簡易檢索 / 詳目顯示

研究生: 吳玉婷
Yu-Ting Wu
論文名稱: 四乙氧基矽烷/苯乙烯迷你乳液之複合型奈米二氧化矽粒子之合成與鑑定
Synthesis and Characterization of Nano-Composite Silica Particles with Tetraethyl Orthosilicate/Styrene in miniemulsion
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 蔡大翔
Dah-Shyang Tsai
許榮木
Jung-Mu Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 116
中文關鍵詞: 迷你乳液四以氧基矽烷苯乙烯矽烷偶合劑複合型奈米二氧化矽粒子
外文關鍵詞: miniemulsion, Tetraethyl Orthosilicate, Styrene, silane coupling agent, nano-composite silica particles
相關次數: 點閱:423下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用迷你乳液系統,以四以氧基矽烷(TEOS)為無機相之單體,苯乙烯(Styrene)為有機相之單體,在此系統中,加入適當的共同安定劑-正十六烷(HD)、矽烷偶合劑-3-(三甲氧基甲硅烷基)丙基丙烯酸酯(3-(Trimethoxysilyl)propyl methacrylate)以及起始劑-偶氮二異丁腈(AIBN),並以陰離子界面活性劑(SDS)作為安定劑,添加酸性觸媒(HCl)促使TEOS做水解、縮合反應,並在高溫下(80°C)合成具有有機-無機的複合型奈米二氧化矽,並利用動態光散射粒徑分析儀(DLS)、雷射界面電位分析儀暨粒徑分析儀(Zeta Potential)、高解析度場發射掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)分析其粒子尺寸、分布及形態(morphology)。
合成具有有機-無機的複合型奈米二氧化矽後,經過純化、離心等步驟,再放入高溫爐中,在空氣下經過鍛燒程序(Calcination),把有機相全部去除留下無機相,利用表面積及孔徑分析儀(BET),探討其比表面積之數據,利用SEM、TEM探討其粒子之形態(morphology)。


In this study, we use miniemulsion as the templates, using tetraethyl orthosilicate (TEOS) as monomers in inorganic phase, styrene as monomers in organic phase, n-hexadecane (HD) as a costabilizer, 3-(Trimethoxysilyl)propyl methacrylate as a coupling agent, azobisisobutyronitrile (AIBN) as a initiator, and an anionic surfactant (SDS) as a stabilizer to synthetic nano-composite silica particles. The reactions add an acidic catalyst (HCl) to make TEOS do hydrolysis and condensation reactions at high temperature (80°C). By using DLS, Zeta potential, SEM, TEM, we analysis size and morphology of particles.
After synthesizing nano-composite silica particles, we purify, centrifuge and dry our samples. And then, we put the samples into furnace, calcined in the air, removed all of organic materials and left the inorganic substances. Finally, we use BET method analysis surface area of particles, SEM and TEM analysis size and distribution of particles.

摘要 I Abstract II 致謝 III 總目錄 IV 圖目錄 VIII 表目錄 XII 第一章 序論 1 1.1 乳液之簡介 1 1.2 奈米二氧化矽材料的發展 3 1.3 研究目的 5 第二章 文獻回顧 6 2.1 奈米二氧化矽的製備 6 2.1.2 二氧化矽的製備 6 2.1.3 溶膠-凝膠法之反應機構 7 2.1.4 溶膠-凝膠法之控制變因 9 2.2 奈米粒子改質 13 2.2.1 物理改質 13 2.2.2 化學改質 14 2.3 孔洞性材料的介紹 17 2.3.1 微孔洞奈米二氧化矽 18 2.4 奈米二氧化矽的應用 19 第三章 實驗藥品、儀器與方法 20 3.1 實驗藥品 20 3.2 實驗設備與儀器 24 3.3 實驗流程與步驟 27 3.3.1 奈米級複合型二氧化矽之迷你乳液的製備 27 3.4 鑑定與分析 30 3.4.1 稀釋液的配置 32 3.4.2 動態光散射粒徑分析儀 (Dynamic Light Scattering, DLS) 33 3.4.3 雷射界面電位分析儀暨粒徑分析儀 (Zeta Potential Meter and Particle size Analyzer, Zeta Potential) 34 3.4.4 高解析度場發射掃描式電子顯微鏡 (High Resolution Field-Emission Scanning Electron Microscope, SEM) 35 3.4.5 表面積及孔徑分析儀 (Surface Area and Pore size distribution Analyzer, BET) 36 3.4.6 穿透式電子顯微鏡 (Field Emission Trans Electron Microscope, TEM) 38 3.4.7 熱重/熱示差分析儀 (Termal Analyzer, TGA) 39 第四章 實驗結果與討論 40 4.1 不同TEOS/Styrene比例之奈米二氧化矽製備與鑑定 42 4.1.1 時間對粒徑的分析 44 4.1.2 界面電位分析 50 4.1.3 粒子型態分析 51 4.1.4 TGA分析 61 4.1.5 比表面積分析 63 4.1.6 鍛燒後粒子型態分析 65 4.2 改變偶合劑含量之奈米二氧化矽製備與鑑定 72 4.2.1 時間對粒徑的分析 72 4.2.2 界面電位分析 76 4.2.3 粒子型態分析 77 4.2.4 TGA分析 82 4.2.5 比表面積分析 83 4.2.6 鍛燒後粒子型態分析 84 第五章 結論 86 第六章 參考文獻 88 附錄 94

1. Arthur W. Adamson, A. P. G., Physical Chemistry of Surfaces. 1997.
2. Sydney Ross, I. D. M., Colloidal Systems and Interfaces. 1988.
3. Everett, D. H., Basic Principles of Colloid Science. 1988.
4. Pere, E.; Cardy, H.; Latour, V.; Lacombe, S., Low-temperature reaction of trialkoxysilanes on silica gel: a mild and controlled method for modifying silica surfaces. J Colloid Interface Sci 2005, 281 (2), 410-6.
5. Thomas G. Waddell, D. E. L., Mary T. DeBello, The nature of organosilane to silica-surface bonding. J. Am. Chem. Soc. 1981, 103, 5303–5307.
6. 汪信, 奈米材料化學. 五南圖書出版股份有限公司 2006.
7. ZARZYCKI, J., Past and Present of Sol-Gel Science and Technology. 1997.
8. 馬振基, 奈米材料科技原理與應用. 全華科技圖書股份有限公司 2004.
9. Iler, R. K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. 1979.
10. Scott., R. P. W., Silica gel and bonded phases : their production, properties, and use in LC. 1993.
11. Fink, W. S. A., Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science 1968, 26, 62-69.
12. Guo, J.; Liu, X.; Cheng, Y.; Li, Y.; Xu, G.; Cui, P., Size-controllable synthesis of monodispersed colloidal silica nanoparticles via hydrolysis of elemental silicon. J Colloid Interface Sci 2008, 326 (1), 138-42.
13. Cao, Z.; Yang, L.; Yan, Y.; Shang, Y.; Ye, Q.; Qi, D.; Ziener, U.; Shan, G.; Landfester, K., Fabrication of nanogel core-silica shell and hollow silica nanoparticles via an interfacial sol-gel process triggered by transition-metal salt in inverse systems. J Colloid Interface Sci 2013, 406, 139-47.
14. Schiller, R.; Weiss, C. K.; Geserick, J.; Hüsing, N.; Landfester, K., Synthesis of Mesoporous Silica Particles and Capsules by Miniemulsion Technique. Chemistry of Materials 2009, 21 (21), 5088-5098.
15. C. Jeffrey Brinker, G. W. S., Sol-Gel Science 1990.
16. BRINKER, C. J., HYDROLYSIS AND CONDENSATION OF SILICATES: EFFECTS ON STRUCTURE. Journal of Non-Crystalline Solids 1988, 100, 31-50.
17. Sheng-Li Chen, P. D., Guang-HuaYang, Jiu-JinYang Characteristic Aspects of Formation of New Particles during the Growth of Monosize Silica Seeds. Journal of Colloid and Interface Science 1996, 180, 237-241.
18. Tsai, M.-S.; Huang, P. Y.; Yang, C.-H., Formation mechanisms of colloidal silica via sodium silicate. Journal of Nanoparticle Research 2006, 8 (6), 943-949.
19. Christine J.T Landry, B. K. C., Jeffrey A Wesson, Nicholas Zumbulyadis, In situ polymerization of tetraethoxysilane in polymers: chemical nature of the interactions. Polymer 33, 1496-1506.
20. Christine J.T Landry, B. K. C., In situ polymerization of tetraethoxysilane in poly(methyl methacrylate): morphology and dynamic mechanical properties. Polymer 33, 1486-1495.
21. Roger A. Assink, B. D. K., Sol-gel kinetics I. Functional group kinetics. Journal of Non-Crystalline Solids 1988, 99, 359-370.
22. Daniela C. L Vasconcelos, W. R. C., Vanderley Vasconcelos, Wander L Vasconcelos, Influence of process parameters on the morphological evolution and fractal dimension of sol–gel colloidal silica particles. Materials Science and Engineering: A 2002, 334, 53-58.
23. M. Guglielmi, G. C., Precursors for sol-gel preparations. Journal of Non-Crystalline Solids 1988, 100, 16-30.
24. E.F. Vansant, P. V. D. V., K.C. Vrancken, Characterization and Chemical Modification of the Silica Surface. 1995.
25. Iler., v. R. K., The Colloid Chemistry of Silica and Silicates. 1956, 68, 312.
26. Guo, Z. Graphene nanocomposites 1981.
27. Plueddemann, E. P., Silane Coupling Agents. 1991.
28. 徐國財, 奈米複合材料. 五南圖書出版股份有限公司 2004.
29. Lee, C.-K.; Don, T.-M.; Lai, W.-C.; Chen, C.-C.; Lin, D.-J.; Cheng, L.-P., Preparation and properties of nano-silica modified negative acrylate photoresist. Thin Solid Films 2008, 516 (23), 8399-8407.
30. Posthumus, W.; Magusin, P. C. M. M.; Brokken-Zijp, J. C. M.; Tinnemans, A. H. A.; van der Linde, R., Surface modification of oxidic nanoparticles using 3-methacryloxypropyltrimethoxysilane. Journal of Colloid and Interface Science 2004, 269 (1), 109-116.
31. Novak, B. M., Hybrid Nanocomposite Materials—between inorganic glasses and organic polymers. Advanced Materials 1993, 5, 422-433.
32. Sridhar Komarneni, M. N., Kōzō Ishizaki, Porous Materials: Process Technology and Applications. 1998.
33. J. Rouquerol, D. A., D.H. Everett, C. Fairbridge, M. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Recommendations for the Characterization of Porous Solids. Pure and Appl. Chem. 1994.
34. Peng, B.; Chen, M.; Zhou, S.; Wu, L.; Ma, X., Fabrication of hollow silica spheres using droplet templates derived from a miniemulsion technique. J Colloid Interface Sci 2008, 321 (1), 67-73.
35. Teng, Z.; Han, Y.; Li, J.; Yan, F.; Yang, W., Preparation of hollow mesoporous silica spheres by a sol–gel/emulsion approach. Microporous and Mesoporous Materials 2010, 127 (1-2), 67-72.
36. Cao, Z.; Dong, L.; Li, L.; Shang, Y.; Qi, D.; Lv, Q.; Shan, G.; Ziener, U.; Landfester, K., Preparation of mesoporous submicrometer silica capsules via an interfacial sol-gel process in inverse miniemulsion. Langmuir 2012, 28 (17), 7023-32.
37. Lee, Y.-G.; Oh, C.; Yoo, S.-K.; Koo, S.-M.; Oh, S.-G., New approach for the control of size and surface characteristics of mesoporous silica particles by using mixed surfactants in W/O emulsion. Microporous and Mesoporous Materials 2005, 86 (1-3), 134-144.
38. Chang, H.; Kim, S. J.; Jang, H. D.; Kim, T. O.; Okuyama, K., Pore size-controlled synthesis and characterization of nanostructured silica particles. Ultramicroscopy 2008, 108 (10), 1260-5.
39. Nandiyanto, A. B. D.; Kim, S.-G.; Iskandar, F.; Okuyama, K., Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters. Microporous and Mesoporous Materials 2009, 120 (3), 447-453.
40. Gustafsson, H.; Isaksson, S.; Altskar, A.; Holmberg, K., Mesoporous silica nanoparticles with controllable morphology prepared from oil-in-water emulsions. J Colloid Interface Sci 2016, 467, 253-60.
41. 葛学平, 辐射细乳液聚合一步法制备 SiO2/PS杂化微球. 2009.
42. Pham, Q.-T.; Chern, C.-S., Thermal stability of organofunctional polysiloxanes. Thermochimica Acta 2013, 565, 114-123.

QR CODE