簡易檢索 / 詳目顯示

研究生: 沙惟能
Saravanan - Adhimoorthy
論文名稱: 利用偏壓輔助成核成長超奈米鑽石薄膜研製以高導電鑽石為基底光電感測元件之研製
Bias enhanced nucleation and growth of ultra nanocrystalline diamond films and development of multifunctional optoelectronics devices based on highly conductive diamond materials.
指導教授: 黃柏仁
Bohr-Ran Huang 
口試委員: 周賢鎧
Shyan-kay Jou
柳克強
K.C Leou
朱瑾
Jinn P. Chu
林諭男
I-Nan Lin
林啟瑞
C.R.Lin
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 149
中文關鍵詞: 鑽石偏壓輔助沉積氧化鋅場發射特性超奈米鑽石薄膜
外文關鍵詞: microwave plasma-enhanced chemical vapor deposit, electron field emission properties, bias-enhanced growth process, ultrananocrystalline diamond films, electrical conductivity of UNCD films, diamond photodetectors, and Lateral EFE emitters.
相關次數: 點閱:516下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

利用偏壓輔助微波電漿沉積系統沉積高導電性奈米鑽石薄膜,量測場發特性可得到非常好的turn on 電壓。氧化鋅有優良的紫外光感測,將超奈米鑽石和氧化鋅奈米柱可以提升其紫外光感測


The aim of this research is to synthesize the highly conducting ultrananocrystalline diamond (UNCD) materials for multifunctional optoelectronic device applications. Those diamond based devices exhibits ultrahigh electrical properties in vacuum microelectronics. Microstructural evolution of UNCD films and their optoelectronic properties using bias-enhanced nucleation and growth (BEN-BEG) process was systematically investigated. The BEN-BEG processes were found to be an effective diamond nucleation technique to enhance the electrical properties and stability of UNCD films. Initially, the UNCD films were synthesized in CH4/Ar plasma using negative of -200 V by a microwave plasma-enhanced chemical vapor deposition (MPE-CVD), where the bias grown UNCD films possesses enhanced electron field emission (EFE) properties and plasma illumination (PI) properties. Also the UNCD films were developed as superior UV photodetector.

Later, we systematically investigated the growth behavior of nanocrystalline diamond (NCD) films in CH4/Ar/H2 plasma under different positive and negative bias voltages, and their superior EFE properties were attained. On the other hand, we have executed the bias-enhanced plasma post-treatment (bept) technique in the two-step MPE-CVD process to form hybrid structure. The CH4/Ar/H2 plasma were performed on UNCD films, which generates the coalescence of ultra-small diamond grains. The combination of bept process and the Au-coated Si substrate to achieve high performance EFE emitters and microplasma (MP) device with long lifetime, which is superior to that of other nano-structured diamond films.

Besides, the addition of proper amount of nitrogen (N2) in reacting gases can increase the sp2 bonding structure, which efficiently raise the electrical conductivity of electrons. We utilized the application of BEG process in CH4/N2 plasma to enhance the electrical conductivity of UNCD films using MPE-CVD system. The nanosized diamond grains with needle-like structures are the most promising candidates for the superior electron emission, exclusively when they are encased in graphene-like layers. The salient feature of such materials with unique granular structure is that their conductivity and EFE properties can be tuned in a wide range. Furthermore, diamond-based nano-carbon composite (d/NCC) materials were we synthesized at low temperature (~450℃) using CH4/N2 plasma with application of bias voltage with small amount of H2 addition. Such a d/NCC material exhibits excellent electron conductivity and EFE properties, which is superior to those achievable in other kind of conducting diamond films. Most importantly, the electrical properties of such a d/NCC material can be tuned over a wide range in a systematic manner, rendering this material with greater potential for practical applications.
Finally, the high performance EFE materials were designated and employed in the fabrication of highly efficient vacuum EFE (VEFE) devices. Hence, we fabricated VEFE devices using negative biased ultrananocrystalline-diamond graphite multifinger laterally integrated cathode/anode materials (NBG-UNDG-ML-EFE). The NBG-UNDG-ML-EFE device was utilized in electron field emitter and display applications. A new kind of microplasma devices is being fabricated using NBG-UNDG multifinger cathode configurations and reported. On the other hand, NBG-UNDG-ML-EFE anode/cathode materials used in UV photodetection. This fabrication method is economic and simple, moreover the vacuum devices exhibits ultrahigh electrical properties than as grown materials and other materials.

Abstract…………………………………………………………………………… i Acknowledgement……………………………………………………………………… iii Contents………………………………………………………………………………….. iv Figure list…………………………………………………………………………………. ix Table list………………………………………………………………………………….. xiii Chapter 1 Introduction 1.1 Overview of cold cathode materials in vacuum microelectronic devices…….......................................................1 1.2 Motivation………………………………………………………………………….......... 3 1.3 Organization of this dissertation………………………………………………… 4 Chapter 2 Literature review 2.1 Introduction of diamond materials…………………………….…………………… 5 2.1.1 Diamond material synthesis……………………………………………………… 7 2.1.2 Diamond material nucleation techniques…………………………………………10 2.1.2a Bias-enhanced nucleation and growth (BEN-BEG) technique…….. 11 2.1.3 Growth of UNCD films and electrically conducting UNCD films…………….... 12 2.1.4 Principle of electron emission in vacuum…………...…………………………… 14 2.1.5 Electron field emission from diamond materials……………………...……… 16 2.1.6 Fabrication of diamond based lateral EFE emitters…………………...……18 2.2 Cold cathode field-emission display and other applications……………………… 19 2.3 UV photodetector applications……………………………………………………… 21 2.4 Microplasma applications……………………………………………………………..22 2.4 Aim of this investigations……………………………………………………………. 22 Chapter 3 Experimental procedures and characterizations 3.1 Synthesis of diamond materials……………………………………………………... 25 3.1.1 Synthesis of NCD films using with and without BEG……...……………… 25 3.1.2 Synthesis of UNCD films using with and without BEG………...………… 25 3.1.3 Synthesis of Hybrid (HiD) films using with and without BEG………26 3.1.4 Synthesis of highly conducting diamond materials using BEG process................................ 27 3.1.5 Synthesis of vertically aligned ZnO nanorods………………...……………… 27 3.2 Characterizations of diamond materials and ZnO materials…………………….. 28 3.2.1 FESEM analyses…………………………………………………………………. 28 3.2.2 Raman investigations………...…………………………………………………... 28 3.2.3 Bonding structure analysis (XPS, SIMS and NEXAFS)………………...…… 28 3.2.4 Optical emission Spectra (OES)…………………...…………………………….. 29 3.2.5 Transmission electron microscopy (TEM)………...…………………………….. 29 3.2.6 Electrical properties of diamond materials……………...………………………. 29 3.3 Fabrication and characterizations of lateral electron field emitters……………… 30 3.4 Fabrication and characterizations of microplasma devices……..………………… 31 3.5 Fabrication and characterizations of ZnO/UNCD based photodetectors… 31 Chapter 4 Part I: Growth of nanocrystalline diamond films via positive/negative bias enhanced nucleation and growth processes for improving their electron field emission properties 4.1. Research background……………………………………………………………… 33 4.2. Result and discussion……………………………………………………………… 34 4.2.1 Characterization of BEG-NCD films…………………………………………... 34 4.2.2 EFE behaviors of BEG-NCD films…………………………………...……….. 37 4.3 Summary…………………………………………………………………………… 40 Part II: Bias-enhanced Nucleation and Growth Processes for Ultrananocrystalline Diamond Films in Ar/CH4 Plasma and Their Enhanced Plasma Illumination Properties 4. 4 Research background……………………………………………………………………. 41 4.5 Result and discussion………………………………………………………………. 42 4.5.1 Characterization of BEG-UNCD films…………………………………………. 42 4.5.2 EFE properties of BEG-UNCD films………………...………………………… 46 4.5.3 TEM microstructural analyses for the UNCD cathode materials………………. 48 4.6. Summary……………………………………………………………………………. 54 Chapter 5 Part I: Bias-enhanced post-treatment process for enhancing the electron field emission properties of ultrananocrystalline diamond films 5.1 Research background………………………………………………………………... 55 5.2 Result and discussion………………………………………………………………… 56 5.2.1 Characterization of BEG-HiD films………………………………………………56 5.2.2 EFE behaviors of BEG-HiD films………………………………………………… 60 5.2.3 TEM Microstructure evolution of beg-HiD films…………………………………. 61 5.3 Summary…………………………………………………………........ 64 Part II: Heterogranular Structured DiamondGold Nanohybrids: 5.4 Research background………………………………………….... 65 5.5 Result and discussion………………………………………………………………. 65 5.5.1 Characterization of BEG-HiD/Au-Si films………………………………………... 65 5.5.2 EFE properties of BEG-HiD/Au-Si films………………………………………….. 67 5.5.3 TEM microstructural analyses for the BEG-HiD/Au-Si films materials………….. 70 5.6 Summary……………………………………………………………………………. 71 Chapter 6 Part I: Highly Conductive Diamond Films with Enhanced Electron Field Emission and Microplasma Illumination Properties 6.1 Research background………………………………………………………………... 72 6.2 Result and discussion………………………………………………………………… 73 6.2.1 Characterization of BEG-N/UNCD diamond films……………………………… 73 6. 2.2 Electrical properties of BEG-N/UNCD diamond films…..………………… 76 6.2.3 Microstructural Evolution of DGH films...…………………………………….... 80 6.3 Summary……………………………………………………………………………… 82 Part II: Low temperature synthesis of diamond-based nano-carbon composite materials with high electron field emission properties 6.4 Research background………………………………………………………………... 83 6.5 Result and discussion………………………………………………………………… 84 6.5.1 Characterization of d/NCC materials……………………………………………. 84 6.5.2 Electrical properties of d/NCC materials………………………………………… 88 6.6 Summary………………………………………………………………………..……. 92 Chapter 7 Part I: Multifunctional devices based on highly conducting diamond material (NBG-UNDG) based on lateral multi finger configuration 7.1 Research background……………………………………………….………………. 93 7.2 Material characterizations…………………………………………………….………94 7.3 Laterally integrated NBG-UNDG multifingers for EFE applications………………97 7.4 Laterally integrated NBG-UNDG multifingers for Microplasma applications………......................…98 7.5 Laterally integrated NBG-UNDG multifingers for photodetector applications………...100 7.6 Summary……………………………………………………………………………...105 Part II: High performance photodetector based on ZnO/UNCD hybrid 7.7 Research background……………………………………………………………….107 7.8 Result and discussion………………………………………………………………..108 7.8.1 Characterization ZnO/UNCD hybrid………………………………………...108 7.8.2 Photoresponse properties of ZnO/UNCD Hybrid……………………………111 7.9 Summary……………………………………………………………………………116 Chapter 8 8.1 Concluding remarks…………………………………………………………………. 117 8.2 Future work………………………………………………………………………….. 120 References………………………………………………………………………………… 121 List of publication………………………………………………………………………... 134

[1] C. A. Spindt and K. R. Shoulders, “Research in micron-size field-emission tubes”, IEEE 1966 Eight Conference on Tube Techniques, p.143 (1966).

[2] C. A. Spindt, “A Thin Film Field Emission Cathode”, J. Appl. Phys., vol. 39, p. 3504 (1968).

[3] H.F. Gray, G.J. Campisi, and R.F. Greene, “A vacuum field effect transistor using silicon field emitter arrays”, Proc. IEDM 86, Los Angeles, CA, p. 776 (1986).

[4] C. A. Spindt, C. E. Holland, and R. D. Stowell, “Field emission cathode array development for high current density applications”, Proc. 29th International Field Emission Symposium, p.119 (1982).

[5] P. K. Bachmann, V. Van Elsbergen, D. U. Wiechert, G. Zhong, J. Robertson, CVD Diamond: A Novel High γ-coating for Plasma Display Panels? Diamond Relat. Mater. 10, 809817 (2001).

[6] http://www.marketresearch.com/Technology-Media-c1599/Computer-Hardware-Networking-c73/Flat-Panel-Display-c936/-2016.

[7] W. P. Kang, J. L. Davidson, A. Wisitsoraat, D. V. Kerns, S. Kerns, Recent Development of Diamond Microtip Field Emitter Cathodes and Devices J. Vac. Sci. Technol. 19 936-941 (2001).

[8] M. V. Geis, N. N. Efremow, K. E. Krohn, J. C. Twichell, T. M. Lszczarz, R. Kalish, J. Greer, M. D. Tabat, A New Surface Electron-emission Mechanism in Diamond Cathodes Nature, 393 431−435 (1998).

[9] C. A. Spindt and I. Brodie, “Molybdenum field emitter array”, IEDM 96 Technical Digest, S.F., CA, 8-11 (1996).

[10] I. Brodie, “Physical Considerations in Vacuum Microelectronics Devices”, IEEE Trans. on Electron Devices, vol. 36, p. 2641 (1989).

[11] B. C. Djubua and N. N. Chubun, “Emission properties of Spindt-type cold cathodes with different emission cone material”, IEEE Trans. on Electron Devices, vol. 38, p. 2314 (1991).

[12] F. Ducroquet, P. Kropfeld, O. Yaradou, and A. Vanoverschelde, “Fabrication and emission characteristics of GaAs tip and wedge-shaped field emitter arrays by wet etching,” J. Vac. Sci. Technol. B, 162, 78 (1998).

[13] A. Fernandez, H.T. Nguyen, J.A. Britten, R.D. Boyd, M.D. Perry, D.R. Kania, and A.M. Hawryluk, “Use of Interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B, 152,729 (1998).

[14] J.R. Jessing, H.R. Kim, D.L. Parker, and M.H. Weichold, “Fabrication and characterization of gated porous silicon cathode field emission arrays,” J. Vac. Sci. Technol. B, 162, 777 (1998).

[15] C. W. Oh, C. G. Lee, B. G. Park, J. D. Lee, and J. H. Lee, “Fabrication of metal field emitter arrays for low voltage and high current operation”, J. Vac. Sci. Technol. B, vol. 16, p. 807 (1998).

[16] S. Kang, J.H. Lee, B.G. Yu, K.I. Cho, and H.J. Yoo, “Novel structure of silicon field emission cathode with sputtered TiW for gate electrode,” J. Vac. Sci. Technol. B, 161, 242 (1998).

[17] C. Bandis and B. B. Pate, “Simultaneous field emission and photoemission from diamond”, Appl. Phys. Lett., 69, 366 (1996).

[18] H. Zanin, P.W. May, M.H.M.O. Hamanaka, E.J. Corat, Field emission from hybrid diamond-like carbon and carbon nanotube composite structures, ACS Appl. Mater. Interfaces. 23 12238–12243 (2013).

[19] G. Chen, D.H. Shin, S. Kim, S. Roth, C.J. Lee, Improved field emission stability of thin multiwalled carbon nanotube emitters, Nanotechnology. 1, 21 (2010).

[20] S. Ijima, Helical Microtubules of Graphitic Carbon. Nature, 354, 56−58 (1991).
[21] http://en.wikipedia.org/wiki/File:Eight_Allotropes_of_Carbon.png
[22] Wei Zhu, Vacuum Microelectronics, Wiley Interscience (2001).

[23] A. Saravanan, B. R. Huang, C. J. Yeah, K. C.Leou, and I. N. Lin, Low temperature synthesis of diamond-based nano-carbon composite materials with high electron field emission properties Appl. Phys. Lett 106, 231602 (2014).

[24] X. Xiao, O. Auciello, H. Cui, D.H. Lowndes, V.L. Merkulov, J. Carlisle, Synthesis and field emission properties of hybrid structures of ultrananocrystalline diamond and vertically aligned carbon nanofibers, Diamond Relat. Mater. 15, 244–247 (2006).

[25] K. A. Dean, T. P. Burgin, B. R. Chalamala, Evaporation of Carbon Nanotubes during Electron Field Emission. Appl. Phys. Lett., 79, 1873−1875 (2001).
[26] S. Orlanducci, V. Guglielmotti, I. Cianchetta, V. Sessa, E. Tamburri, F. Toschi, M.L.Terranova, M. Rossi, One-step growth and shaping by a dual-plasma reactor of diamond nanocones arrays for the assembling of stable cold cathodes, Nanosci.Nanotechnol. Lett. 4 (3) 338–343 (2012).

[27] J. van der Weide, Z. Zhang, P. K. Baumann, M.G. Wemnsell, J. Bernholc, and R. J. Nemanich, “Negative-electron affinity effects on the diamond (100) surfaces”, Phys. Rev. B, vol. 50, p. 5803, (1994).

[28] C. Bandis and B. B. Pate, “Photoelectric emission form negative-electron-affinity diamond (111) surfaces: exciton breakup versus conduction band”, Phys. Rev. B, 52, 16, 12056 (1995).

[29] J. Liu, V.V. Zhirnov, A.F. Myers, G.J. Wojak, W.B. Choi, J.J. Hren, S.D. Wolter, M.T. McClure, B.R. Stoner, and J.T. Glass, “Field emission characteristics of diamond coated silicon field emitter,” J. Vac. Sci. Technol. B, 13, 2422 (1994).

[30] S.T. Lee, Z. Lin, and X. Jiang, “CVD diamond films: nucleation and growth”, Materials Science and Engineering, 25 123, (1999).

[31] M. W. Geis, J. A. Gregory, and B.B. Pate, “Capacitance-voltage measurements on metalSiO2-diamond structures fabricated with (100)- and (111)-oriented substrates”, IEEE Trans. Electron Devices, 38, 619-626 (1991).

[32] M .W. Geis, N. N. Efremow, J. D. Woodhouse, M. D. Mcaleese, M. Marchywka, D. G. Socker, J. F. Hochedez,. Diamond Cold Cathode. IEEE Electron Device Lett. 12, 456−459 (1991).

[33] R. J. Nemanich, P. K. Baumann, and J. Van der Weide, “Diamond negative electron affinity surfaces, structures and devices”, Proc. Applied Diamond Conference, 1, 17, (1995).

[34] J. Liu, V. V. Zhirnov, A. F. Myers, G. J. Wojak, W. B. Choi, J. J. Hren, S. D. Wolter, M. T. McClure, B. R. Stoner, and J. T. Glass, “Field emission characteristics of diamond coated silicon field emitter”, J. Vac. Sci. Technol. B, vol. 13, p. 422 (1994).

[35] D. Pradhan and I. N. Lin, Grain-Size-Dependent Diamond−Nondiamond Composite Films: Characterization and Field-Emission Properties, ACS Appl. Mater. Interfaces, 1, 1444 (2009).

[36] B. V. Spitsyn, L. L. Bouilov, B. V. Derjaguin, Vapor Growth of Diamond on Diamond and Other Surfaces. J. Cryst. Growth. 52, 219226 (1981).

[37] S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2. J. Appl. Phys. 90, 118 (2001).
[38] H. F. Cheng, H. Y. Chiang, C. C. Horng, H. C. Chen, C. S. Wang, and I.N. Lin, Enhanced electron field emission properties by tuning the microstructure of ultrananocrystalline diamond film, J. Appl. Phys. 109, 033711 (2011).

[39] Y. C. Chen, X. Y. Zhong, A. R. Konicek, D. S. Grierson, N. H. Tai, I. N. Lin, Synthesis and Characterization of Smooth Ultrananocrystalline Diamond Films via Low Pressure Bias-enhanced Nucleation and Growth J. Appl. Phys., 92, 133113 (2008).

[40] P. T. Joseph, N. H. Tai, H. Niu, U. A. Palnitkar, W. F. Pong, H. F. Cheng, I. N. Lin. Structural Modification and Enhanced Field Emission on Ultrananocrystalline Diamond Films by Nitrogen Ion Implantation Diamond Relat. Mater., 17, 18121816 (2008).

[41] T. D. Corrigan, A. R. Krauss, D. M. Gruen, O. Auciello, and R. P. H. Chang, Low Temperature Growth of Ultra-Nanocrystalline Diamond on Glass Substrates for Field Emission Applications, Mater. Res. Soc. Symp. Proc. 593, 233 (2000).

[42] Y. L. Orlov, The Mineralogy of Diamond, John Wiley & Sons, New York (1977).

[43] B. V. Spitsyn, L. L. Bouiov, B. V. erjaguin, Vapor Growth of Diamond on Diamond and Other Surfaces J. Cryst. Growth., 52, 219226 (1981).

[44] S.T. Lee, Z. Lin, and X. Jiang, “CVD diamond films: nucleation and growth”, Materials Science and Engineering, 25, 123 (1999).

[45] J.E. Field, “The properties of diamond”, Academic Press, London, (1979).

[46] P.W. May. “Diamond thin films: a 21st-century material”, Phil. Trans. R. Soc. Lond. A, 358, 473 (2000).

[47] H. Liu, D.S. Dandy. Studies on Nucleation Process in Diamond CVD: An Overview of Recent Developments Diamond Relat. Mater., 4, 11731188 (1995).

[48] K. Tamaki, Y. Watanabe, Y. Nakamura, and S. Hirayama, “Nucleation of diamond particles by hot filament chemical vapour deposition”, Thin Solid Films, 236, 115 (1993).

[49] D. Kim, H. Lee, and J. Lee, “Effect of reaction pressure on the nucleation behaviour of diamond synthesized by hot-filament chemical vapour deposition”, J. Mater. Sci., 28, 6704 (1993).

[50] W. G. Eversole, synthesis of diamond, U.S. Patent, 188, 17 (1962).

[51] W.R.L. Lambrecht, C.H. Lee, B. Segall, and J.C. Angus, “Diamond nucleation by hydrogenation of the edges of graphitic precursors”, Nature, 6438, 60 (1993).

[52] A. N. Obraztsov, I. Yu. Pavlovsky, H. Okushi, and H. Watanabe, “Direct measurement of CVD diamond film thermal conductivity by using photoacoustics”, Diamond Relat. Mater., vol. 7, p. 1513 (1998).

[53] T. D. Corrigan, A. R. Krauss, D. M. Gruen, O. Auciello, R. P. H. Chang, Low Temperature Growth of Nanocrystalline Diamond Films on Glass Substrates for Field Emission Applications. Mater. Res. Soc. Symp. Proc., 593, 233−236 (2000).

[54] Y.H. Shing, F.S. Pool, and D.H. Rich, “Low-pressure microwave plasma nucleation and deposition of diamond films”, Thin Solid Films, 212, 150 (1992).

[55] T.D. Corrigan, D.M. Gruen, A. R. Krauss, P. Zapol, and R. P. H. Chang, “The effect of nitrogen addition to Ar/CH4 plasmas on the growth, morphology and field emission of ultrananocrystalline diamond”, Diamond Relat. Mater., vol. 11, pp. 43-48 (2002).

[56] P.A. Dennig and D.A. Stevenson, “Influence of substrate topography on the nucleation of diamond thin films”, Appl. Phys. Lett., 59, 1562 (1991).

[57] J. Singh, “Nucleation and growth mechanism of diamond during hot-filament chemical vapour deposition”, J. Mater. Sci., 29 10 2761 (1994).

[58] K.V. Ravi and C.A. Koch, “Nucleation enhancement of diamond synthesized by combustion flame techniques”, Appl. Phys. Lett., 57, 348 (1990).

[59] D.N. Belton and S.J. Schmieg, “Nucleation of chemically vapor deposited diamond on platinum and nickel substrates”, Thin Solid Films, 212, 68 (1992).

[60] M.A. George, A. Burger, W.E. Collins, J.L. Davidson, A.V. Barnes and N.H. Tolk, “Investigation of nucleation and growth processes of diamond films by atomic force microscopy”, J. Appl. Phys., 76, 4099 (1994).

[61] P.N. Barnes and R.L.C. Wu, “Nucleation enhancement of diamond with amorphous films”, Appl. Phys. Lett., 62, 37 (1993).

[62] B.R. Stoner, S.R. Sahaida, J.P. Bade, and P. Southworth, “Highly oriented, textured diamond films on silicon via bias-enhanced nucleation and textured growth”, J. Mater. Res., 86, 1334 (1993)

[63] X. Y. Zhong, Y. C. Chen, N. H. Tai, I. N. Lin, J. M. Hiller, O. Auciello, O. Effect of Pretreatment Bias on the Nucleation and Growth Mechanisms of Ultrananocrystalline Diamond Films via Bias-Enhanced Nucleation and Growth: An Approach to Interfacial Chemistry Analysis via Chemical Bonding Mapping J. Appl. Phys. 105, 034311 (2009).

[64] D.N. Belton and S.J. Schmieg, “Nucleation of chemically vapor deposited diamond on platinum and nickel substrates”, Thin Solid Films, 212, 6, (1992).

[65] T.P. Ong, F. Xiong, R.P.H. Chang and C.W. White, “Mechanism for diamond nucleation and growth on single crystal copper surfaces implanted with carbon”, Appl. Phys. Lett., 60, 208 (1992).

[66] B.V. Spitsyn, L. L. Bouilov, B. V. Derjaguin, Vapor Growth of Diamond on Diamond and Other Surfaces J. Cryst. Growth., 52, 219226 (1981).

[67] S.D. Wolter, B.R. Stoner, J.T. Glass, P.J. Ellis, D.S. Buhaenko, C.E. Jenkins, and P. Southworth, “Textured growth of diamond on silicon via in situ carburization and bias‐enhanced nucleation”, Appl. Phys. Lett., 62, 1215 (1993).

[68] T. H. Chang, K. Panda, B. K. Panigrahi, S. C. Lou, C. Chen, H. C. Chan, I. N. Lin, N. H. Tai. Electrophoresis of Nanodiamond on the Growth of Ultrananocrystalline Diamond Films on Silicon Nanowires and the Enhancement of the Electron Field Emission Properties. J. Phys.Chem. C, 116, 19867−19876 (2012).

[69] P. Reinke, P. Kania, P. Oelhafen, and P. Guggenheim, Investigation of the nucleation mechanism in bias‐enhanced diamond deposition. Appl. Phys. Lett. 68, 22 (1996).

[70] Y. Ma, T. Tsurumi, N. Shinoda, and O. Fukunaga, Effect of bias enhanced nucleation on the nucleation density of diamond in microwave plasma CVD Diamond Relat. Mater. 4, 1325 (1995).

[71] C. H. Chao, G. Popovici, E. J. Charlson, E. M. Charlson, J. M. Meese, and M. A. Prelas, Smooth diamond films grown by hot filament chemical vapor deposition on positively biased silicon substrates, J. Cryst. Growth. 140, 454 (1994).

[72] X. T. Zhou, H. L. Lai, H. Y Peng, C. Sun, W. J. Zhang, N. Wang, I. Bello, C. S Lee, and S. T. Lee, Heteroepitaxial nucleation of diamond on Si(100) via double bias-assisted hot filament chemical vapor deposition, Diamond Relat. Mater. 9, 134 (2000).

[73] Y. Shigesato, R. E. Boekenhauer, and B. W. Sheldon, Emission spectroscopy during direct‐current‐biased, microwave‐plasma chemical vapor deposition of diamond Appl. Phys. Lett. 63, 314 (1993).

[74] J. Robertson, J. Gerber, S. Sattel, M. Weiler, K. Jung, and H. Ehrhardt, Mechanism of bias‐enhanced nucleation of diamond on Si, Appl. Phys. Lett. 66, 3287 (1995).

[75] O.A. Williams, M. Daenen, J. D'Haen, K. Haenen, J. Maes, V.V. Moshchalkov, M. Nesládek, and D.M. Gruen, “Comparison of the growth and properties of ultrananocrystalline diamond and nanocrystalline diamond”, Diamond Relat. Mater., 15, 65 (2006).

[76] T.P. Ong, F. Xiong, R.P.H. Chang and C.W. White, “Mechanism for diamond nucleation and growth on single crystal copper surfaces implanted with carbon”, Appl. Phys. Lett., 60, 2083 (1992).

[77] Y. F. Tzeng, Y. C. Lee, C. Y. Lee, H. T. Chiu, and I. N. Lin, “Electron field emission properties on UNCD coated Si-nanowires”, Diamond Relat. Mater., 17, 753-757 (2008).

[78] K.L. Ma, W.J. Zhang, Y.S. Zou, Y.M. Chong, K.M. Leung, I. Bello, and S.T. Lee, “Electrical properties of nitrogen incorporated nanocrystalline diamond films”, Diamond Relat. Mater., 15, 626 – 630 (2006).

[79] Q. Chen, D.M. Gruen, A.R. Krauss, T.D. Corrigan, M. Witek, and G.M. Swain, “The structure and electrochemical behavior of nitrogen-containing nanocrystalline diamond films deposited from CH4/N2/Ar mixtures”, J. Electrochem. Soc., 148, E4 J (2001).

[80] J. E. Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, J. A. Carlisle, Bonding Structure in Nitrogen Doped Ultrananocrystalline Diamond. J. Appl. Phys. 93, 5606−5612 (2003).

[81] Y. C. Lin, K.J. Sankaran, Y.C. Chen, C.Y. Lee, H.C. Chen, I.N. Lin, N.H. Tai, Enhancing electron field emission properties of UNCD films through nitrogen incorporation at high substrate temperature. Diamond Relat. Mater. 20, 191–195 (2011).

[82] K. J. Sankaran, Y. F. Lin, W. B. Jian, H. C. Chen, K. Panda, B. Sundaravel, C. L. Dong, N. H. Tai and I. N. Lin, Structural and Electrical Properties of Conducting Diamond Nanowires ACS Appl. Mater. Interfaces, 5, 1294 (2013).

[83] Y.C. Chen, N.H. Tai, and I.N. Lin, “Substrate temperature effects on the electron field emission properties of nitrogen doped ultra-nanocrystalline diamond”, Diamond Relat. Mater., 17 457 (2008).

[84] E.L. Murphy, and R.H. Good, “Thermionic emission, field emission, and the transition region”, Phys. Rev., 102, 1464 (1956).

[85] J. M. Garguilo, F. A. M. Koeck, and R. J. Nemanich, X. C. Xiao, J. A. Carlisle, and O.Auciello, “Thermionic field emission from nanocrystalline diamond-coated silicon tip array”, Physical Rev. B, 72, 165404 (2005).

[86] R. H. Fowler, and L. Nordheim, “Electron emission in intense electric fields”, Proc. Royal
Soc. London, vol. 119, p. 173 (1928).

[87] A. Wisitsora-at, W. P. Kang, J. L. Davidson, Y. Gurbuz, and D. V. Kerns, “Field emission enhancement of diamond tips utilizing boron doping and surface treatment”, Diamond Relat.Mater., vol. 8, pp. 1220-1224 (1999).

[88] A. R. Krauss, O. Auciello, M. Q. Ding, D. M. Gruen, Y. Huang, V. V. Zhirnov, E. I.Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S. Pimenov, A. Karabutov, A.Rakhimov, and N. Suetin, “Electron field emission for ultrananocrystalline diamond films”, J.Appl. Phys., vol. 89, pp. 2958-2967 (2001).

[89] A. Wisitsorat-at, “Micropatterned Diamond Vacuum Field Emission Devices”, PhD Dissertation, Department of Electrical Engineering, Vanderbilt University, USA (2002).

[90] N. A. Fox, W. N. Wang, T. J. Davis, J. W. Steeds, and P. W. May, “Field emission properties of diamond films of different qualities”, Appl. Phys. Lett., vol. 71, pp. 2337-2339 (1997).

[91] T. H. Chang, S. Kunuku, Y. J. Hong, K. C. Leou, T. R. Yew, N. H. Tai, and I. N. Lin Enhancement of the Stability of Electron Field Emission Behavior and the Related Microplasma Devices of Carbon Nanotubes by Coating Diamond Films, ACS Appl. Mater. Interfaces. 6 11589−11597 (2014).

[92] W.P. Kang, J.L. Davidson, A. Wisitsora-at, M. Howell, A. Jamaludin, Y.M. Wong, K.L.Soh, and D.V. Kerns, “Fabrication and field emission characteristics of lateral diamond field emitter”, J. Vac. Sci. Technol. B, vol. 21, pp.593-596 (2003).

[93] V. Milanović, L. Doherty, D. A. Teasdale, C. Zhang, S. Parsa, V. Nguyen, M. Last, and K.
S. J. Pister, “Deep reactive ion etching for lateral field emission devices”, IEEE Electron Device
Lett. 21, pp. 271-273 (2000).

[94] A. Wisitsora-at, W. P. Kang, J. L. Davidson, M. Howell, W. Hofmeister, and D. V. Kerns,
“High current diamond field emission diode”, J. Vac. Sci. Technol. B, vol. 21, pp. 1671-1674,
(2003).

[95] K. Subramanian, “Development of nanocrystalline diamond lateral vacuum field emission devices”, PhD dissertation, Department of Electrical Engineering, Vanderbilt University, Nashville, TN, USA (2008)

[96] https://en.wikipedia.org/wiki/Field_emission_display

[97] J. C. Lin, B. R. Huang, T. C. Lin, Bilayer Structure of ZnO Nanorod/Nanodiamond Film Based Ultraviolet Photodetectors. J. Electrochem. Soc. 160, H509 –H512 (2013).

[98] H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Nanowire Ultraviolet Photodetectors and Optical Switches. Adv. Mater. 14, 158−160 (2002).

[99] Ostrikov, K.; Control of energy and matter at nanoscales: challenges and opportunities for plasma nanoscience in a sustainability age, Journal of Physics D: Applied Physics. 17, 44 (2011).

[100] Barekzi, N.; Laroussi, M. Effects of Low Temperature Plasmas on Cancer Cells, plasma Process. Polym., 10, 1039–1050 (2013).

[101] K.Y. Teng, H.C. Chen, G.C. Tzeng, C.Y. Tang, H.F. Cheng, I.N. Lin, Bias-enhanced nucleation and growth processes for improving the electron field emission properties of diamond films, J. Appl. Phys. 111, 053701 (2012).

[102] H. Yamaguchi, T. Masuzawa, S. Nozue, Y. Kudo, I. Saito, J. Koe, M. Kudo, T. Yamada, Y. Takakuwa, K. Okano, Electron Emission from Conduction Band of Diamond with Negative Electron Affinity Phys. Rev. B., 80, No. 165321 (2009).
[103] C. S. Wang, H. C. Chen, H. F. Cheng, I. N. Lin, Origin of Platelike Granular Structure for the Ultrananocrystalline Diamond Films Synthesized in H2-Containing Ar/CH4 Plasma J. Appl. Phys. 107, No. 034304 (2010).
[104] A. C. Ferrari and J. Robertson, Origin of the 1150 cm-1 Raman Mode in Nanocrystalline Diamond Phys. Rev. B, 63, 121405 (2001).
[105] J. Michler, Y. Von Kaenel, J. Stiegler, and E. Blank, Complementary application of electron microscopy and micro-Raman spectroscopy for microstructure, stress, and bonding defect investigation of heteroepitaxial chemical vapor deposited diamond films. J. Appl. Phys. 81(1) 187 (1998).

[106] R. J. Nemanich, J. T. Glass, G. Lucovsky, and R. E. Schroder, Raman
scattering characterization of carbon bonding in diamond and diamondlike thin films J. Vac. Sci. Technol. 6, 1783 (1998).

[107] Z. Sun, J. R. Shi, B. K.Tay and S. P. Lau, UV Raman characteristics of nanocrystalline diamond films with different grain size. Diamond Relat. Mater. 9, 1979 (2000).
[108] P. T. Joseph, N. H. Tai, C. H. Chen, H. Niu, W. F. Pong, I. N. Lin, On the Mechanism of Enhancement on Electron Field Emission Properties for Ultrananocrystalline Diamond Films due to Ion Implantation J. Appl. Phys. 42, No. 105403 (2009).
[109] X. Y. Zhong, Y. C. Chen, N. H. Tai, I. N. Lin, J. M. Hiller, O. Auciello, Effect of Pretreatment Bias on the Nucleation and Growth Mechanisms of Ultrananocrystalline Diamond Films via Bias-Enhanced Nucleation and Growth: An Approach to Interfacial Chemistry Analysis via Chemical Bonding Mapping J. Appl. Phys. 105, No. 034311 (2009).

[110] A. C. Ferrari, J. Robertson, Resonant Raman Spectroscopy of Disordered, Amorphous, and Diamond like Carbon Phys. Rev. B, 64, No. 075414 (2001).

[111] P. Kovarik, E. B. D. Bourdon, R. Prince, R. H. Electron Energy Loss Characterization of Laser-deposited a-C, a-C:H and Diamond Films. Phys. Rev. B. 48, 12123−12129 (1993).

[112] J. Nithianandam, J. C. Rife, H. Windischmann, Carbon K edge Spectroscopy of Internal Interface and Defect States of Chemical Vapor Deposited Diamond Films Appl. Phys. Lett. 60, 135137 (1992).

[113] A. Gutierrez, M. F. Lopez, I. Garcia, A. Vazquez, X-ray Absorption and Auger Electron Spectroscopy Studies of the Quality of Diamond Thin Films grown by the Oxy-acetylene Flame Method J. Vac. Sci. Technol, 15, 294297 (1997).

[114] H. F. Cheng, H. Y. Chiang, C. C. Horng, H. C. Chen, C. S. Wang, and I.N. Lin, Enhanced electron field emission properties by tuning the microstructure of ultrananocrystalline diamond film J. Appl. Phys. 109, 033711 (2011).

[115] Dean, K. A.; Chalamala, B. R. The Environmental Stability of Field Emission from Single-Walled Carbon Nanotubes. Appl. Phys. Lett. 75, 3017−3019 (1999).

[116] Z. Shi, C. Liu, W. Lv, H. Shen, D. Wang, L. Chen, L. S. Li, J. Jin, Free-standing Single-walled Carbon Nanotube-CdSe Quantum Dots Hybrid Ultrathin Films For Flexible Optoelectronic Conversion Devices. Nanoscale, 4, 45154521 (2012).

[117] L. Chen, H. He, H. Yu, Y. Cao, D.Lei, Q. Menggen, C. Wuc, L. Huc, Electron Field Emission Characteristics of Graphene/Carbon Nanotubes Hybrid Field Emitter. Journal of Alloys and Compounds, 610, 659–664 (2014).

[118] J. M. Bonard, N. Weiss, H. Kind, T. Stöckli, L. Forró, K. Kern, A. Chatelain, Tuning the Field Emission Properties of Patterned Carbon Nanotube Films Adv. Mater. 13 184–188 (2001).

[119] W. Wei, K. Jiang, Y. Wei, P. Liu, K. Liu, L. Zhang, Q. Li, S. Fan, Tip-Modified Multiwalled Carbon Nanotube as High Quality Field Emission Electron Source. Appl. Phys. Lett. 89 203112 (2006).

[120] D. Lee, J. A. Lee, W. J. Lee, D. S. Choi, S. O. Kim, Facile Fabrication and Field Emission of Metal-Particle-Decorated Vertical N-Doped Carbon Nanotube/Graphene Hybrid Films J. Phys. Chem. C. 114, 21184–21189 (2010).
[121] S. Bhattacharyya, O. Auciello, J. Birrell, J. A.Carlisle, L. A. Curtiss, A. N. Goyette, D. M. Gruen, A. R. Krauss, J. Schlueter, A. Sumant, P. Zapol. Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films. Appl Phys Lett. 79, 1441–1443 (2001).
[122] K. J. Sankaran, J. Kurian, H. C. Chen, C. L. Dong, C. Y. Lee, N. H. Tai, I. N. Lin, I. N. Origin of a Needle-like Granular Structure for Ultrananocrystalline Diamond Films Grown in a N2/CH4 Plasma J. Phys. D: Appl. Phys. 45, 365303 (2012).
[123] K. Panda, K. J. Sankaran, B. K. Panigrahi, N. H. Tai, and I. N. Lin. Direct Observation and Mechanism for Enhanced Electron Emission in Hydrogen Plasma-Treated Diamond Nanowire Films. ACS Appl. Mater. Interfaces, 6, 8531−8541 (2014).

[124] Q. Chen, D. M. Gruen, A. R. Krauss, T. D. Corrigan, M. Witek, G. M.J. Swain, The Structure and Electrochemical Behavior of Nitrogen- Containing Nanocrystalline Diamond Films Deposited from CH4/N2/Ar Mixtures. Electrochem.Soc. 148, 44−41 /(2001).

[125] J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen, and J. M. Gibson, Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond, Appl. Phys. Lett. 81, 2235 (2002).

[126] R. Arenal, P. Bruno, D. J. Miller, M. Bleuel, J. Lal, and D. M. Gruen, Diamond nanowires and the insulator-metal transition in ultrananocrystalline diamond films, Phys. Rev. B 75, 195431 (2007).

[127] J. Kurian, K. J. Sankaran, P. T. Joseph, N. H Tai, H. C. Chen, and I. N.Lin, The role of nanographitic phase on enhancing the electron field emission properties of hybrid granular structured diamond films: the electron energy loss spectroscopic studies, J. Phys. D: Appl. Phys. 47, 415303 (2014).

[128] K. J. Sankaran, K. Panda, B. Sundaravel, N. H. Tai, and I. N. Lin, Enhancing electrical conductivity and electron field emission properties of ultrananocrystalline diamond films by copper ion implantation and annealing, J. Appl.Phys. 115, 063701 (2014).

[129] K. J. Sankaran, K. Panda, B. Sundaravel, N. H. Tai, and I. N. Lin, Catalytically induced nanographitic phase by a platinum-ion implantation/annealing process to improve the field electron emission properties of ultrananocrystalline diamond films, J.Mater. Chem. C 3, 2632 (2015).

[130] K. J. Sankaran, H. C. Chen, B. Sundaravel, C. Y. Lee, N. H. Tai, and I. N.Lin, Gold ion implantation induced high conductivity and enhanced electron field emission properties in ultrananocrystalline diamond films, Appl. Phys. Lett. 102, 061604 (2013).

[131]. W.P. Kang, J.L. Davidson, A. Wisitsora-at, Y.M. Wong, R. Takalkar, K. Subramania, D.V. Kerns, and W.H. Hofmeister, “Diamond and carbon-derived vacuum micro- and nano-electronic devices”, Diamond and Related Materials, vol. 14, pp. 685-691 (2005).
[132]. C. A. Spindt, C. E. Holland, and R. D. Stowell, “Field emission cathode array development for high current density applications”, Proc. 29th International Field Emission Symposium, p.119, (1982).

[133]. B. C. Djubua and N. N. Chubun, “Emission properties of Spindt-type cold cathodes with different emission cone material”, IEEE Trans. on Electron Devices, vol. 38, p. 2314 (1991).

[134]. H.F. Gray, G.J. Campisi, and R.F. Greene, “A vacuum field effect transistor using silicon field emitter arrays”, Proc. IEDM 86, Los Angeles, CA, p. 776 (1986).
[135]. Q. Li, W. P. Kang, M. Y. Yuan, J. F. Xu, D. Zhang, and J. L. Wu, “Fabrication and characterization of silicon field emission diodes and triodes”, J. Vac. Sci. Technol. B, vol. 12, p. 676 (1994).

[136]. S. Kanemaru and J. Itoh, “Fabrication and Characterization of Lateral Field-Emitter Triodes”, IEEE Trans. Electron Devices, vol. 38, pp.2334-2336 (1991).

[137]. S. Kang, J. H. Lee, B. G. Yu, K. I. Cho, and H. J. Yoo. “Novel structure of silicon field emission cathode with sputtered TiW for gate electrode. J. Vac. Sci. Technol. B. 16, 242 (1998).

[138]. K. Subramanian, Y.M. Wong, W.P. Kang, J.L. Davidson, B.K. Choi, and M. Howell, “Field emission devices for advanced electronics comprised of lateral nanodiamond or carbon nanotube emitters, Diamond and Related Materials, vol. 16, pp. 1997-2002 (2007).

[139]. K. Subramanian, W.P. Kang, J.L. Davidson, W.H. Hofmeister, B.K. Choi, and M. Howell, “Nanodiamond planar lateral field emission diode”, Diamond and Related Materials, 14, 2099-2104 (2005).
[140]. B. Chapman, Glow Discharge Processes, Sputtering and Plasma Etching; John Wiley & Sons, New York (1980).

[141].S. Kunuku, K. J. Sankaran, C. L. Dong, N. H. Tai, K.C. Leou and I. N. Lin, Development of Long Lifetime Cathodes for Microplasma Application, RSC Adv., , 4, 47865 (2014).

[142]. U. Ozgur, D.Hofstetter, and H. Morkoc¸ ZnO Devices and Applications: A Review of Current Status and Future Prospects, Proceedings of the IEEE, 7, 1255-1268 (2010).
[143]. M. A. Lieberman, A. J. Lichtenberg, Principle of Plasma Discharges and Materials Processing John Wiley & Sons: Hoboken, NJ, 2nd ed (2005).

[144]. K.J. Sankaran, S. Kunuku, B. Sundaravel, P.Y. Hsieh, H.C. Chen, K.C. Leou, N.H. Tai, I.N. Lin, Gold nanoparticle–ultrananocrystalline diamond hybrid structured materials for high-performance optoelectronic device applications, Nanoscale, 7, 4377–4385 (2015).

[145]. J.Y. Pan, C.C. Zhu, Y.L. Gao, Enhanced field emission characteristics of zinc oxide mixed carbon nano-tubes films Applied Surface Science., 254, 3787–3792 (2008).
[146]. A. Kuznetzov, Sergey B. Lee, Mei Zhang, Ray H. Baughman, Anvar A. Zakhidov, Electron field emission from transparent multiwalled carbon nanotube sheets for inverted field emission displays Carbon, 48, 41 –4 6 (2010).

[147]. H. Li, H. Wu, S. Yuan, Synthesis and characterization of vertically standing MoS2 nanosheets Scientific reports, 6, 21171 (2016).

[148]. T. Chang, F. Lu, S. Kunuku, K.C. Leou, N.H. Tai and I.N. Lin, Enhanced electron field emission properties from hybrid nanostructures of graphene/Si tip array, RSC Adv., 5, 2928–2933 (2015).

[149]. Y.C.Chu, C.H. Tu, C.P. Liu, Y. Tzeng, and O. Auciello, Ultrananocrystalline diamond nano-pillars synthesized by microwave plasma bias-enhanced nucleation and bias-enhanced growth in hydrogen-diluted methane, J. Appl. Phys, 112, 124307 (2012).

[150]. T.H. Chang, S.C. Lou, C. Chen, H.C. Chan, C. Chen, C. Lee, N.H. Tai, I.N. Lin, Enhancing the Plasma Illumination Behavior of Microplasma Devices using Microcrystalline/ Ultrananocrystalline Hybrid Diamond Materials as Cathodes, Nanoscale, 5, 7467 (2013).
[151]. X. Xiao a, O. Auciello a,b, H. Cui c, D.H. Lowndes c, V.L. Merkulov c, J. Carlisle, Synthesis and field emission properties of hybrid structures of ultrananocrystalline diamond and vertically aligned carbon nanofibers Diamond & Related Materials 15, 244– 247 (2006).

[152]. D. Li, J. She, S. Xu, and S. Deng, Zinc Oxide Nanowire Lateral Field Emission Devices and its Application as Display Pixel Structures, IEEE transactions on electron devices. 9, 60 (2013)

[153]. Z. S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, and H. M. Cheng, Field Emission of Single-Layer Graphene Films Prepared by Electrophoretic Deposition, Adv. Mater., 21, 1756–1760 (2009).

[154]. Y.M. Wong, W.P. Kang, J.L. Davidson, J.H. Huang, A novel fabrication approach for carbon nanotube lateral field emission devices, Diamond & Related Materials, 15, 1859–1862 (2006).

[155]. N. Ghosh, W.P. Kang, J.L. Davidson, Fabrication and implementation of nanodiamond lateral field emission diode for logic OR function, Diamond & Related Materials., 23, 120–124 (2012).

無法下載圖示 全文公開日期 2021/12/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE