簡易檢索 / 詳目顯示

研究生: 周芳宇
Fang-Yu Zhou
論文名稱: 應用於非侵入式血糖偵測系統之 28-30 GHz接收器前端電路
A 28-30 GHz Receiver Front-end Circuit for Non-Invasive Glucose Sensing System
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 邱弘緯
Hung-Wei Chiu
楊成發
Chang-Fa Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 68
中文關鍵詞: 低雜訊放大器微混頻器單晶微波積體電路非侵入式血糖偵測系統
外文關鍵詞: low noise amplifier, micromixer, monolithic microwave integrated circuit, non-invasive glucose sensing system
相關次數: 點閱:340下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用TSMC 90-nm CMOS製程,設計並實作一個應用於非侵入式血糖偵測之28-30 GHz接收器前端電路。此前端電路由低雜訊放大器以及混頻器組成。低雜訊放大器在頻率為29 GHz的功率增益為19.43 dB,且雜訊指數為6 dB。操作電壓和電流消耗分別為1.2 V和21.9 mA。由於低雜訊放大器串接混頻器,所以低雜訊放大器的輸出阻抗以及混頻器的輸入阻抗皆達到50 Ω。混頻器執行從28-30 GHz頻率到10MHz的頻率轉換。模擬結果表示,混頻器的轉換增益為 2-3 dB,三階輸入截止點為 – 7 dBm,雜訊指數為26 dB。混頻器採用1.2 V的操作電壓,電流消耗為0.83 mA。


A 28-30 GHz RF front-end circuit for non-invasive glucose sensing system is designed and fabricated in a standard TSMC 90nm CMOS process. The LNA achieves the power gain of 19.43 dB at 29 GHz and the minimum noise figure of 6 dB at 29 GHz. The supply voltage and current consumptions are 1.2 V and 21.9 mA, respectively. Based on the micro-mixer, the impedance between LNA output and mixer input of 50 Ω is achieved.
The mixer performs frequency translation from the 28-30 GHz band to 10 MHz. Simulation results show the conversion gain of 2~3 dB, the IIP3 ¬of -7¬¬ dBm and the NF of 26 dB can be achieved. Operating from the 1.2-V supply, the mixer consumes the current of 0.83 mA.

Table of Contents 摘要 I Abstract I 誌謝 I Table of Contents II List of Figures IV List of Tables VII Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Organization of the Thesis 2 Chapter 2 System Architecture 3 Chapter 3 A 28-30 GHz low noise amplifier in 90-nm CMOS Technology 12 3.1 Circuit Design 13 3.1.1. Circuit Architecture 13 3.1.2. EM simulation 15 3.1.3. Inter-stage Stability 16 3.1.4. Chip Layout and Die Photo 16 3.2 Simulation result 18 3.2.1. S Parameter 18 3.2.2. Noise Figure 21 3.2.3. Linearity 22 3.2.4. Stability analysis 26 3.3 Measurement Results 30 3.3.1. S Parameter 30 3.3.2. Noise Figure 33 3.3.3. Linearity 34 Chapter 4 A 28-30 GHz Mixer in 90-nm CMOS Technology 38 4.1 Circuit Design 39 4.2 Simulation Results 42 4.3.1. Voltage Conversion Gain 42 4.3.2. Linearity 46 4.3.3. Noise and NF 49 4.3 Measurement Results 51 Chapter 5 Conclusion 54 REFERENCE 55

[1] P. H. Siegel, A. Tang, G. Virbila, Y. Kim, M. C. F. Chang and V. Pikov, "Compact non-invasive millimeter-wave glucose sensor," 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, 2015, pp. 1-3
[2] Vashist, S. K. Non-invasive glucose monitoring technology in diabetes management: A review. Analytica chimica acta 750, 16–27 (2012).
[3] Tamada, J. A. et al. Noninvasive glucose monitoring - Comprehensive clinical results. Jama-J Am Med Assoc 282, 1839–1844GHJKHKL
[4] Alexeeva, N. V. & Arnold, M. A. Impact of tissue heterogeneity on noninvasive near-infrared glucose measurements in interstitial fluid of rat skin. Journal of diabetes science and technology 4, 1041–1054 (2010).
[5] Cho, O. K., Kim, Y. O., Mitsumaki, H. & Kuwa, K. Noninvasive measurement of glucose by metabolic heat conformation method. Clinical Chemistry 50, 1894–1898 (2004).
[6] S. C. Shin, Ming-Da Tsai, Ren-Chieh Liu, K. Y. Lin and Huei Wang, "A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 μm CMOS technology," in IEEE Microwave and Wireless Components Letters, vol. 15, no. 7, pp. 448-450, July 2005.
[7] D. K. Shaeffer and T. H. Lee, "A 1.5-V, 1.5-GHz CMOS low noise amplifier," in IEEE Journal of Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997.
[8] S. C. Shin, Ming-Da Tsai, Ren-Chieh Liu, K. Y. Lin and Huei Wang, "A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 μm CMOS technology," in IEEE Microwave and Wireless Components Letters, vol. 15, no. 7, pp. 448-450, July 2005. 1
[9] M. A. Masud, H. Zirath, M. Ferndahl and H. O. Vickes, "90 nm CMOS MMIC amplifier," 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers, 2004, pp. 201-204. 1
[10] B. Gilbert, "The MICROMIXER: a highly linear variant of the Gilbert mixer using a bisymmetric Class-AB input stage," in IEEE Journal of Solid-State Circuits, vol. 32, no. 9, pp. 1412-1423, Sep 1997.
[11] Y. L. Wei, S. S. H. Hsu and J. D. Jin, "A Low-Power Low-Noise Amplifier for K-Band Applications," in IEEE Microwave and Wireless Components Letters, vol. 19, no. 2, pp. 116-118, Feb. 2009.
[12] H. C. Yeh, C. C. Chiong, S. Aloui and H. Wang, "Analysis and Design of Millimeter-Wave Low-Voltage CMOS Cascode LNA With Magnetic Coupled Technique," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 12, pp. 4066-4079, Dec. 2012.
[13] F. Ellinger, “26–42 GHz SOI CMOS low noise amplifier,” IEEE J.Solid-State Circuits, vol. 39, no. 3, pp. 522–528, Mar. 2004.
[14] Z. Li, J. Cao, Q. Li and Z. Wang, "A wideband Ka-band receiver front-end in 90-nm CMOS technology," 2013 European Microwave Integrated Circuit Conference, Nuremberg, 2013, pp. 5-8.
[15] B. Ding, S. Yuan, C. Zhao, L. Tao and T. Tian, "A Ka band FMCW Transceiver front-end with 2GHz bandwidth in 65-nm CMOS," in IEEE Transactions on Circuits and Systems II: Express Briefs.

無法下載圖示 全文公開日期 2023/08/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE