簡易檢索 / 詳目顯示

研究生: 廖倚均
Yi-Chun Liao
論文名稱: 利用陽極氧化法製備二氧化鈦奈米管及其應用於光催化分解染料水溶液之探討
Preparation of TiO2 Nanotubes by Anodization Process and Its Application on Photocatalytic Degradation of Acid Red 4 in Aqueous Solution
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
申永順
Yung-Shuen Shen
劉志成
Jhy-Chern Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 110
中文關鍵詞: 陣列式二氧化鈦奈米管光觸媒陽極氧化白金酸性紅染料
外文關鍵詞: TiO2 Nanotube Arrays, Anodization Process, Copper, Platinum, Acid Red 4
相關次數: 點閱:316下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要是利用陽極氧化法在不同操作條件下製備出二氧化鈦奈米管,並藉由場發式電子顯微鏡、能量色散X射線光譜儀、穿透式電子顯微鏡、X射線繞射光譜儀、X射線電子能譜儀、耦合電漿原子發射光譜以及定電位/恆電流儀對光觸媒進行物化性及光電特性之分析,以瞭解光觸媒之特性。在本研究中,主要探討利用不同陽極氧化時間製備出的二氧化鈦奈米管,以及二氧化鈦奈米管以不同的燒結溫度燒結和附載不同濃度的銅、白金或白金銅金屬於二氧化鈦奈米管上,此三種不同的處理情況下之二氧化鈦奈米管對光催化降解酸性紅染料之影響。實驗結果指出,二氧化鈦奈米管的管長隨著陽極氧化的時間增加而逐漸增長,但最後增長的速度會逐漸變慢,因此電化學氧化的速率變得相當的重要,且當管長持續增長時,管子有逐漸傾斜以及倒塌現象造成了管子的缺陷進而影響光催化降解酸性紅染料的能力。另一方面隨著燒結溫度的增加,二氧化鈦奈米管的銳鈦礦組成也逐漸的增加,實驗結果發現銳鈦礦的增加也增加了光催化的能力。除此之外,附載有銅金屬的二氧化鈦奈米管比附載白金金屬的二氧化鈦奈米管對酸性紅染料有較好的吸附效果,因此整體處理上,附載有銅金屬的二氧化鈦奈米管對酸性紅染料有最好的處理效果。根據此研究顯示,二氧化鈦奈米管的型態大大地影響了光降解汙染物的能力,另一方面附載銅金屬的二氧化鈦奈米管對酸性紅染料主要為吸附效果。


Fabrication of TiO2 nanotube arrays (TNTs) by anodization process in ethylene electrolytes containing NH4F with various duration, and prepared TiO2 nanotube arrays annealed at different temperatures and loaded with Cu, Pt or Pt/Cu nanoparticles. Properties of prepared TiO2 nanotube arrays were analyzed by many analyzer such as field-emission scanning electron microscope analysis (FE-SEM), energy dispersive spectroscope (EDS), transmission electron microscope (TEM), X-ray diffraction analysis (XRD), X-ray photoelectron spectroscope analysis (XPS), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and potentiostat/galvanostat. Experimental results revealed that the length of TiO2 nanotube arrays increased with increasing anodization time, but growth rate was slow down because chemical dissolution rate become more dominant. Moreover, when length of TiO2 nanotube arrays increased continuously, the tube will tend to tilt and rupture. The result will affect the degradation efficiency of acid red 4 (AR4). With increasing annealed temperature of TiO2 nanotube arrays, the content of anatase phase increased. The experiment indicated photocatalytic activity increasing with increase the content of anatase phase. Moreover, TiO2 nanotube arrays loaded with Cu nanoparticles has the best efficiency than Pt/TNTs on absorbed AR4 and degraded AR4. These results indicated that the morphology of TiO2 nanotube arrays will affect photocatalytic activity and Cu/TNTs is adsorption on treatment of AR4.

Chinese Abstract English Abstract Table of Contents List of Figures List of Tables List of Symbols Chapter 1 Introduction Chapter 2 Review of Literatures 2.1 Introduction of TiO2 Photocatalyst 2.1.1 Basic Properties of TiO2 2.1.2 Morphology and Fabrication of Nano-Scale TiO2 2.2 Fabrication of TiO2 Nanotube Arrays by Electrochemical Anodization 2.2.1 Effect of Anodization Voltage 2.2.2 Effect of Anodization Time 2.2.3 Effect of Water Content in Electrolyte 2.2.4 Effect of Fluorine Ion Content in Electrolyte 2.2.5 Effect of Temperature 2.2.6 Effect of Electrolyte pH Value 2.3 Factors Affecting the Photocatalytic and Photoelectrocatalytic Reactions Utilizing TiO2 Nanotube Arrays 2.3.1 Annealing Condition of TiO2 Nanotube Arrays 2.3.2 Dimension of TiO2 Nanotube Arrays 2.3.3 Applied Bias Potential 2.3.4 Modification of TiO2 Nanotube Arrays Chapter 3 Experimental Procedures and Apparatus 3.1 Chemicals 3.2 Experimental Instruments and Setups 3.2.1 Instruments 3.2.2 Experimental Setup for Anodization 3.2.3 Experimental Setup for Photocatalytic and Photoelectrocatalytic Reactions 3.3 Experiments 3.3.1 Fabrication of TiO2 Nanotube Arrays 3.3.2 Fabrication of TiO2 Nanotube Arrays loaded with Cu, Pt or Pt/Cu 3.3.3 Characterization of Photocatalysts 3.3.4 Photoelectrocatalytic Process (UV/TiO2 Nanotube Arrays/Bias) 3.3.5 Background Experiments of Photocatalytic (Photoelectrocatalytic) Process Chapter 4 Results and Discussion 4.1 Fabrication and Characterization of TiO2 Nanotube Arrays under Different Conditions 4.1.1 TiO2 Nanotube Arrays Anodized for Various Duration 4.1.2 Formation Mechanism of TiO2 Nanotube Arrays 4.1.3 TiO2 Nanotube Arrays Annealed at Various Temperatures 4.1.4 TiO2 Nanotube Arrays Loaded with Cu, Pt or Pt/Cu Nanoparticles 4.2 Background Experiments of Photocatalytic Degradation of AR4 in Aqueous Solution Using Prepared TiO2 Nanotube Arrays 4.3 Photocatalytic Degradation of AR4 in Aqueous Solution Using Prepared TiO2 Nanotube Arrays 4.3.1 Experiments Using Various Lengths of TiO2 Nanotube Arrays 4.3.2 Experiments Using Various Lengths of TiO2 Nanotube Arrays with Bias Potential 4.3.3 Experiments Using TiO2 Nanotube Arrays Annealed at Various Temperatures 4.3.4 Experiments Using TiO2 Nanotube Arrays Loaded with Cu, Pt or Pt/Cu Nanoparticles Chapter 5 Conclusions and Recommendations Reference Appendix VITA

Albu, S. P., D. Kim and P. Schmuki, “Growth of Aligned TiO2 Bamboo-type Nanotubes and Highly Ordered Nanolace,” Angew. Chem. Int. Ed., Vol. 47, pp. 1916-1919 (2008).
Alivov, Y., Z. Y. Fan and D. Johnstone, “Titanium Nanotubes Grown by Titanium Anodization,” J. Appl. Phys., Vol. 106, no. 034314 (2009).
Allam, N. K. and M. A. El-Sayed, “Photoelectrochemical Water Oxidation Characteristics of Anodically Fabricated TiO2 Nanotube Arrays: Structural and Optical Properties,” J. Phys. Chem. C, Vol. 114, pp. 12024-12029 (2010).
Awitor, K.O., S. Rafqah, G. Geranton, Y. Sibaud, P.R. Larson, R.S.P. Bokalawela, J.D. Jernigen and M.B. Johnson, “Photo-Catalysis Using Titanium Dioxide Nanotube Layers,” J. Photochem. Photobiol., A, Vol. 199, pp. 250-254 (2008).
Bera, P., A. Gayen, M. S. Hegde, N. P. Lalla, L. Spadaro, F. Frusteri and F. Arena, “Promoting Effect of CeO2 in Combustion Synthesized Pt/CeO2 Catalyst for CO Oxidation,” J. Phys. Chem. B, Vol. 107, pp. 6122-6130 (2003).
Brugnera, M. F., K. Rajeshwar, J. C. Cardoso and M. V. B. Zanoni, “Bisphenol A Removal from Wastewater Using Self-Organized TIO2 Nanotubular Array Electrodes,” Chemosphere, Vol. 78, pp. 569-575 (2010).
Chusuei, C. C., M. A. Brookshier and D. W. Goodman, “Correlation of Relative X-ray Photoelectron Spectroscopy Shake-up Intensity with CuO Particle Size,” Langmuir, Vol. 15, pp. 2806-2808 (1999).
Fujishima, A., K. Hashoimoto and T. Watanabe, “TiO2 Photocatalysis Fundamentals and Application,” BKC, Inc., Tokyo (1999).
Hattori, M., K. Noda, K. Kobayashi and K. Matsushige, “Gas Phase Photocatalytic Decomposition of Alcohols with Titanium Dioxide Nanotube Arrays in High Vacuum,” Phys. Status Solidi C, Vol. 8, No. 2, pp. 549-551 (2011).
Hoyer, P., “Formation of a Titanium Dioxide Nanotube Array,” Langmuir, Vol. 12, pp. 1411-1413 (1996).
Hsin, Y. L., K. C. Hwang and C. T. Yeh, “Poly(vinylpyrrolidone)-Modified Graphite Carbon Nanofibers as Promising Supports for PtRu Catalysts in Direct Methanol Fuel Cells,” J. Am. Chem. Soc., Vol. 129, pp. 9999-10010 (2007).
Kasuga, T., M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, “Formation of Titanium Oxide Nanotube,” Langmuir, Vol. 14, pp. 3160-3163 (1998).
Kim, D., F. S. Stein, R. Hahn and P. Schmuki, “Gravity Assisted Growth of Self-Organized Anodic Oxide Nanotubes on Titanium,” Electrochem. Commun,. Vol. 10, pp. 1082-1086 (2008).
Ku, Y., Y. C. Lee and W. Y. Wang, “Photocatalytic Decomposition of 2-Chlorophenolin Aqueous Solution by UV/TiO2 Process with Applied External Bias Voltage,” J. Hazard. Mater., Vol. B138, pp. 350-356 (2006).
Kuang, D., J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin and M. Grätzel, “Application of Highly Ordered TiO2 Nanotube Arrays in Flexible Dye-Sensitized Solar Cells,” ACS Nano, Vol. 2, pp. 1113-1116 (2008).
Lai, Y. K., J. Y Huang, H. F. Zhang, V. P. Subramaniam, Y. X. Tang, D. G. Gong, L. Sundar, L. Sun, Z. Chen and C. J. Lin, “Nitrogen-Doped TiO2 Nanotube Array Films with Enhanced Photocatalytic Activity under Various Light Sources,” J. Hazard. Mater., Vol. 184, pp. 855-863 (2010).
Lai, Y., L. Sun, Y. Chen, H. Zhuang, C. Lin and J. W. Chin, “Effects of the Structure of TiO2 Nanotube Array on Ti Substrate on Its Photocatalytic Activity,” J. Electrochem. Soc., Vol. 153, pp. D123-D127 (2006).
Li, L., Z. Xu, F. Liu, Y. Shao, J. Wang, H. Wan and S. Zheng, “Photocatalytic Nitrate Reduction over Pt-Cu/TiO2 Catalysts with Benzene as Hole Scavenger,” J. Photochem. Photobiol., A, Vol. 212, pp. 113-121 (2010a).
Li, Y., W. N. Wang, Z. Zhan, M. H. Woo, C. Y. Wu and P. Biswas, “Photocatalytic Reduction of CO2 with H2O on Mesoporous Silica Supported Cu/TiO2 Catalysts,” Appl. Catal., B, Vol. 100, pp. 386-392 (2010b).
Liu, S., W. Fu, H. Yang, M. Li, P. Sun, B. Luo, Q. Yu, R. Wei, M. Yuan, Y. Zhang, D. Ma, Y. Li and G. Zou, “Synthesis and Characterization of Self-Organized Oxide Nanotube Arrays via a Facile Electrochemical Anodization,” J. Phys. Chem. C, Vol. 112, pp. 19852-19859 (2008a).
Liu, Y., B. Zhou , J. Li, X. Gan, J. Bai, W. Cai, “Preparation of Short, Robust and Highly Ordered TiO2 Nanotube Arrays and Their Applications as Electrode,” Appl. Catal., B, Vol. 92, pp. 326–332 (2009a).
Liu, Y., H. Zhou, B. Zhou, J. Li, H. Chen, J. Wang, J. Bai, W. Shangguan and W. Cai, “Highly Stable CdS-Modified Short TiO2 Nanotube Array Electrode for Efficient Visible-Light Hydrogen Generation,” Int. J. Hydrogen Energy, Vol. 36, pp. 167-174 (2011).
Liu, Y., J. Li, B. Zhou, J. Bai , Q. Zheng, J. Zhang and W. Cai, “Comparison of Photoelectrochemical Properties of TiO2-Nanotube-Array Photoanode Prepared by Anodization in Different Electrolyte,” Environ Chem Lett, vol. 7, pp. 363-368 (2009b).
Liu, Z., X. Zhang, S. Nishimoto, T. Murakami and A. Fujishima, “Efficient Photocatalytic Degradation of Gaseous Acetaldehyde by Highly Ordered TiO2 Nanotube Arrays,” Environ. Sci. Technol., Vol. 42, pp. 8547-8551 (2008b).
Macák, J. M., H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer and P. Schmuki, “TiO2 Nanotubes: Self-organized Electrochemical Formation, Properties and Applications,” Curr. Opin. Solid State Mater. Sci., Vol. 11, pp. 3-18 (2007).
Macák, J.M., K. Sirotna and P. Schmuki, “Self-organized Porous Titanium Oxide Prepared in Na2SO4/NaF Electrolytes,” Electrochimica Acta, Vol. 50, p. 3679-3684 (2005).
Mor, G.K., K. Shankar, M. Paulose, O.K. Varghese and C.A. Grimes, “Enhanced Photocleavage of Water Using Titania Nanotube Arrays,” Nano Lett., Vol. 5, pp. 191-195 (2005 b).
Mor, G.K., O.K. Varghese, M. Paulose, K. Shankar and C.A. Grimes, “A Review on Highly Ordered, Vertically Oriented TiO2 Nanotube Arrays: Fabrication, Material Properties, and Solar Energy Applications,” Sol. Energy Mater. Sol. Cells, Vol. 90, pp. 2011-2075 (2006).
Ollis, David F., E. Pelizzetti and N. Serpone, “Photocatalyzed Destruction of Water Contaminants,” Environ. Sci. Technol.,Vol. 25, pp. 1522-1529 (1991).
Ou, H. H. and S. L. Lo, “Review of Titania Nanotubes Synthesized via the Hydrothermal Treatment: Fabrication, Modification, and Application,” Sep. Purif. Technol., Vol. 58, pp. 179-191 (2007).
Prakasam, H.E., K. Shankar, M. Paulose, O.K. Varghese and C.A. Grimes, “A New Benchmark for TiO2 Nanotube Array Growth by Anodization,” J. Phys. Chem. C, Vol. 111, pp.7235-7241 (2007).
Quan, X., X. Ruan, H. Zhao, S. Chen and Y. Zhao, “Photoelectrocatalytic Degradation of Pentachlorophenol in Aqueous Solution Using a TiO2 Nanotube Film Electrode,” Environ. Pollut., Vol. 147, pp. 409-414 (2007).
Schulte, K. L., P. A. DeSario and K. A. Gray, “Effect of Crystal Phase Composition on the Reductive and Oxidative Abilities of TiO2 Nanotubes under UV and Visible Light,” Appl. Catal., B, Vol. 97, pp. 354-360 (2010).
Smith, Y. R., A. Kar and V. Subramanian, “Investigation of Physicochemical Parameters that Influence Photocatalytic Degradation of Methyl Orange over TiO2 Nanotubes,” Ind. Eng. Chem. Res., Vol. 48, pp. 10268-10276 (2009).
Sreekantan, S., Z. Lockman, R. Hazan, M. Tasbihi, L. K. Tong and A. R. Mohamed, “Influence of Electrolyte pH on TiO2 Nanotube Formation by Ti Anodization,” J. Alloys Compd., Vol. 485, pp. 478-483 (2009).
Sun, L., J. Li, C. L. Wang, S. F. Li, H. B. Chen and C. J. Lin, “An Electrochemical Strategy of Doping Fe3+ into TiO2 Nanotube Array Films for Enhancement in Photocatalytic Activity,” Sol. Energy Mater. Sol. Cells, Vol. 93, pp.1875-1880 (2009a).
Sun, L, S. Zhang, X. W. Sun and X. He, “Effect of Electric Field Strength on the Length of Anodized Titania Nanotube Arrays,” J. Electroanal. Chem., Vol. 637, pp. 6-12 (2009).
Tseng, I. H., J.C.S. Wu and H. Y. Chou, “Effects of Sol–Gel Procedures on the Photocatalysis of Cu/TiO2 in CO2 Photoreduction,” J. Catal., Vol. 221, pp. 432–440 (2004).
Wang, D., Y. Liu, B. Yu, F. Zhou and W. Liu, “TiO2 Nanotubes with Tunable Morphology, Diameter, and Length: Synthesis and Photo-Electrical/Catalytic Performance,” Chem. Mater., Vol. 21, pp. 1198–1206 (2009).
Wang, Y. Q., G. Q. Hu, X. F. Duan, H. L. Sun and Q. K. Xue, “Microstructure and Formation Mechanism of Titanium Dioxide Nanotubes,” Chem. Phys. Lett., Vol 365, pp. 427-431 (2002).
Wu, X., Y. Ling, L. Liu and Z. Huang, “Enhanced Photoelectrocatalytic Degradation of Methylene Blue on Smooth TiO2 Nanotube Array and Its Impedance Analysis,” J. Electrochem. Soc., Vol. 156, pp. K65-K71 (2009).
Xie, K., L. Sun, C. Wang, Y. Lai, M. Wang, H. Chen and C. Lin, “Photoelectrocatalytic Properties of Ag Nanoparticles Loaded TiO2 Nanotube Arrays Prepared by Pulse Current Deposition, Electrochim. Acta, Vol. 55, pp. 7211-7218 (2010).
Xu, S., A. J. Du, J. Liu, J. Ng and D. D. Sun, “Highly Efficient CuO Incorporated TiO2 Nanotube Photocatalyst for Hydrogen Production from Water,” Int. J. Hydrogen Energy, Vol. 36, pp. 6560-6568 (2011).
Yang, L., S. Luo, Y. Li, Y. Xiao, Q. Kang and Q. Cai, “High Efficient Photocatalytic Degradation of p-Nitrophenol on a Unique Cu2O/TiO2 p-n Heterojunction Network Catalyst,” Environ. Sci. Technol., Vol. 44, pp. 7641-7646 (2010).
Yoriya, S. and C. A. Grimes, “Self-Assembled TiO2 Nanotube Arrays by Anodization of Titanium in Diethylene Glycol: Approach to Extended Pore Widening,” Langmuir, Vol. 26, pp. 417-420 (2010).
Yu, J. and B. Wang, “Effect of Calcination Temperature on Morphology and Photoelectrochemical Properties of Anodized Titanium Dioxide Nanotube Arrays,” Appl. Catal., B, Vol. 94, pp. 295-302 (2010).
Yu, J. and J. Ran, “Facile Preparation and Enhanced Photocatalytic H2-Production Activity of Cu(OH)2 Custer Modified TiO2,” Energy Environ. Sci., Vol. 4, pp. 1364-1371 (2011).
Zhang Z., C. C. Wang, R. Zakaria, and J. Y. Ying, “Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts,” J. Phys. Chem. B, Vol. 102, pp. 10871-10878 (1998).
Zhang, Q. H., W. D. Han, Y. J. Hong, J. G. Yu, “Photocatalytic Reduction of CO2 with H2O on Pt-Loaded TiO2 Catalyst,” Catal. Today, vol. 148, pp.335-340 (2009).
Zhang, S., F. Peng, H. Wang, H. Yu , S. Zhang, J. Yang and H. Zhao, “Electrodeposition Preparation of Ag Loaded N-Doped TiO2 Nanotube Arrays with Enhanced Visible Light Photocatalytic Performance,” Catal. Commun., Vol. 12, pp. 689-693 (2011).

QR CODE