簡易檢索 / 詳目顯示

研究生: 古家豪
Jia-Hao Gu
論文名稱: 含氟功能型聚胺基甲酸酯合成與性質之研究
Study on the synthesis and properties of functional polyurethanes containing fluorines
指導教授: 蘇舜恭
Shuenn-Kung Su
口試委員: 孫茂誠
Maw-Cherng Suen
李訓清
Hsun‐Tsing Lee
邱士軒
Shih-Hsuan Chiu
陳建光
Jem-Kun Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 198
中文關鍵詞: 聚氨基甲酸酯氟鏈延長劑紅血球沾附防水去污性能
外文關鍵詞: Polyurethane, Fluorine chain extender, red blood cell adhesion, Waterproof decontamination performance
相關次數: 點閱:196下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究論文以製備功能性材料為出發點,使用有機合成方式製備聚氨基甲酸酯(PU),並導入新型含氟鏈延長劑,賦予聚氨基甲酸酯(PU)擁有其特殊性質,合成出新型含氟聚氨基甲酸酯(FPU),進行一系列鑑定與分析。本研究分為三部分:第一部分使用4,4’-diphenylmethane diisocyanate (MDI)為硬鏈段、 polycaprolactone diol (PCL)為軟鏈段及4-(1,1,1,3,3,3-hexafluoro-2-(4-hydroxyphenyl)propan-2-yl)phenol (HFP)鏈延長劑,合成含氟聚胺基甲酸酯(HFP/PUs),隨著HFP配方比增加,由體外紅血球沾附試驗結果發現,於HFP/PUs表面上的紅血球沾附量減少。
第二部分使用5H-octafluoropentanoyl (OFP)與2-amino-2-methyl-1,3-propanediol (AMPD)合成新型氟鏈延長劑2,2,3,3,4,4,5,5-octafluoro-N-(1,3-dihydroxy-2-methylpropan-2-yl) pentanamide (ODMP),並以MDI為硬鏈段、PCL為軟鏈段,合成新型含氟聚胺基甲酸酯 (ODMP/PUs),當ODMP配方比例增加時,由SEM圖像顯示ODMP/PUs水解降解性質降低,由體外紅血球研究結果發現,ODMP/PUs表面上的紅血球沾附量減少。
第三部分使用2,2,3,3,4,4,4-heptafluorobutanoyl chloride (HFC)與trimethylolpropane (TMP)合成新型氟鏈延長劑 2,2,3,3,4,4,4-Heptafluoro-butynic acid 2,2-bis-hydroxymethyl-butyl ester (HFBA)。並使用MDI為硬鏈段、PCL為軟鏈段,合成新型含氟聚胺基甲酸酯 (HFBA/PUs),本研究特點在於HFBA/PUs的防水去污性能,隨著HFBA配方比例增加,HFBA/PUs塗層對水滴、茶污、油墨的阻抗能力提升。


The starting point of this research is to prepare the functional material. The organic synthesis way is used to prepare the polyurethane (PU). Furthermore, a new-type fluorine-containing chain extender is introduced to synthesize a new-type fluorine-containing polyurethane (FPU) with special properties. A series of characterizations and analyses are carried out. This research is divided into three parts: The first part uses 4,4’-diphenylmethane diisocyanate (MDI) as a hard segment, polycaprolactone diol (PCL) as a soft segment, and 4-(1,1,1,3,3,3-hexafluoro-2-(4-hydroxyphenyl)propan-2-yl)phenol (HFP) as a chain extender to synthesize the fluorine-containing polyurethane (HFP/PUs). From the result of red blood cell adhesion test in vitro, it is found that the red blood cell adhesion amount on HFP/PUs surface is decreased with the increase of HFP in the formula.
The second part uses 5H-octafluoropentanoyl (OFP) and 2-amino-2-methyl-1,3-propanediol (AMPD) to synthesize a new-type fluorine-containing chain extender 2,2,3,3,4,4,5,5-octafluoro-N- (1,3-dihydroxy-2-methylpropan-2-yl) pentanamide (ODMP). In addition, the MDI is used as a hard segment, and the PCL is used as a soft segment to synthesize a new-type fluorine-containing polyurethane (ODMP/PUs). When the proportion of ODMP is increased, the hydrolyzing degradation property of ODMP/PUs is decreased revealed from the SEM image, and the red blood cell adhesion amount on ODMP/PUs surface is decreased revealed from the red blood cell adhesion test in vitro.
The third part uses 2,2,3,3,4,4,4-heptafluorobutanoyl chloride (HFC) and trimethylolpropane (TMP) to synthesize a new-type fluorine-containing chain extender 2,2,3,3,4,4,4-Heptafluoro-butynic acid 2,2-bis-hydroxymethyl-butyl ester (HFBA). In addition, the MDI is used as a hard segment, and the PCL is used as a soft segment to synthesize a new-type fluorine-containing polyurethane (HFBA/PUs). This research is characterized by the waterproof decontamination performance of HFBA/PUs. When the proportion of HFBA is increased, the resistance of HFBA/PUs coating to water droplet, tea stain and ink is increased.

中文摘要 I Abstract IV 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XI 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第2章 文獻回顧 4 2.1 聚胺基甲酸酯簡介 4 2.1.1 聚胺基甲酸酯的化學結構 5 2.1.2 聚胺基甲酸酯結構形態 8 2.1.3 聚胺基甲酸酯相關研究 10 2.2 生物降解高分子材料簡述【48、49】 11 2.2.1 生物降解原理 12 2.2.2 高分子材料生物降解之影響 13 2.2.3 生物降解高分子材料分類 15 2.2.4 生物可降解高分子材料相關研究 16 2.2.5 生物可分解聚胺基甲酸酯【55】 17 2.3 聚己內酯簡介【56、57、58、59】 18 2.3.1 生物可分解聚胺基甲酸酯相關研究 19 2.4 有機氟化合物簡介 22 2.4.1 含氟聚合物【75】 23 2.4.2 含氟聚合物相關研究 24 2.4.3 含氟聚合物血液相容性相關研究 30 第3章 HFP/PUS 32 3.1 實驗藥品 32 3.1.1 HFP/PUs藥品 32 3.2 實驗設備 38 3.3 實驗步驟 39 3.3.1 HFP/PUs之合成 39 3.4 實驗配方 42 3.4.1 HFP/PUs之實驗配方 42 3.5 實驗流程 43 3.5.1 HFP/PUs之實驗流程 43 3.6 儀器及操作方法 44 3.7 結果與討論 51 3.7.1 傅立葉紅外線光譜分析 51 3.7.2 X射線光電子能譜 54 3.7.3 熱重損失分析 57 3.7.4 熱示差掃描分析 60 3.7.5 動態機械分析 62 3.7.6 機械性質分析 65 3.7.7 接觸角分析 67 3.7.8 化學阻抗分析 69 3.7.1 原子力顯微鏡分析 70 3.7.2 紅血球沾附實驗 72 第4章 ODMP/PUs 74 4.1 實驗藥品 74 4.1.1 ODMP鏈延長劑藥品 74 4.1.2 ODMP/PUs藥品 76 4.2 實驗設備 78 4.3 實驗步驟 79 4.3.1 ODMP之合成 79 4.3.2 ODMP/PUs之合成 83 4.4 實驗配方 85 4.4.1 ODMP/PUs之實驗配方 85 4.5 實驗流程 86 4.5.1 ODMP之實驗流程 86 4.5.2 ODMP/PUs之實驗流程 87 4.6 儀器及操作方法 88 4.7 結果與討論 95 4.7.1 凝膠滲透層析儀分析 95 4.7.2 傅立葉紅外線光譜分析 97 4.7.3 19F NMR 光譜分析 100 4.7.4 X射線光電子能譜 105 4.7.5 熱重損失分析 107 4.7.6 熱示差掃描分析 110 4.7.7 動態機械分析 112 4.7.8 機械性質分析 115 4.7.9 接觸角分析 117 4.7.10 化學阻抗分析 120 4.7.11 原子力顯微鏡分析 121 4.7.12 水解降解測試 123 4.7.13 SEM形態分析 125 4.7.14 紅血球沾附實驗 127 第5章 HFBA/PUS 129 5.1 實驗藥品 129 5.1.1 HFBA鏈延長劑藥品 129 5.1.2 HFBA/PUs藥品 131 5.2 實驗設備 133 5.3 實驗步驟 134 5.3.1 HFBA之合成 134 5.3.2 HFBA/PUs之合成 138 5.4 實驗配方 140 5.4.1 HFBA/PUs之實驗配方 140 5.5 實驗流程 141 5.5.1 HFBA之實驗流程 141 5.5.2 HFBA/PUs之實驗流程 142 5.6 儀器及操作方法 143 5.7 結果與討論 148 5.7.1 凝膠滲透層析儀分析 148 5.7.2 傅立葉紅外線光譜分析 150 5.7.3 19F NMR 光譜分析 153 5.7.4 X射線光電子能譜 156 5.7.5 熱重損失分析 159 5.7.6 熱示差掃描分析 162 5.7.7 動態機械分析 164 5.7.8 機械性質分析 167 5.7.9 接觸角分析 169 5.7.10 原子力顯微鏡分析 172 5.7.11 抗污漬評估 174 5.7.12 HFBA / PUs織物透濕、防水及撥水性質分析 176 第6章 結論 177 6.1 HFP/PUS 177 6.2 ODMP/PUS 178 6.3 HFBA/PUS 179 參考文獻 180 Publications 180

1. Comstock M.J, “Urethane Chemistry and Applications”, ACS Chapter 1(1981)
2. Park H.B., Lee Y.M., “Separation of toluene / nitrogen through segmented polyurethane and polyurethane urea membranes with different soft segments”, Journal of Membrane Science (2002);197:283-296.
3. Abraham G.A, de Queiroz A.A., Román J.S., “Hydrophilic hybrid IPNs of segmented polyurethanes and copolymers of vinylpyrrolidone for applications in medicine”, Biomaterials (2001);22:1971-1985.
4. Gugliuzza A., Clarizia G., Golemme G., Drioli E., “New breathable and waterproof coatings for textiles: effect of an aliphatic polyurethane on the formation of PEEK-WC porous membranes”, European Polymer Journal (2002)38:235-242.
5. Tien Y.I., Wei K.H., “Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios”, Polymer (2002) 42:3213-3221.
6. Mequanint K., Sanderson R., “Nano-structure phosphorus-containing poly-urethane dispersions: synthesis and crosslinking with melamine formaldehyde resin”, Polymer (2003) 44:2631-2639.
7. Nair L.S., Laurencin C.T., “Biodegradable polymers as biomaterials”, Progress in Polymer Science (2007) 32:762-798.
8. Coulembier O., Degee P., Hedrick J.L., Dubois P., “From controlled ring-opening polymerization to biodegradable aliphatic polyester: especially poly(β-malic acid) derivatives”, Progress in Polymer Science (2006) 31:723-747.
9. Pena J., Corrales T., Izquierdo-Barba I., Doadrio A.L., Vallet-Regi M., “Long term degradation of poly(3-caprolactone) films in biologically related fluids”, Polymer Degradation and Stability (2006) 91:1424-1432.
10. Okada M., “Chemical syntheses of biodegradable polymers”, Progress in Polymer Science (2002) 27:87-133.
11. Huang S.J., “Encyclopedia of polymer science and engineering”, John Wiley and Sons (1985), 2:220-43.
12. Chandra R., Rustgi R., “Biodegradable polymers”, Progress in Polymer Science (1998) 23:1273-335.
13. Johns K., Stead G., “Fluoroproducts - the extremophiles”, Journal of Fluorine Chemistry (2000) 104:5-18
14. Banks R.E., Smart B.E., Tatlow J.C., “In Organofluorine Chemistry: Principles and Commercial Ap-plications”, Organofluorine Chemistry (1994), Plenum Press, New York, 57-58.
15. Dunitz J.D., “Organic Fluorine: Odd Man Out”, Chembiochem (2004), 5:614-621.
16. O'Hagan D., “Understanding organofluorine chemistry. An introduction to the C-F bond”, Chemical Society Reviews (2008), 37:308-319.
17. Smart B.E., S.E. Pavlath, “Properties of Fluorinated Compounds, Physical andPhysicochemical Properties, in: M. Hudlicky”, Chemistry of Organic Fluorine Compounds II(1995), 979.
18. J. Scheirs, “Modern Fluoropolymers”, Wiley (1997), New York.
19. Hougham G., Johns K., Cassidy P.E., Davidson T., “Fluoropolymers:Synthesis and Properties”, Plenum Press (1999), New York.
20. Woods G. “The ICI polyurethane book, 2nd ed”, Wiley (1990), New York.
21. Noshay A., McGrath J.E., “Block copolymers; overview and criticalsurvey”, Academic Press (1977), New York.
22. AmeÂduri B., Boutevin B., “Use of telechelic fluorinated diiodides to obtain well-defined fluoropolymers”, Journal of Fluorine Chemistry (1999), 100:97-116.
23. Rice D.E., (to 3M) US Patent (1969), 3:461-155.
24. Rice R.E., Sandberg C.K., “Polym Prepr”, Am. Chem Soc Div Polym Chem (1971), 12:396.
25. Saint-Loup R., Manseri A., Ameduri B., Boutevin B., Lebret B.,.Vignane P, “Proceedings of the 4th French Conference in Fluorine Chemistry, ” Chatenay Malabry(1999), France.
26. E.P. Moore, “Du Pont de Nemours”, US Paten (1967), 3:322-826
27. Park H.B., Lee Y.M., “Separation of toluene/nitrogen through segmented polyurethane and polyurethane urea membranes with different soft segments”, Journal of Membrane Science (2002), 197:283-296.
28. Abraham G.A., de Queiroz A.A.A., Roman J.S., “Hydrophilic hybrid IPNs of segmented polyurethanes and copolymers of vinylpyrrolidone for applications in medicine”, Biomaterials (2001), 22:1971-1985.
29. Gugliuzza A., Clarizia G., Golemme G., Drioli E., “New breathableand waterproof coatings for textiles: effect of an aliphatic polyurethaneon the formation of PEEK-WC porous membranes”, European Polymer Journal (2002), 38:235-242.
30. Tien Y.I., Wei K.H., “Hydrogen bonding and mechanical propertiesin segmented montmorillonite/polyurethane nanocompositesof different hard segment ratios”, Polymer (2001), 42:3213-3221.
31. Mequanint K., Sanderson R., “Nano-structure phosphorus-containingpolyurethane dispersions: synthesis and crosslinking withmelamine formaldehyde resin”, Polymer (2003), 44:2631-639.
32. 肖衛東,何培新,湖高屏,聚氨酯膠黏劑制備,化學工業出版社,2009年。
33. 張洪濤,黃錦霞,水性樹酯制備與應用,化學工業出版社,2011。
34. 李東光,聚合乳液配方與工藝,化學工業出版社,民國2011。
35. 劉益軍,聚氨酯樹脂及其應用,化學工業出版社,民國2011。
36. 肖衛東,何培新,湖高屏,聚氨酯膠黏劑制備,化學工業出版社,2009年。
37. Oertel G., “Polyurethane Handbook”, Hanser Publisher (1985), Germany.
38. Hepburn C., “Polyurethane Elastomers”, Applied science Publishers (1982), New York.
39. 鄭湘蓉,具生物可分解性聚己內酯/聚胺基甲酸酯之合成與性質研究,南亞技術學院材料應用科技研究所碩士學位論文,2011年。
40. Cooper S.L., Estes G.M., “Multiphase Polymer”, American Chemical Society, Washington D.C. (1979), 72.
41. 王孟鈴,硝酸銀對含吡啶聚胺基甲酸酯合成與性質影響之研究,南亞技術學院材料應用科技研究所碩士學位論文,2011年。
42. Schoolenerge C.S., Scott H., Moore G.R., “Thermoplastic Polyurethane Hydrolysis Stability”, Rubber Word (1958), 137:549-550.
43. Oprea S., “Effect of Composition and Hard-segment Contenton Thermo-mechanical Properties of Cross-linkedPolyurethane Copolymers”, High Performance Polymers (2009), 21:353-370.
44. Amrollahi M., Sadeghi G.M.M., Kashcooli Y., “Investigation of novel polyurethane elastomeric networks based on polybutadieneol /polypropyleneoxide mixture and their structure-properties relationship”, Materials and Design (2011), 32, 3933-3941.
45. Oprea S., Potolinca V.O., “Synthesis and characterizationof novel linear and cross-linkedpolyurethane urea elastomers with2,3-diaminopyridine in the main chain”, High Performance Polymers(2012),25:145-155.
46. Kausar A., Zulfiqar S., Ishaq M.,Sarwar M.I., “An investigation on new highperformance Schiff base polyurethanes”, High Performance Polymers (2012), 24:125-134.
47. Lee H.T., Tsou C.H., Jou C.H., Huang F.C., Wang M.L., Suen M.C., “The effects of silver nitrate on the structureand properties of polyurethanes containing pyridylunits”, Polymer Bulletin (2014) 71:2749-2767.
48. 焦劍,姚軍燕,功能性高分子材料,化學工業出版社,2006。
49. 洪紫萍,王貴公,生態材料導論,五南圖書股份有限公司,2004。
50. Sarkar D., Yang J.C., GuptaA.S., LopinaS.T., “Synthesis and characterization of L-tyrosine basedpolyurethanes for biomaterial applications”, Journal of Biomedical Materials Research banner (2009), 90A: 263-271.
51. Petrovic´ Z.S., Xu Y., Milic´ J., Glenn G., Klamczynski A., “Biodegradation of Thermoplastic Polyurethanesfrom Vegetable Oils”, Journal of Polymers and the Environment (2010) 18:94-97.
52. Dong Y., Ghataura A., Takagi H., Haroosh H.J., Nakagaito A.N , Lau K.T., “Polylactic acid (PLA) biocomposites reinforced with coir fibres:Evaluation of mechanical performance and multifunctional prope”, Composites Part A: Applied Science and Manufacturing (2014), 63:76-84.
53. Zhao X., Ye L., Coates P., Caton‐Rose F., Martyn M., “Structure and blood compatibility of highly oriented poly(lactic acid)/thermoplastic polyurethane blends produced by solid hot stretching”, Polymers for Advanced Technologies (2013), 24:853-860.
54. Jašo V., Glenn G., Klamczynski A., Petrović Z.S., “Biodegradability study of polylactic acid/ thermoplastic polyurethane blends”, Polymer Testing (2015), 47:1-3.
55. 古家豪,無機添加物/聚胺基甲酸酯複合材料合成與性質之研究,桃園創新技術學院材料應用科技研究所碩士論文,2014年。
56. 焦劍,姚軍燕,功能性高分子材料,化學工業出版社,2006。
57. 洪紫萍,王貴公,生態材料導論,五南圖書股份有限公司,2004。
58. 楊斌,馬振基,PLA聚乳酸環保塑料,五南圖書股份有限公司,民國2010。
59. 陳莉,智能高分子材料,化學工業出版社,2005。
60. Heijkants R.G.J.C., Schwab L.W., Calck R.V., Groot J.H., Pennings A.J., Schouten A.J., “Extruder synthesis of a new class of polyurethanes: Polyacylurethanes based on poly(ε-caprolactone) oligomers”, Polymer (2005), 46:8981-8989.
61. Ding X.M., Hu J.L., Tao X.M., Hu C.P., “Preparation of Temperature-Sensitive Polyurethanes for Smart Textiles”, Textile Research Journal (2014), 76:406-413.
62. Ayres E., Oréfice R.L., Yoshida M.I., “Phase morphology of hydrolysable polyurethanes derived from aqueous dispersions”, European Polymer Journal (2007), 43:3510-3521.
63. Sarkar D., Yang J.C., Lopina S.T., “Structure-Property Relationship of L-Tyrosine-Based Polyurethanes for Biomaterial Applications”, Journal of Applied Polymer Science (2008), 108, 2345-2355.
64. Rueda-Larraz L., Fernandez d’Arlas B., Tercjak A., Ribes A., Mondragon I., Eceiza A., “Synthesis and microstructure-mechanical property relationships of segmented polyurethanes based on a PCL-PTHF-PCL block copolymer as soft segment”, European Polymer Journal (2009), 45:2096-2109.
65. Woodruff M.A., Hutmacher D.W., “The return of a forgotten polymer-Polycaprolactone in the 21st century”, Progress in Polymer Science (2010), 35:1217-1256.
66. Chan-Chan L.H., R. Solis-Correa, R.F. Vargas-Coronado, J.M. Cervantes-Uc, J.V. Cauich-Rodriguez, P. Quintana, P. Bartolo-Perez., “Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders”, Acta Biomaterialia (2010), 6:2035-2044.
67. Yu L.Q., Zhou L.J., Ding M.M., Li J.H., Tan H., Fu Q., He X.L., “Synthesis and characterization of novel biodegradable folate conjugated polyurethanes”, Journal of Colloid and Interface Science (2011), 358:376-383.
68. Tsou C.H., Lee H.T., Tsai H.A., Cheng H.J., Suen M.C., “Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender”, Polymer Degradation and Stability (2013); 98:643-650.
69. Tsou C.H.,Lee H.T., GuzmanM.D.,Tsai H.A.,Wang P.N.,Cheng H.J.,Suen M.C., Synthesis of biodegradable polycaprolactone/polyurethane by curing with H2O, Polymer Bulletin (2015), 72:1545-1561.
70. Lee H.T., Tsou C.H., Li C.L., Gu J.H., Wu C.L., Hwang J.J., Suen M.C., “Preparation and characterization of biodegradable polyurethane composites containing attapulgite nanorods”, Polymer Bulletin (2018), 37:208-220.
71. Banks R.E., “The First Hundred”, Sharp Tatlow Elsevier Sequoia (1986), 2-26.
72. Moissan H.C.R., Acad. Sci. (1886), 1534.
73. Moissan H.R., Acad Sci. (1886) 103, 202.
74. Moissan H.C.R., Acad. Sci. (1886) ,103,256.
75. Peer kirsch, 現代有機氟化學-合成、反應、應用, 化學工業出版社, 2015.
76. Borodine A., Ann. Chem. Pharm (1863), 126 58-62.
77. Tonelli C., Trombetta T., Scicchitano M., Simeone G., Ajroldi G., “New fluorinated thermoplastic elastomers”, Journal of Applied Polymer Science (1996), 59:311-327.
78. Tonelli C., Ajroldi G., Turturro A., Marigo A., “Synthesis methods of fluorinated polyurethanes. 1. Effects on thermal anddynamic-mechanical behaviours”, Polymer (2001), 42:5589-5598.
79. Kim Y.S., Lee J.S., Ji Q., McGrath J.E., “Surface properties of fluorinated oxetane polyol modified polyurethane block copolymers”, Polymer (2002), 43:7161-7170
80. TonelliC., Ajroldi G., “New fluoro-modified thermoplastic polyurethanes”, Journal of Applied Polymer Science (2003), 87:,2279-2294.
81. Yang X.F., LiJ., CrollS.G., TallmanD.E., BierwagenG.P., “Degradation of low gloss polyurethane aircraft coatings under UVand prohesion alternating exposures”, Polymer Degradation and Stability (2003), 80:51-58.
82. Speranza G., Anderle M., Turri S., Radice S., “ToF‐SIMS and XPS surface characterization of novel perfluoropolyether-urethane ionomers from aqueous dispersions”, Surface and Interface Analysis (2003), 35:318-326.
83. Tan H., Guo M., Du R., Xie X., Li J., Zhong Y., Fu Q., “The effect of fluorinated side chain attached on hard segment on the phaseseparation and surface topography of polyurethanes”, Polymer (2004), 45:1647-1657.
84. Tan H., Li J., Guo M., Du R., Xie X., Zhong Y., Fu Q., “Phase behavior and hydrogen bonding in biomembrane mimicking polyurethanes with long side chain fluorinated alkyl phosphatidylcholinepolar head groups attached to hard block”, Polymer (2005), 46:7230-7239.
85. Jeong H.Y., Lee M.H., Kim B.K., “Surface modification of waterborne polyurethane”, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2006), 290:178-185.
86. Wang L.F., “Experimental and theoretical characterization of the morphologies influorinated polyurethanes”, Polymer (2007), 48:894-900.

87. Jiang M., Zheng Z., Ding X., Cheng X., Peng Y., “Convenient synthesis of novel fluorinated polyurethane hybrid latexes and core-shell structures via emulsion polymerization process with self-emulsification of polyurethane”, Colloid and Polymer Science (2007), 285:1049-1054.
88. Ge Z., Zhang X.Y., Dai J.B., Li W.H., Luo Y.J., “Synthesis and characterization of fluorinated polyurethane with fluorine-containing pendent groups”, Chinese Chemical Letters (2008), 19:1293-1296.
89. Chen K.Y., Kuo J.F., “Influence of fluorocarbon chains on the crystallization behaviors of aliphatic polyurethanes”, Journal of Applied Polymer Science (2009), 111:371-379.
90. Zhu Q., Han C.C., “Study of telechelic polyurethane with perfluoropolyether tails”, Polymer (2010), 51:877-882.
91. Levine F., Scala J.L., Kosik W., “Properties of clear polyurethane films modified with a fluoropolymer emulsion”, Progress in Organic Coatings (2010), 69:63-72.
92. Liu T., Ye L., “Synthesis and properties of fluorinated thermoplastic polyurethane elastomer”, Journal of Fluorine Chemistry (2010), 131:36-41.
93. Król P., Król B., Stagraczyński R., Skrzypiec K., “Waterborne cationomer polyurethane coatings with improved hydrophobic properties”, Journal of Applied Polymer Science (2013), 127:2508-2519.
94. Wang H., Liu W., Tan J., Xiahou G., “Synthesis and characterization of novel UV-curable fluorinated polyurethane-acrylate copolymer”, Chemical Research in Chinese Universities (2016), 32:311-317.
95. Liu J., Wang B., Yuan Y., Liu R., Li, Z. Liu X. , “Synthesis of fluorinated polycarbonate-based polyurethane acrylate for UV-curable coatings”, Journal of Coatings Technology and Research (2017), 14:233-241.
96. Zhao M., Li H., Wen L., Yu Z., Zhang S., Han Z., “Synthesis and characterization of fluorine-containingpolyurethane-acrylate core-shell emulsion”, Journal of Applied Polymer Science (2016), DOI: 10.1002/app.43357
97. Wu C.L., Chiu S.H., Lee H.T., Suen M.C., “Synthesis and properties of biodegradable polycaprolactone/polyurethanes using fluoro chain extenders”, Polymers for Advanced Technologies (2016), 27:665-676.
98. Li N., Zeng F., Wang Y., Qu D., Hu W., Luan Y., Dong S., Zhangd J., Bai Y., “Fluorinated polyurethane based on liquid fluorine elastomer (LFH) synthesis via two-step method: the critical value of thermal resistance and mechanical properties”, RSC Advances (2017), 7:30970-30978.
99. Chen K.Y., Kuo J.F., “Synthesis and properties of novel fluorinated aliphatic polyurethanes with fluoro chain extenders”, Macromolecular Chemistry and Physics (2000), 201:2676-2686.
100. Wanga L.F., Wei Y.H., “Effect of soft segment length on properties of fluorinated polyurethanes”, Colloids and Surfaces B: Biointerfaces (2005), 41:249-255.
101. Li J., Zhang Y., Yang J., Tan H., Li J., Fu Q., Synthesis and surface properties of polyurethane end-capped with hybrid hydrocarbon/fluorocarbon double-chain phospholipid, Chinese Journal of Polymer Science (2013), 29:615-626.
102. Jia R.P., Zong A.X., He X.Y., Xu J.Y., Huang M.S., “Synthesis of newly fluorinated thermoplastic polyurethane elastomers and their blood compatibility”, Fibers and Polymers (2015), 16:231-238.
103. Kiran S., Joseph R., “Synthesis and characterization of X-ray opaque polycarbonateurethane: Effect of a dihalogenated chain extender on radiopacity and hemocompatibility”, J Biomed Mater Res Part A: (2015), 103A:2214-2224.
104. Chen S.J., Hu J.l., Zhuo H.T., Yuen C.W., Chan L.K., “Study on the thermal-induced shape memory effect of pyridine containing supramolecular polyurethane”, Polymer (2010), 51:240-248.
105. Yoon S.C., Ratner B. D., “Surface and bulk structure of segmented poly(ether urethanes) with perfluoro chain extenders. 2. FTIR, DSC, and x-ray photoelectron spectroscopic studies”, Macromolecules (1988), 21:2392-2400.
106. Ferraria A.M., Silva J.D.L., Rego A.M.B., “XPS studies of directly fluorinated HDPE: problems and solutions”, Polymer (2003), 44:7241-7249.
107. Li H., Zhang Z.B., Hu C.P., Wu S.S., Ying S.K., “Surface composition and property of film prepared with aqueous dispersion of polyurethaneurea-acrylate including fluorinated block copolymer”, European Polymer Journal (2004), 40:2195-2201.
108. Brandsch R., Bar G., Whangbo M.H., “On the factors affecting the contrast of height and phase images in tapping mode atomic force microscopy”, Langmuir (1997), 13:6349-6353.
109. Sauer B.B., Mclean R.S., Thomas R.R., “Tapping Mode AFM Studies of Nano-Phases on Fluorine-Containing Polyester Coatings and Octadecyltrichlorosilane Monolayers, Langmuir (1998),14:3045-3051.
110. Su S.K., Gu J.H., Lee H.T., Yu S.H., Wu C.L., Suen M.C., (2016) “Effects of an aromatic fluoro-diol and polycaprolactone on the properties of the resultant polyurethanes”, Advances in Polymer Technology (2016), DOI 10.1002/adv.21773
111. Brunette C.M., Hsu S.L., Macknight, W.J., “Hydrogen-Bonding Properties of Hard-Segment Model Compounds in Polyurethane Block Copolymers” Macromolecules (1982), 15:71-77.
112. Gunatillake P., Mayadunne R., Adhikari R., El-Gewely M.R., “Recent developments in biodegradable synthetic polymers”, Biotechnology Annual Review (2006), 12:301-347.
113. Arun Prasath R., Nanjundan S., Pakula T., Klapper M., “Thermal and dynamic mechanical behaviour of calcium containing co-polyurethanes”, Polymer Degradation and Stability (2004), 85:911-923.
114. Mohanty A.K., Misra M., Hinrinchsen G., “Biofibres, biodegradable polymers and biocomposites: An overview” Macromolecular Materials and Engineering (2000), 276-277:1-24.
115. Mohanty A.K., Misra M., Drzal L.T., “Sustainable biocomposites from renewable resources: opportunities and challenges in the green materials world” Journal of Polymers and the Environment (2002), 10:19-26.
116. Scott Prosser R., Luchette P.A., Westerman P.W., “Using O2 to probe membrane immersion depth by 19F NMR”, Proc Natl Acad Sci U S A. (2000), 97:9967-9971.
117. Beamson G., Briggs D., “High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database (Beamson, G.; Briggs, D.)” Journal of Chemical Education(1992), DOI: 10.1021/ed070pA25.5.
118. Ge Z., Zhang X., Dai J., Li W., Luo Y., “Synthesis, characterization and properties of a novel fluorinated polyurethane” European Polymer Journal (2009), 45:530-536.
119. Su S.K., Gu J.H., Lee H.T., Wu C.L., Hwang J.J., Suen M.C., “Synthesis and properties of novel biodegradable polyurethanescontaining fluorinated aliphatic side chains” Journal of Polymer Research (2017), 24:142-160.

無法下載圖示 全文公開日期 2023/06/18 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE