簡易檢索 / 詳目顯示

研究生: 邱漢霖
Han-Lin Chiu
論文名稱: 考量無人機機殼反射效應之無人機載具天線優化設計
Novel Design of Antennas Considering Reflection from UAV Housing
指導教授: 林丁丙
Ding-Bing Lin
口試委員: 廖文照
Wen-Jiao Liao
周錫增
Hsi-Tseng Chou
林丁丙
Ding-Bing Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 83
中文關鍵詞: 螺旋天線雙極天線H-slotsUAV載具天線
外文關鍵詞: spiral antenna, dipole antenna, H-slots, antennas on UAV
相關次數: 點閱:361下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討無人機通訊之天線設計與應用情境下的輻射特性,並且選用1.1~1.5GHz作為工作頻段,有助於無人機進行長距通訊的特性。本研究縮小天線整體尺寸,並且利用無人機的表面特性,與天線的特性相匹配來增加天線的特性與能力,做為系統提升的依據。
    本論文先是討論了多種天線種類,試圖找出最能符合高頻寬、高增益之潛力天線,並且加上UAV載具之大型地平面,能夠對提高增益有顯著效果,最終選出了螺旋天線與雙極天線最更加深入討論。
    螺旋天線本身就具有高頻寬特性,再加上大型地平面之後,增益更是有顯著的提升,並且頻寬也沒有受到影響,因此非常適合拿來當作UAV通訊使用之天線,但其最大缺點為體積過大,在本論文中,將原本對數型式之螺旋天線,修改成為阿基米德型式之螺旋天線,成功大大縮小了天線之尺寸,不過相對於雙極天線,尺寸還是偏大。
    雙極天線本身擁有較高的頻寬,並且加上地平面之後,有助於提高增益,本身尺寸也較小,比起螺旋天線,更適合用於UAV之通訊,本論文更增加了H-slots使雙極天線尺寸更加縮小,使此天線擁有高頻寬、高增益、小尺寸,三大優點於一身。


    This paper discusses the radiation characteristics of the antenna design and application of unmanned aircraft communication, and chooses 1.1~1.5GHz as the working frequency band, which is suitable for long-distance communication. This study reduces the overall dimension of the antenna, and uses the surface characteristics of the UAV to match the characteristics impedance of the antenna in order to increase the performance of the antenna.
    This paper first discussed a variety of antenna types, trying to find the most suitable for high-bandwidth, high-gain potential antenna, and mount on the UAV's large ground plane, can have a significant effect on increasing the gain, and finally selected spiral antennas and dipole antennas.
    The spiral antenna has the characteristics of high frequency bandwidth, after adding a large ground plane, the gain is significantly improved, and the bandwidth is not affected, so it is very suitable for use as an antenna for UAV communication, but its largest disadvantage is the dimension of itself. In this paper, the original log-spiral antenna is modified into an Archimedean spiral antenna, which has successfully reduced the dimension of the antenna, but compared to the dipole antenna, the dimension is still too large.
    The dipole antenna has a higher bandwidth, and after mounted on a ground plane, it helps to increase the gain, and its dimension is also reduced. Compared with the spiral antenna, it is more suitable for UAV communication. This paper adds H- Slots make the dimension of the dipole antenna smaller, so that the antenna has the three advantages of high frequency bandwidth, high gain, and small dimension.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 v 表目錄 ix 第一章 緒論 1 1.1 前言與動機研究 1 1.2 文獻探討 2 1.3 論文架構 4 第二章 天線理論 6 2.1 微帶天線 6 2.2 偶極天線與單極天線 11 2.3 螺旋天線 17 第三章 無人機情境之酬載天線設計 22 3.1 無人機之有效環境建構 22 3.2 微帶補片天線設計 22 3.3 螺旋天線設計 31 3.4 單偶極天線設計 48 第四章 天線實作與量測結果分析 65 4.1 Archimedean spiral天線實作 65 4.2 1-3-1 H-slots dipole天線實作 67 第五章 結論 69 參考文獻 70

    [1] M. S. Sharawi, D. N. Aloi and O. A. Rawashdeh, "Design and Implementation of Embedded Printed Antenna Arrays in Small UAV Wing Structures," in IEEE Transactions on Antennas and Propagation, vol. 58, no. 8, pp. 2531-2538, Aug. 2010.

    [2] N. M. Boev, "Design and implementation antenna for small UAV," 2011 International Siberian Conference on Control and Communications (SIBCON), Krasnoyarsk, 2011, pp. 152-154.

    [3] Z. Liu, Y. Zhang, Z. Qian, Z. P. Han and W. Ni, "A Novel Broad Beamwidth Conformal Antenna on Unmanned Aerial Vehicle," in IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 196-199, 2012.

    [4] Jianling Chen, Junhong Wang, Kin-Fai Tong and A. Al-Armaghany, "A GPS/Wi-Fi dual-band arc-shaped slot patch antenna for UAV application," 2013 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, 2013, pp. 490-493.

    [5] J. Chen, K. Tong and J. Wang, "A triple band arc-shaped slot patch antenna for UAV GPS/Wi-Fi applications," 2013 Proceedings of the International Symposium on Antennas & Propagation, Nanjing, 2013, pp. 367-370.

    [6] S. Dweik, S. Deif, W. Sadeh, O. A. Rawashdeh, D. N. Aloi and M. S. Sharawi, "A planar antenna array with integrated feed network for UAV applications," The 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, 2014, pp. 1855-1858.

    [7] S. S. Siddiq, Karthikeya G.S, T. Tanjavur and N. Agnihotri, "Microstrip dual band millimeter-wave antenna array for UAV applications," 2016 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), Krakow, 2016, pp. 1-4.

    [8] M. Nosrati, A. Jafargholi and N. Tavassolian, "A broadband blade dipole antenna for UAV applications," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, 2016, pp. 1777-1778.
    [9] Z. Gong, S. Ge, T. Guo, Q. Zhang and Y. Chen, "A compact planar 24GHz quasi-Yagi antenna for unmanned aerial vehicle radar applications," 2017 IEEE International Conference on Computational Electromagnetics (ICCEM), Kumamoto, 2017, pp. 104-105.

    [10] A. Samaiyar, A. H. Abdelrahman and D. S. Filipovic, "Simultaneous transmit and receive reflectarray antennas on low cost UAV platforms," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, 2017, pp. 2047-2048.

    [11] Y. Cui, P. Luo, Q. Gong and R. Li, "A Compact Tri-Band Horizontally Polarized Omnidirectional Antenna for UAV Applications," in IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 4, pp. 601-605, April 2019.

    [12] Y. Yan and Y. Jiao, "Omnidirection Vertically Polarized Antenna on Unmanned Aerial Vehicle," 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Hangzhou, China, 2018, pp. 1-3.

    [13] L. Song and Q. Fang, "A Conformal Conical Archimedean Spiral Antenna for UWB Communications," in Chinese Journal of Electronics, vol. 24, no. 2, pp. 402-407, 04 2015.

    [14] F. Ding, F. Zhang and Y. Zhang, "The broadband composite structure spiral antenna with a ladder-shaped backed-cavity," 2011 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Beijing, 2011, pp. 120-123.

    [15] E. S. Sakomura, D. B. Ferreira, I. Bianchi and D. C. Nascimento, "Analysis of Archimedean Spiral Antenna Fed by Hecken and Exponential Microstrip Baluns," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, 2018, pp. 851-852.

    [16] Warren L. Stutzman, Gary A. Thiele, “Antenna Theory and Design” 3rd, John Wiley & sons,INC,1998

    無法下載圖示 全文公開日期 2024/08/31 (校內網路)
    全文公開日期 2024/08/31 (校外網路)
    全文公開日期 2024/08/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE