] Mavhungu, S. T.; Akinlabi, E. T.; Onitiri, M. A.; Varachia, F. M.: Aluminum Matrix Composites for Industrial Use: Advances and Trends. Procedia Manufacturing, 7, 178–182 (2017). http://doi:10.1016/j.promfg.2016.12.045.
    [188] Kulekci, M. K.: Magnesium and its alloys applications in automotive industry. International Journal of Advanced Manufacturing Technology, 39, 851–865 (2008). http://doi:10.1007/s00170-007-1279-2.
    [189] Maisha I Alam; Kazi M Maraz; Ruhul A Khan: A review on the application of high-performance fiber-reinforced polymer composite materials. GSC Advanced Research and Reviews, 10, 020–036 (2022). http://doi:10.30574/gscarr.2022.10.2.0036.
    [190] Alsubari, S.; Zuhri, M. Y. M.; Sapuan, S. M.; Ishak, M. R.; Ilyas, R. A.; Asyraf, M. R. M.: Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties. Polymers, 13, 1–20 (2021). http://doi:10.3390/polym13030423.
    [191] Goh, G. D.; Dikshit, V.; Nagalingam, A. P.; Goh, G. L.; Agarwala, S.; Sing, S. L.; Wei, J.; Yeong, W. Y.: Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Materials and Design, 137, 79–89 (2018). http://doi:10.1016/j.matdes.2017.10.021.
    [192] S, P.; KM, S.; K, N.; S, S.: Fiber Reinforced Composites - A Review. Journal of Material Science & Engineering, 06 (2017). http://doi:10.4172/2169-0022.1000341.
    [193] Rani, M.; Choudhary, P.; Krishnan, V.; Zafar, S.: A review on recycling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades. Composites Part B: Engineering, 215, 108768 (2021). http://doi:10.1016/j.compositesb.2021.108768.
    [194] Das, R.; Chanda, A.; Brechou, J.; Banerjee, A.: Impact behaviour of fibre–metal laminates; Elsevier. https://doi.org/10.1016/B978-0-08-100080-9.00017-8
    [195] Cantwell, W. J.; Morton, J.: The impact resistance of composite materials - a review. Composites, 22, 347–362 (1991). http://doi:10.1016/0010-4361(91)90549-V.
    [196] Kiratisaevee, H.; Cantwell, W. J.: The impact response of aluminum foam sandwich structures based on a glass fiber-reinforced polypropylene fiber-metal laminate. Polymer Composites, 25, 499–509 (2004). http://doi:10.1002/pc.20043.
    [197] Jakubczak, P.: The impact behaviour of hybrid titanium glass laminates—Experimental and numerical approach. International Journal of Mechanical Sciences, 159, 58–73 (2019). http://doi:10.1016/j.ijmecsci.2019.05.035.
    [198] Chai, G. B.; Manikandan, P.: Low velocity impact response of fibre-metal laminates - A review. Composite Structures, 107, 363–381 (2014). http://doi:10.1016/j.compstruct.2013.08.003.
    [199] Cantwell, W. J.; Cortes, P.: Fracture properties of a fiber-metal laminates based. Journal of Materials Science, 39, 1081–1083 (2004).
    http://doi:10.1023/B:JMSC.0000012949.94672.77
    [200] Compston, P.; Cantwell, W. J.; Jones, C.; Jones, N.: Impact perforation resistance and fracture mechanisms of a thermoplastic based fiber-metal laminate. Journal of Materials Science Letters, 20, 597–599 (2001). http://doi:10.1023/A:1010904930497.
    [201] Reyes, G.; Kang, H.: Mechanical behavior of lightweight thermoplastic fiber-metal laminates. Journal of Materials Processing Technology, 186, 284–290 (2007). http://doi:10.1016/j.jmatprotec.2006.12.050.
    [202] Carrillo, J. G.; Cantwell, W. J.: Mechanical properties of a novel fiber-metal laminate based on a polypropylene composite. Mechanics of Materials, 41, 828–838 (2009). http://doi:10.1016/j.mechmat.2009.03.002.
    [203] Abdullah, M. R.; Cantwell, W. J.: The impact resistance of polypropylene-based fibre-metal laminates. Composites Science and Technology, 66, 1682–1693 (2006). http://doi:10.1016/j.compscitech.2005.11.008.
    [204] Reyes V., G.; Cantwell, W. J.: The mechanical properties of fibre-metal laminates based on glass fibre reinforced polypropylene. Composites Science and Technology, 60, 1085–1094 (2000). http://doi:10.1016/S0266-3538(00)00002-6.
    [205] Iriondo, J.; Aretxabaleta, L.; Aizpuru, A.: Characterisation of the elastic and damping properties of traditional FML and FML based on a self-reinforced polypropylene. Composite Structures, 131, 47–54 (2015). http://doi:10.1016/j.compstruct.2015.04.047.
    [206] Park, J. W.; Kim, J.; Kang, B. S.: Development on a prediction model for experimental condition of flexibly reconfigurable roll forming process. Metals, 9 (2019). http://doi:10.3390/met9080896.
    [207] Medjahed, A.; Derradji, M.; Zegaoui, A.; Wu, R.; Li, B.; Wang, Y.; Hou, L.; Zhang, J.; Zhang, M.: Fabrication Process, Tensile, and Gamma Rays Shielding Properties of Newly Developed Fiber Metal Laminates Based on an Al–Li Alloy and Carbon Fibers-Tungsten Carbide Nanoparticles Reinforced Phthalonitrile Resin Composite. Advanced Engineering Materials, 21, 1–9 (2019). http://doi:10.1002/adem.201800779.
    [208] Hao, X.; Nie, H.; Ye, Z.; Luo, Y.; Zheng, L.; Liang, W.: Mechanical properties of a novel fiber metal laminate based on a carbon fiber reinforced Zn-Al alloy composite. Materials Science and Engineering A, 740–741, 218–225 (2019). http://doi:10.1016/j.msea.2018.10.050.
    [209] Sun, J.; Daliri, A.; Lu, G.; Ruan, D.; Lv, Y.: Tensile failure of fibre-metal-laminates made of titanium and carbon-fibre/epoxy laminates. Materials and Design, 183, 108139 (2019). http://doi:10.1016/j.matdes.2019.108139.
    [210] Ostapiuk, M.; Surowska, B.: Comparative analysis of failure of Al / GFRP laminates. 4, 259–265 (2015).
    [211] Ostapiuk, M.; Bieniaś, J.; Surowska, B.: Analysis of the bending and failure of fiber metal laminates based on glass and carbon fibers. Science and Engineering of Composite Materials, 25, 1095–1106 (2018). http://doi:10.1515/secm-2017-0180.
    [212] Zareei, N.; Geranmayeh, A.; Eslami-Farsani, R.: Interlaminar shear strength and tensile properties of environmentally-friendly fiber metal laminates reinforced by hybrid basalt and jute fibers. Polymer Testing, 75, 205–212 (2019). http://doi:10.1016/j.polymertesting.2019.02.002.
    [213] Rauf, O. U.; Khurram, A. A.; Hussain, R.; Tauqir, A.; Hashmi, F.; Rehman Shah, O. U.; Khokhar, M. S.; Shifa, M.: Nanoparticles enhanced interfaces of Glass fiber laminate aluminum reinforced epoxy (GLARE) fiber metal laminates. Polymer Composites, 42, 3954–3968 (2021). http://doi:10.1002/pc.26107.
    [214] Tomasz, O.; Colin, G.; Hackert, A.; Timmel, T.; Lothar, K.: High-performance fiber reinforced polymer/metal-hybrids for structural lightweight design. Key Engineering Materials, 744 744 KE, 311–316 (2017). http://doi:10.4028/www.scientific.net/KEM.744.311.
    [215] Swolfs, Y.; Crauwels, L.; Gorbatikh, L.; Verpoest, I.: The influence of weave architecture on the mechanical properties of self-reinforced polypropylene. Composites Part A: Applied Science and Manufacturing, 53, 129–136 (2013). http://doi:10.1016/j.compositesa.2013.06.015.
    [216] Meerten, Y.; Swolfs, Y.; Baets, J.; Gorbatikh, L.; Verpoest, I.: Penetration impact testing of self-reinforced composites. Composites Part A: Applied Science and Manufacturing, 68, 289–295 (2015). http://doi:10.1016/j.compositesa.2014.10.012.
    [217] Aurrekoetxea, J.; Sarrionandia, M.; Mateos, M.; Aretxabaleta, L.: Repeated low energy impact behaviour of self-reinforced polypropylene composites. Polymer Testing, 30, 216–221 (2011). http://doi:10.1016/j.polymertesting.2010.11.017.
    [218] Alcock, B.; Cabrera, N. O.; Barkoula, N. M.; Peijs, T.: Low velocity impact performance of recyclable all-polypropylene composites. Composites Science and Technology, 66, 1724–1737 (2006). http://doi:10.1016/j.compscitech.2005.11.010.
    [219] Sharan Chandran, M.; Padmanabhan, K.: A novel correlative formulation of interfacial, quasi-static and dynamic behavior of polyamide self reinforced polymer composites. Materials Today: Proceedings, 46, 9263–9269 (2019). http://doi:10.1016/j.matpr.2020.02.083.
    [220] Cortes, P.; Cantwell, W. J.: The impact properties of high-temperature fiber-metal laminates. Journal of Composite Materials, 41, 613–632 (2007). http://doi:10.1177/0021998306065291.
    [221] Yao, L.; Wang, C.; He, W.; Lu, S.; Xie, D.: Influence of impactor shape on low-velocity impact behavior of fiber metal laminates combined numerical and experimental approaches. Thin-Walled Structures, 145, 106399 (2019). http://doi:10.1016/j.tws.2019.106399.
    [222] Bienias Jaroslaw, Surowska Barbara, J. P.: The Comparison of Low-Velocity Impact Resistance of Aluminum/Carbon and Glass Fiber Metal Laminates. Polymer Composites, 16, 1056–1063 (2106). http://doi:10.1002/pc.
    [223] Fan, J.; Guan, Z. W.; Cantwell, W. J.: Numerical modelling of perforation failure in fibre metal laminates subjected to low velocity impact loading. Composite Structures, 93, 2430–2436 (2011). http://doi:10.1016/j.compstruct.2011.04.008.
    [224] Pärnänen, T.; Alderliesten, R.; Rans, C.; Brander, T.; Saarela, O.: Applicability of AZ31B-H24 magnesium in Fibre Metal Laminates - An experimental impact research. Composites Part A: Applied Science and Manufacturing, 43, 1578–1586 (2012). http://doi:10.1016/j.compositesa.2012.04.008.
    [225] Abdullah, M. R.; Cantwell, W. J.: The High Velocity Impact Response of Self-Reinforced Polypropylene Fibre Metal Laminates. , 219–240 (2012). http://doi:10.1007/978-3-642-23659-4_13.
    [226] Cortes, P.: The fracture properties of a fiber metal laminate based on a self-reinforced thermoplastic composite material. Polymer Composites, 35, 427–434 (2014). http://doi:10.1002/pc.22677.
    [227] He, W.; Wang, L.; Liu, H.; Wang, C.; Yao, L.; Li, Q.; Sun, G.: On impact behavior of fiber metal laminate (FML) structures: A state-of-the-art review. Thin-Walled Structures, 167, 108026 (2021). http://doi:10.1016/j.tws.2021.108026.
    [228] Yu, G. C.; Wu, L. Z.; Ma, L.; Xiong, J.: Low velocity impact of carbon fiber aluminum laminates. Composite Structures, 119, 757–766 (2015). http://doi:10.1016/j.compstruct.2014.09.054.
    [229] Yao, L.; Wang, C.; He, W.; Lu, S.; Xie, D.: Influence of impactor shape on low-velocity impact behavior of fiber metal laminates combined numerical and experimental approaches. Thin-Walled Structures, 145, 106399 (2019). http://doi:10.1016/j.tws.2019.106399.
    [230] Jakubczak, P.; Surowska, B.; Bieniaś, J.: The comparison of low-velocity impact resistance of aluminum/carbon and glass fiber metal laminates. Polym Compos (2016), 37, 1056–1063.
    https://doi.org/10.1002/pc.23266
    [231] Kazemi, M. E.; Bodaghi, M.; Shanmugam, L.; Fotouhi, M.; Yang, L.; Zhang, W.; Yang, J.: Developing thermoplastic hybrid titanium composite laminates (HTCLS) at room temperature: Low-velocity impact analyses. Composites Part A: Applied Science and Manufacturing, 149, 106552 (2021). http://doi:10.1016/j.compositesa.2021.106552.
    [232] Liu, J.; Liu, H.; Kaboglu, C.; Kong, X.; Ding, Y.: The Impact Performance of Woven-Fabric Thermoplastic and Thermoset Composites Subjected to High-Velocity Soft- and Hard-Impact Loading. Content courtesy of Springer Nature , terms. , 1389–1410 (2019).

    無法下載圖示 全文公開日期 2027/08/18 (校內網路)
    全文公開日期 2032/08/18 (校外網路)
    全文公開日期 2037/08/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE