簡易檢索 / 詳目顯示

研究生: 廖啓宏
Qi-Hong - Liao
論文名稱: 聚乳酸添加蠶砂複合材料於射出成形之機械性質與生物分解之研究
Research on Mechanical Properties and Biodegradability of PLA/Silkworm Excrement Composites by Injection Molding
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 楊申語
Sen-Yeu Yang
劉松柏
Sung-Po Liu
吳昌謀
Chang-Mou Wu
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 141
中文關鍵詞: 複合材料射出成形生物可分解性聚乳酸蠶砂
外文關鍵詞: Composites, Injection molding, Biodegradability, Polylacit acid (PLA), sSilkworm excrement
相關次數: 點閱:339下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討聚乳酸 (Polylacit acid, PLA) 添加蠶砂 (Silkworm excrement, SE) 複合材料之射出成形對機械強度增進以及生物可分解性之試驗。首先將蠶砂原料毫米等級透過球磨細化成微米等級,再與聚乳酸塑膠粒利用重量百分濃度混合後,分別為PLA/SE 2.5%, 5%, 10% 及20%,經由雙螺桿押出機均勻攪拌並造粒成複合材料塑膠顆粒。複合材料接續將進行檢測及試驗,包含熱性質、模流分析、機械強度及生物分解性。熱性質分析結果,原材料PLA之氣化裂解溫度約364℃,蠶砂有多個裂解點則在288℃下有一劇烈裂解溫度,因此複合材料隨著蠶砂比例上升裂解溫度下降。而蠶砂顆粒可能成為PLA中的成核劑,促使PLA/SE產生冷結晶溫度(Tcc),結晶度達41%。射出成形與模流分析結果,射出參數因子主要為射速、料溫及模溫,探討原始PLA收縮及翹曲影響,模溫高是收縮的主要影響因子,試片於高模溫有足夠時間收縮所致,翹曲則是不規則收縮,主要影響因子為料溫,高料溫於試片核心中及表面溫度差距大,造成收縮不均勻成翹曲。射出成形拉伸試片之強度結果表示,拉伸強度與核心層剪切應力隨著射速而增加及提升,主要是高分子於高射速具有較高的延伸所致,因此高射速拉伸強度優於低射速拉伸強度;在複合材料之拉伸強度相較於純聚乳酸無增益且隨著比例上升,拉伸強度隨之下降,主要蠶砂顆粒在拉伸過程中成為缺陷所致,反之,衝擊試驗結果顯示,PLA/SE 5% 相較於PLA提升強度最高約28.8%,另因PLA/SE 10% 和 PLA/SE 20%濃度過高,使得複合材料之衝擊強度皆無明顯增益比較於原PLA。生物分解實驗中,將額外壓製試片放置於有機堆土中並恆溫58℃,並維持7週期間,使得聚乳酸與複合材料加速分解;外觀表現上,當蠶砂濃度越高其分解情況越劇烈,而到最後仍然幾乎全部都在有機土堆中分解完畢並成為有機推肥。最後,複合材料將透過射出成形應用於枕頭填充物做實例,其他也可應用於、靠枕填充物和小盆栽堆土等用途。


This study is devoted to investigate the parameters of influence in injection molding (IM) process and analysis on mechanical properties and biodegradability of Polylacit Acid (PLA) and PLA/SE composites with silkworm excrement (SE) particles. To prepare the PLA/SE composites, the first step is to refine the SE to micron-scaled (�慆) particles by ball milling, then using a twin-screw extrusion to compound Neat-PLA pellets and refined SE particles with weight percentage, as PLA/SE 2.5%, PLA/SE 5.0%, PLA/SE 10% and PLA/SE 20%. Both TGA and DSC conduct to analyze the thermal properties of Neat-PLA and PLA/SE composites. For thermal properties, the Neat-PLA has higher decomposition temperature (Td) at 364℃ and SE has multiple peaks and a dramatic change at 288℃. In the DSC results, the SE particle may be a nucleation in the PLA and it raises the crytstallinity to approximately 41% in PLA/SE composites. It is found that the PLA/SE composites have lower Td with higher concentration of SE. Injection molding parameters are considering melt temperature and mold temperature. For Neat-PLA, simulation performance includes volumetric shrinkage and warpage. It is found that the temperature is a major factor for volumetric shrinkage and warpage. That means the melt temperature increasing in the filling stage, the maximum volumetric shrinkage and waprage obtain as respectively 4.4 % and 54 �慆. For the mechanical properties, the tensile strength and impact strength specimens have been experimentally tested by IM. For tensile strength, the PLA increased with higher injection velocity and that is due to the shear stress in the core layer of flow front in the melt polymer. The tensile strength of PLA/SE composites are not enhanced as compared with that of Neat-PLA because the SE particles become drawbacks while stretching in the tensile testing. For results of impact strength, the PLA/SE 5.0% is improved approximately 28.8% as comparing with that of Neat-PLA. However, for PLA/SE 10% and PLA/SE 20%, their impact strength are not enhanced because of the poor dispersion caused by the agglomeration of SE particles. In the biodegradability experiment at 58℃ and compost environment, both Neat-PLA and PLA/SE composites made by compression molding have been buried for testing. The appearance results of PLA/SE composites are faster and obviously disintegrated in 7 weeks. The Neat-PLA and PLA/SE composites can be almost biodegraded in this period of environment. Finally, the PLA/SE composites are fabricated into pillow filler pellets by injection molding for potential application of life medical consuming products or fertilizer.

ACKNOWLEDGEMENTI ABSTRACTII 中文摘要III TABLE OF CONTENTSIV TABLE OF FIGURESVIII LISTS OF TABLESXIV SYMBOLXVI CHAPTER 1.INTRODUCTION1 1.1.BACKGROUND1 1.2.RESEARCH OBJECTIVE AND SCOPE3 1.3.APPROACHES3 1.4RESEARCH FRAMEWORK4 CHAPTER 2.LITERATURE REVIEW6 2.1.PLA AND BIODEGRADATION6 2.2.MECHANICAL PROPERTIES OF PLA COMPOSITES10 2.3.SUMMARY OF LITERATURE REVIEW.15 CHAPTER 3.PREPARATION OF PLA/SE COMPOSITES17 3.1.MATERIALS17 3.1.1.POLYLACTIDE ACID (PLA)17 3.1.2.SILKWORM EXCREMENTS (SE)19 3.2.POLYMER MATRIX COMPOSITES21 3.2.1.BALL MILLING AND PARTICLE SIZE DISTRIBUTION23 3.2.2.POLYMER MIXING AND COMPOUND25 3.2.3.WATER ABSORPTION OF PLA AND COMPOSITES29 3.3.THERMO-GRAVIMETRIC ANALYSIS (TGA)29 3.4.DIFFERENT SCANNING CALORIMETRY (DSC)30 3.5.SCANNING ELECTRON MICROSCOPE (SEM)31 3.6.FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR)33 3.7.DEGRADATION AND BIODEGRADABILITY36 3.8.GEL PERMEATION CHROMATOGRAPH (GPC)38 3.9.SUMMARY OF INSTRUMENTS.39 CHAPTER 4.EXPERIMENTAL SET-UP OF INJECTION MOLDING PROCESS40 4.1.EXPERIMENTAL SET-UP40 4.2.INJECTION MOLDING PROCESS41 4.2.1.MOLDING WINDOW42 4.3.MOLDEX3Dc SIMULATION43 4.4.INJECTION MOLDING PARAMETERS49 4.5.SIMULATION ANALYSIS AND DISCUSSION49 4.5.1.VOLUMETRIC SHRINKAGE50 4.5.2.WARPAGE AND DISPLACEMENT IN Z DIRECTION54 4.6.INJECTION MOLDING EQUIPMENT AND SETUP57 4.7.MECHANICAL PROPERTIES61 4.7.1.TENSILE STRENGTH TEST61 4.7.2.IMPACT STRENGTH TEST61 CHAPTER 5.RESULTS AND DISCUSSION62 5.1.BIODEGRADATION TEST62 5.1.1.GPC, MOLECULAR WEIGHT62 5.1.2.VISUAL APPEARANCES AND SEM66 5.2.THERMAL PROPERTIES70 5.2.1.TGA RESULTS OF NEAT-PLA AND PLA/SE COMPOSITES.70 5.2.2.DSC RESULTS OF NEAT-PLA AND PLA/SE COMPOSITES.72 5.3.PARTICLE DISPERSION OF PELLETS AND INJECTION MOLDING SAMPLE.76 5.4.INFLUENCE OF MECHANICAL PROPERTIES BY INJECTION MOLDING.78 5.4.1.TENSILE STRENGTH OF NEAT-PLA AND PLA/SE COMPOSITES.78 5.4.2.IMPACT STRENGTH OF NEAT-PLA AND PLA/SE COMPOSITES.86 5.5.POTENTIAL USE FOR PLA/SE COMPOSITES.93 5.6.SUMMARY95 CHAPTER 6.CONCLUSION AND RECOMMENDATION98 6.1 CONCLUSION98 6.2 RECOMMENDATION99 REFERENCES100 APPENDIX A SPECIFICATION OF PLA104 APPENDIX B FANUC ROBOSHOT Α-15IA SPECIFICATION105 APPENDIX C INSPECTION SHEET OF TORAYCREAM BEADS106 APPENDIX D BALL MILLING & COMPOUNDING RECIPE107 APPENDIX E DIFFERENT SCANNING CALORIMETRY (DSC)108 APPENDIX F TENSILE RESULTS OF COMPOSITES.110 APPENDIX G ANALYSIS OF VARIANCE (ANOVA)115 APPENDIX H MOLD STRUCTURE DRAWING119 APPENDIX I BIODEGRADATION EQUATION AND CALCULATING [52]122 APPENDIX J MULBERRY LEAF [53]123 CURRICULUM VITAE OF AUTHOR124

1.Cheung, H.-Y., et al., Biodegradation of a silkworm silk/PLA composite. Composites Part B: Engineering, 2010. 41(3): p. 223-228.
2.Cantor, K.M. and P. Watts, 12 - Plastics Processing A2 - Kutz, Myer, in Applied Plastics Engineering Handbook. 2011, William Andrew Publishing: Oxford. p. 195-203.
3.Shah, A.A., et al., Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 2008. 26(3): p. 246-265.
4.Nampoothiri, K.M., N.R. Nair, and R.P. John, An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 2010. 101(22): p. 8493-8501.
5.Tokiwa, Y. and C.U. Ugwu, Biotechnological production of (R)-3-hydroxybutyric acid monomer. Journal of Biotechnology, 2007. 132(3): p. 264-272.
6.Lopes, M.S., A.L. Jardini, and R.M. Filho, Poly (Lactic Acid) Production for Tissue Engineering Applications. Procedia Engineering, 2012. 42: p. 1402-1413.
7.Jiang, L. and J. Zhang, 6 - Biodegradable Polymers and Polymer Blends A2 - Ebnesajjad, Sina, in Handbook of Biopolymers and Biodegradable Plastics. 2013, William Andrew Publishing: Boston. p. 109-128.
8.Elduque, A., et al., Environmental impact analysis of the injection molding process: analysis of the processing of high-density polyethylene parts. Journal of Cleaner Production, 2015. 108, Part A: p. 80-89.
9.Arrieta, M.P., et al., Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Industrial Crops and Products.
10.Vimolmangkang, S., C. Somkhanngoen, and S. Sukrong, Potential Pharmaceutical Uses of the Isolated Compounds from Silkworm Excreta. CHIANG MAI JOURNAL OF SCIENCE, 2014. 41(1): p. 97-104.
11.Cai, L., et al., Reinforced and Ultraviolet Resistant Silks from Silkworms Fed with Titanium Dioxide Nanoparticles. ACS Sustainable Chemistry & Engineering, 2015. 3(10): p. 2551-2557.
12.Shimao, M., Biodegradation of plastics. Current opinion in Biotechnology, 2001. 12(3): p. 242-247.
13.Tokiwa, Y. and B.P. Calabia, Biodegradability and biodegradation of poly (lactide). Applied microbiology and biotechnology, 2006. 72(2): p. 244-251.
14.Mueller, R.-J., Biological degradation of synthetic polyesters—enzymes as potential catalysts for polyester recycling. Process Biochemistry, 2006. 41(10): p. 2124-2128.
15.Signori, F., M.-B. Coltelli, and S. Bronco, Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polymer Degradation and Stability, 2009. 94(1): p. 74-82.
16.Arrieta, M.P., et al., Disintegrability under composting conditions of plasticized PLA–PHB blends. Polymer Degradation and Stability, 2014. 108: p. 307-318.
17.Ekiert, M., A. Mlyniec, and T. Uhl, The influence of degradation on the viscosity and molecular mass of poly (lactide acid) biopolymer. Diagnostyka, 2015. 16.
18.郭家興, 生物可降解複合材料之分子配向性對機械強度之影響研究. 2012, Master thesis, National taiwan university of science and technology
19.李禧俊, 聚乳酸添加有機蒙脫土複合材料之射出成形對機械性質影響. 2014, Master thesis, National taiwan university of science and technology.
20.Murariu, M., et al., Polylactide compositions. Part 1: Effect of filler content and size on mechanical properties of PLA/calcium sulfate composites. Polymer, 2007. 48(9): p. 2613-2618.
21.Srithep, Y., et al., Injection molding and characterization of polylactide stereocomplex. Polymer Degradation and Stability, 2015. 120: p. 290-299.
22.Oksman, K., M. Skrifvars, and J.F. Selin, Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 2003. 63(9): p. 1317-1324.
23.Bax, B. and J. Mussig, Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Composites Science and Technology, 2008. 68(7–8): p. 1601-1607.
24.Masutani, K. and Y. Kimura, Chapter 1 PLA Synthesis. From the Monomer to the Polymer, in Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications. 2015, The Royal Society of Chemistry. p. 1-36.
25.Castro-Aguirre, E., et al., Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews.
26.Anderson, S.F.G. and R. Langer, Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews.
27.Lunt, J., Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability, 1998. 59(1): p. 145-152.
28.Hoglund, A., K. Odelius, and A.-C. Albertsson, Crucial Differences in the Hydrolytic Degradation between Industrial Polylactide and Laboratory-Scale Poly(L-lactide). ACS Applied Materials & Interfaces, 2012. 4(5): p. 2788-2793.
29.Chen, C.C.A., Computer Aided Mold Design and Analysis. 2001: Institute of ME/NTUST.
30.Chen, H.Y., Study on Large Area Sub-Wavelength Functional Optical Lens with Anti-Reflection Structures, in Mechanical Engineering. 2011, National Taiwan University of Science and Technology: Taipei.
31.Pongpiachan, S., FTIR Spectra of Organic Functional Group Compositions in PM2.5 Collected at Chiang-Mai City, Thailand during the Haze Episode in March 2012. Journal of Applied Sciences, 2014 14(22): p. 2967-2977.
32.Park, J.-H., et al., Isolation of megastigmane sesquiterpenes from the silkworm (Bombyx mori L.) droppings and their promotion activity on HO-1 and SIRT1. Archives of pharmacal research, 2011. 34(4): p. 533-542.
33.Pospišil, J. and S. Nešpůrek. Highlights in chemistry and physics of polymer stabilization. in Macromolecular Symposia. 1997. Wiley Online Library.
34.Li, S., Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. Journal of biomedical materials research, 1999. 48(3): p. 342-353.
35.Luzi, F., et al., Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica. Polymer Degradation and Stability, 2015. 121: p. 105-115.
36.Zehev Tadmor, CostasG.Gogos, Principles of Polymer Processing. 2006, Hoboken, New Jersey: John Wiley & Sons, Inc.
37.Fischer, J.M., 2 - Shrinkage and Warpage, in Handbook of Molded Part Shrinkage and Warpage (Second Edition). 2013, William Andrew Publishing: Boston. p. 9-17.
38.Goriparthi, B.K., K.N.S. Suman, and N. Mohan Rao, Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Composites Part A: Applied Science and Manufacturing, 2012. 43(10): p. 1800-1808.
39.Li, M.-X., et al., Effect of reinforcing particles on hydrolytic degradation behavior of poly (lactic acid) composites. Composites Part B: Engineering, 2016. 96: p. 248-254.
40.廖文彬. 材料科學:高分子材料. 1997 Dec. 04, 2000; online materials Available from: http://www.mse.ntu.edu.tw/~liau/lecture/material/motion.htm.
41.Tokiwa, Y., et al., Biodegradability of Plastics. International Journal of Molecular Sciences, 2009. 10(9): p. 3722-3742.
42.Kim, G.-M. and G. Michler, Micromechanical deformation processes in toughened and particle filled semicrystalline polymers: Part 2. Model representation for micromechanical deformation processes. Polymer, 1998. 39(23): p. 5699-5703.
43.Kim, G.-M. and G. Michler, Micromechanical deformation processes in toughened and particle-filled semicrystalline polymers: Part 1. Characterization of deformation processes in dependence on phase morphology. Polymer, 1998. 39(23): p. 5689-5697.
44.Lin, Y. and C.M. Chan, Calcium carbonate nanocomposites, in Advances in Polymer Nanocomposites: Types and Applications. 2012. p. 55-90.
45.何曼君, 陳維孝, and董西俠, 高分子物理. 2000, 上海: 復旦大學出版社.
46.藤井太一 and 座古勝, Fracture and Mechanics of Composite Materials. 2006, Taiwan: Book五南出版.
47.趙德喜, 本草綱目中的養生智慧 2013: Book吉林科學技術出版社.
48.顧世紅. 蠶寶寶與藥. 2006; 5th:[Book].
49.王立轩, Silkworm excrement health pillow. 2008.
50.陈晓萍, et al., 蚕沙有机肥的养分特性及其肥效. 应用生态学报, 2011. 22(7): p. 1803-1809.
51.呂宏基, 促進植物吸收養分的有機肥料. 2014, 中華民國專利公開號201442993.
52.Rachael Curtis, C.N. First order reactions. copyright@ucdavis.edu, 2016
53.余錫金, 台灣農家要覽-蠶桑. p. 237-250.

QR CODE