簡易檢索 / 詳目顯示

研究生: 袁志昇
Chi-Sing Yuen
論文名稱: 生醫應用之 切換器及天線設計
The design of switch and antenna for biomedical application
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 楊成發
Chang-Fa Yang
邱弘緯
Chiu-Hung Wei
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 101
中文關鍵詞: 單刀四擲切換器匹配網絡偶極天線貼片天線EIS探針
外文關鍵詞: SP4T Switch, matching network, dipole antenna, patch antenna, EIS probe
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用台積電CMOS 90 nm 1P9M製程,設計並實作出一個適用於無線生物細胞感測及電刺激平台的多功能單刀四擲切換器。另外以Roger RO4003C 印刷電路板設計並實作出兩個天線,分別適用於無線生物細胞感測及電刺激平台和非侵入式血糖感測系統。
    本研究提出的48.75-70 GHz 多功能單刀四擲切換器為一個阻抗匹配式切換器,其最大的優點為在此頻率上對比其他形式的切換器擁有最小的面積需求。此切換器的在發射機模式下饋入損失為4.48 dB、反射損失為16.65 dB、隔離度為19.24 dB和1dB壓縮點為4 dBm,在接收機模式下饋入損失為4.798 dB、反射損失為15.37 dB、隔離度為20.25 dB和1dB壓縮點為5 dBm,在電刺激模式下後模擬結果可允許 135 mA的直流電流通過。晶片面積為297 μm X 248 μm。
    此外,本研究提出一個具有探針功能的偶極天線分別能幅射60 GHz信號及量測在40 Hz到10 MHz範圍下的阻抗。此偶極天線的量測工作頻率為59.35 – 65 GHz、模擬在空氣和去離子水中的最大增益為3.88 dBi與8.07 dBi和模擬幅射效率為69.8%與59.7%。其探針功能透過測量去離子水、0.9%生理食鹽水及180 mg/dl 葡萄糖水溶液所驗証。
    最後,本研究提出一個適用於非侵入式血糖感測系統的28-30 GHz貼片天線,其天線面積為2.57 X 2.57 mm2,印刷電路板面積為12 X 12 mm2。此貼片天線的工作頻率範圍為27.3 – 32.2 GHz、模擬最大增益在28 GHz和30 GHz時分別為6.32 dBi 和6.33 dBi、模擬方向性比在28 GHz和30 GHz時分別為80.42和68.68及模擬幅射效率在28 GHz和30 GHz時分別為86.7%和87.6%。


    A 48.6-64.9 GHz multifunctional single-pole-four-throw (SP4T) switch is fabricated in TSMC 90nm CMOS 1P9M process. According to the measurement results, the multifunctional switch achieve the insertion loss of 4.48 dB, return loss of 16.65 dB, isolation of 19.24 dB and P1dB of 4 dBm under transmitter mode at 60 GHz and achieve the insertion loss of 4.798 dB, return loss of 15.37 dB, isolation of 20.25 dB and P1dB of 5 dBm under receiver mode at 60 GHz. In the post-layout simulation, the switch can handle maximum DC current 135 mA for electric stimulation. The core area is 297 X 248 μm2.
    A dipole antenna with probe function has been developed for cells impedance measurement. The dipole antenna is fabricated on Roger 4003C two-layer printed circuit board. The 60 GHz signal is radiated by the proposed dipole antenna and the impedance of the cells can be measured at 40 Hz-10 MHz by using the probe function. The proposed dipole antenna achieves the operation frequency range of 59.35 – 65 GHz, simulated radiation efficiency of 69.8% at air and 59.7% at the deionized water, and simulated gain of 3.88 dBi at air and 8.07 dBi at the deionized water. The probe function is verified by the deionized water, 0.9% saline and 180 mg/dl aqueous glucose solution measurement.
    A 28-30 GHz patch antenna is developed for non-invasive glucose sensing system. The patch antenna is fabricated on Roger 4003C two-layer printed circuit board. The patch size is 2.57 X 2.57 mm2. The proposed 28-30 GHz patch antenna measured operation frequency range is 27.3 – 32.2 GHz, the simulated maximum gain is 6.32 dBi at 28 GHz and 6.33 dBi at 30 GHz, simulated front to back ratio is 80.42 at 28 GHz and 68.68 at 30 GHz, and the simulated radiation efficiency is 86.7% at 28 GHz and 87.6% at 30 GHz.

    Table of Contents III List of Figures VI List of Tables XI 摘要 XII Abstract XIII 誌謝 XIV CHAPTER 1 : Introduction 1 1.1 Background 1 1.2 Organization 4 CHAPTER 2 : Multifunctional SP4T switch for cells impedance measurement and electrical stimulation system 5 2.1 Introduction 5 2.2 First Version: 60 GHz SP4T T/R Switch 6 2.2.1 Circuit Design Principle and Structure 6 2.2.2 Simulation result 14 2.2.3 Measured Result 19 2.2.4 Discussion and Conclusion 23 2.3 Second Version: Multifunctional SP4T Switch 24 2.3.1 Circuit Design Principle of Multifunctional SP4T Switch 24 2.3.2 Simulation result 26 2.3.3 Measurement result 33 2.3.4 Discussion and Conclusion 37 CHAPTER 3 : 60 GHz Dipole Antenna with Probe Function 39 3.1 Introduction 39 3.2 Design principle 41 3.2.1 Proposed 60 GHz dipole antenna with probe function 41 3.2.2 Electrochemical Impedance Spectroscopy (EIS) 43 3.2.3 The dipole antenna 47 3.3 Simulation result 48 3.3.1 A 60 GHz antenna with probe function 48 3.4 Measurement result 53 3.4.1 Measurement Setup 53 3.4.2 A 60 GHz dipole antenna with probe function 55 3.5 Discussion and Conclusion 59 CHAPTER 4 : 28-30 GHz Patch Antenna 61 4.1 Introduction 61 4.2 Design principle 61 4.2.1 Proposed 28-30 patch antenna design 61 4.2.2 Patch antenna 62 4.3 Simulation result 63 4.3.1 A 28-30 GHz Patch Antenna 63 4.4 Measurement result 66 4.4.1 Measurement Setup 66 4.4.2 A 28-30 GHz Patch Antenna 67 4.5 Discussion and Conclusion 69 CHAPTER 5 : Conclusion and Future work 71 Reference 72 Appendix: 28/38 Dual Band Patch Antenna 78 6.1 Introduction 78 6.2 Design principle 79 6.2.1 A 28 / 38 GHz Dual-Band Patch Antenna 79 6.3 Simulation result 80 6.3.1 A 28/38 GHz Dual-Band Patch Antenna 80 6.4 Measurement result 83 6.4.1 Measurement Setup 83 6.4.2 A 28 / 38 GHz Dual-Band Patch Antenna 84 6.5 Discussion and Conclusion 85

    [1]. C. M. Ta, E. Skafidas and R. J. Evans, "A 60-GHz CMOS Transmit/Receive Switch," 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Honolulu, HI, 2007, pp. 725-728.
    [2]. J. He, Y. Z. Xiong and Y. P. Zhang, "Analysis and Design of 60-GHz SPDT Switch in 130-nm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, pp. 3113-3119, Oct. 2012.
    [3]. J. He, Y. Z. Xiong and Y. P. Zhang, "60-GHz SP4T switch with ESD protection," 2011 International Symposium on Integrated Circuits, Singapore, 2011, pp. 188-191.
    [4]. B. Cetinoneri, Y. A. Atesal and G. M. Rebeiz, "A miniature DC-70 GHz SP4T switch in 0.13-µm CMOS," 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, 2009, pp. 1093-1096.
    [5]. K. Riaz, C. Zhao, T. S. Lau, S. F. Leung, Z. Fan and Y. K. Lee, "Low-cost Nano-spike Bio-Impedance Sensor (NBIS) without surface functionalization for detection and phenotyping of cancer cells," 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, 2015, pp. 367-370.
    [6]. B. W. Min and G. M. Rebeiz, "A Compact DC-30 GHz 0.13-um CMOS SP4T Switch," 2009 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, San Diego, CA, 2009, pp. 1-4.
    [7]. Y. C. Kuan, Y. K. Lo, Y. Kim, M. C. F. Chang and W. Liu, "Wireless Gigabit Data Telemetry for Large-Scale Neural Recording," in IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 3, pp. 949-957, May 2015.
    [8]. K. Aggarwal et al., "A Millimeter-Wave Digital Link for Wireless MRI," in IEEE Transactions on Medical Imaging, vol. 36, no. 2, pp. 574-583, Feb. 2017.
    [9]. Robinson, Jacob T., Jorgolli, Marsela, Shalek, Alex K., Yoon, Myung-Han, Gertner, Rona S., and Park Hongkun, "Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits," Nature Nanotechnology volume 7, pages 180–184 (2012), http://dx.doi.org/10.1038/nnano.2011.249.
    [10]. Y. K. Lo, C. W. Chang and W. Liu, "Bio-impedance characterization technique with implantable neural stimulator using biphasic current stimulus," 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, 2014, pp. 474-477.
    [11]. M. Nosrati and N. Tavassolian, "A single feed dual-band, linearly/circularly polarized cross-slot millimeter-wave antenna for future 5G networks," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, 2017, pp. 2467-2468.
    [12]. U. Rafique, H. Khalil and Saif-Ur-Rehman, "Dual-band microstrip patch antenna array for 5G mobile communications," 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), Singapore, 2017, pp. 55-59.
    [13]. S. S. Siddiq, Karthikeya G. S, T. Tanjavur and N. Agnihotri, "Microstrip dual band millimeter-wave antenna array for UAV applications," 2016 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), Krakow, 2016, pp. 1-4.
    [14]. “Use of Radio Frequencies Above 40 GHz for New Radio Applications,” FCC 00-161, ET Docket No. 94-124, 65 FR 38431, Federal Communications Commission, 06/21/2000.
    [15]. Autolab Application Note EIS03. 1 July 2011. http://www.ecochemie.nl/download/Applicationnotes/Autolab_Application_Note_EIS03.pdf
    [16]. Bard, and Faulkner, Book Title: Electrochemical Methods, Fundamentals and Applications, Wiley (2000). See Sect. 10.3.
    [17]. Basics of Electrochemical Impedance Spectroscopy, Gamry Instruments. https://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedance-spectroscopy/
    [18]. Warren L. Stutzman, and Gary A. Thiele. 2012. Book Title: Antenna theory and design: 3rd ed.
    [19]. Dongjin Seo, Ryan M. Neely, Konlin shen, Utkarsh Singhal, Elad Alon, Jan M. Rabaey, Jose M. Carmena, and Michel M. Maharbiz, “Wireless Recording in the peripheral Nervous System with Ultrasonic Neural Dust” Seo et al., 2016, Neuron 91, 529-539, August 3, 2016
    [20]. C. Mora Lopez et al., "A Neural Probe With Up to 966 Electrodes and Up to 384 Configurable Channels in 0.13 μm SOI CMOS," in IEEE Transactions on Biomedical Circuits and Systems, vol. 11, no. 3, pp. 510-522, June 2017.
    [21]. A. S. Herbawi, L. Kiessner, O. Paul and P. Rüther, "High-density CMOS neural probe implementing a hierarchical addressing scheme for 1600 recording sites and 32 output channels," 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, 2017, pp. 20-23.
    [22]. J. M. Kim et al., "A novel MEMS probe array for the biological measurement," IEEE MTT-S International Microwave Symposium Digest, 2005., 2005, pp. 4 pp.-.
    [23]. F. Seoane, K. Lindecrantz, T. Olsson, I. Kjellmer, A. Flisberg and R. Bagenholm, "Brain electrical impedance at various frequencies: the effect of hypoxia," The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, 2004, pp. 2322-2325.
    [24]. Chen, Lisa Y., Parizi, Kokab B., Kosuge, Hisanori, Milaninia, Kaveh M., McConnell, Michael V., Wong, H.-S. Philip, Poon, Ada S. Y., “Mass fabrication and delivery of 3D multilayer μTags into living cells.” Scientific Reports 2013, 3, 2295. http://dx.doi.org/10.1038/srep02295
    [25]. C. H. Chen, M. W. Huang, W. T. Hsiao, K. C. Huang and T. S. Liao, "Laser fabrication of biomedical sensor for AC impedance analysis," 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, Pisa, 2015, pp. 1460-1464.
    [26]. J. Guo, Y. Kang and Y. Ai, "Disposable microfluidic channel with dielectric layer on PCB for AC sensing of biological cells," in IEEE Transactions on Dielectrics and Electrical Insulation, vol. 22, no. 3, pp. 1439-1443, June 2015.
    [27]. Z. Cheng, X. Xie and Y. Xu, "Microchip-based impedance flow cell analyzer," 2015 IET International Conference on Biomedical Image and Signal Processing (ICBISP 2015), Beijing, 2015, pp. 1-7.
    [28]. S. Zheng, M. S. Nandra and Y. C. Tai, "Human Blood Cell Sensing with Platinum Black Electroplated Impedance Sensor," 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, 2007, pp. 520-523.
    [29]. S. Zheng, M. S. Nandra, V. Shih, W. Li and Y. C. Tai, "Resonance Induced Impedance Sensing of Human Blood Cells," TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, 2007, pp. 1741-1744.
    [30]. Burke P., and Rutherglen C. “Towards a single-chip, implantable RFID system: is a single-cell radio possible?” Biomed Microdevices (2010) 12: 589. https://doi.org/10.1007/s10544-008-9266-4
    [31]. S. Guan, J. Gu, Z. Shen, J. Wang, Y. Huang and A. Mason, "Wireless powered implantable bio-sensor tag system-on-chip for continuous glucose monitoring," 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS), San Diego, CA, 2011, pp. 193-196.
    [32]. E. G. Kilinc et al., "A System for Wireless Power Transfer and Data Communication of Long-Term Bio-Monitoring," in IEEE Sensors Journal, vol. 15, no. 11, pp. 6559-6569, Nov. 2015.
    [33]. Xiaoning Yuan, Derya E. Arkonac, Pen-hsiu Grace Chao, and Gordana Vunjak-Novakovica, “Electrical stimulation enhances cell migration and integrative repair in the meniscus,” Sci. Rep. 2014, 1, 3674. http://dx.doi.org/10.1038/srep03674
    [34]. P. H. Siegel, A. Tang, G. Virbila, Y. Kim, M. C. F. Chang and V. Pikov, "Compact non-invasive millimeter-wave glucose sensor," 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, 2015, pp. 1-3.
    [35]. Lei Chen, Dianna J. Magliano, and Paul Z. Zimmet, “The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives,” Nature Reviews Endocrinology, vol. 8, pp. 228-36, 2012.
    [36]. "About diabetes". World Health Organization. Archived from the original on 31 March 2014. Retrieved 4 April 2014
    [37]. D. J. Jung, J. N. Hansen and K. Chang, "60 GHz dipole antenna for short range indoor communication systems," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, Chicago, IL, 2012, pp. 1-2.
    [38]. Y. C. Chiou, R. A. Alhalabi and G. M. Rebeiz, "High-efficiency 60 GHz dipole-box antennas," 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, ON, 2010, pp. 1-4.
    [39]. S. Saha et al., "Evaluation of the sensitivity of transmission measurements at millimeter waves using patch antennas for non-invasive glucose sensing," 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, 2016, pp. 1-4.
    [40]. Jinjin Shao, Fan Yang, Fen Xia, Qingfeng Zhang and Yifan Chen, "A novel miniature spiral sensor for non-invasive blood glucose monitoring," 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, 2016, pp. 1-2.
    [41]. N. Al Islam, A. T. Abrar, U. Arafat, A. J. Islam and R. Hoque, "Design and performance measurement of an in-body implantable miniaturized Slot Dipole rectangular patch antenna for biomedical applications," 2015 International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, 2015, pp. 59-63.
    [42]. V. Komarov, S. Wang, and J. Tang, “Permittivity and Measurements,” Encyclopedia of RF and Microwave Engineering, ISBN 0-471-27053-9, pp.3693-3711
    [43]. Gordon Minru Xiong, Anh Tuan Do, Jun Kit Wang, Chee Leong Yeoh, Kiat Seng Yeo, and Cleo Choong, “Development of a miniaturized stimulation device for electrical stimulation of cells,” Journal of Biological Engineering (2015) 9:14, DOI 10.1186/s13036-015-0012-1
    [44]. Nina Tandon, Christopher Cannizzaro, Pen-Hsiu Grace Chao, Robert Maidhof, Anna Marsano, Hoi Ting Heidi Au, Milica Radisic, and Gordana Vunjak-Novakovic, “Electrical stimulation systems for cardiac tissue engineering,” Nat Protoc. 2009; 4(2): 155–173. doi:10.1038/nprot.2008.183.

    無法下載圖示 全文公開日期 2023/08/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE