簡易檢索 / 詳目顯示

研究生: 盧文輝
Wen-Huei Lu
論文名稱: 多晶鑽石材料之雷射切割與修整製程研究
Research on laser cutting and finishing process of polycrystalline diamond
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 湯孝威
Hsiao-Wei Tang
葉家宏
Chia-Hung Yeh
謝宏麟
Hung-lin Hsieh
張以全
I-Tsyuen Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 101
中文關鍵詞: 多晶鑽石光纖雷射雷射修整
外文關鍵詞: polycrystalline diamond, fiber laser, laser finishing
相關次數: 點閱:341下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

多晶鑽石(polycrystalline diamond, PCD)是一種高性能合成材料,具有高硬度、高耐磨性、良好的熱傳導率、低熱膨脹係數等特性,在切削刀具的應用上可獲得良好的加工效果,但這些優異的性能使其加工難度增加,不適合以傳統銑削或車削的方式進行加工,因此多晶鑽石的加工技術就顯得額外重要。
本研究以光纖雷射針對多晶鑽石進行切割及修整製程研究,並驗證雷射修整製程的可行性。文中以反應熔融切割機制將PCD切斷後,再針對其切斷面進行修整,其中探討不同修整方式對加工表面之影響。本研究以所開發的修整方法搭配偏轉角度的加工方式,以改善切口加工斜面與修整時因光束遮蔽導致表面形貌不一致的情形。研究結果顯示以此方式能獲得較切割後切斷面更佳的表面(表面粗糙度Ra 0.202 μm),而將此製程用於放電加工之試片進行驗證也可獲得相近之結果。此外,本文也以PCD上方夾持矽晶片方式有效改善過切導致的切口鈍化情形,並探討夾持的矽晶片厚度對修整後表面之影響。由結果顯示夾持矽晶片加工會使加工表面條紋加劇,而此問題則可透過降低矽晶片厚度來改善。在以夾持厚度100 μm矽晶片進行修整後可獲得無明顯切口鈍化及切面粗糙度Ra 0.272 μm之結果。


Polycrystalline diamond (PCD) is a high-performance synthetic material which has several outstanding properties, such as good thermal conductivity, high hardness, and high wear resistance. These features of polycrystalline diamond can obtain good effects in the application of cutting tool, but they also enhance the fabrication difficulty for conventional manufacturing techniques, like milling and turning. Therefore, the new processing technique development of polycrystalline diamond becomes very important.
This study used fiber laser to research cutting and finishing process of polycrystalline diamond then verified the feasibility of the process. The experiment used reactive fusion cutting mechanism to cut PCD and then finish the cutting surface. This study also investigated the influence of different finishing methods on the cutting surface. In addition, a finishing method with different deflection angles was used to improve the beam shading and taper cutting problem. After finishing, the surface roughness Ra 0.202 μm was obtained and the finished surface quality is significantly better than the surface after cutting. Besides, it could attain similar results when the process was applied to the PCD cutters machined by wire electrical discharge machining(WEDM).
This research also used a method, clamping silicon wafer on the PCD, to solve the problem of cutting edge passivation caused by overcutting, and then studied the effect of the thickness of silicon wafer clamped on the machined surface. The results showed that clamping silicon wafer process would aggravate the surface striation. However, this problem could be improved by decreasing the thickness of the silicon wafer. It is proved that by clamping 100 μm silicon wafer in the finishing process the ideal square cutting edge can be achieved and the surface striation would be eliminated. After the treatment, the surface roughness Ra 0.272 μm was achieved.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章、緒論 1 1.1 前言 1 1.2 研究背景 2 1.3 研究動機及目的 3 1.4 論文架構 4 第二章、文獻回顧 5 2.1 多晶鑽石材料介紹 5 2.1.1 多晶鑽石之加工文獻 8 2.2 雷射原理與特性 12 2.2.1 雷射加工特性 14 2.2.2 雷射加工文獻回顧 18 第三章、研究方法 25 3.1 實驗流程規劃 25 3.2 實驗材料 27 3.2.1 SKD11模具鋼 27 3.2.2 多晶鑽石(Polycrystalline diamond, PCD) 27 3.3 光纖雷射加工實驗 29 3.3.1 光纖雷射系統 30 3.3.2 雷射聚焦位置測定 35 3.3.3 雷射延遲參數 36 3.3.4 雷射加工參數 37 3.4 多晶鑽石之加工製程 42 3.4.1 多晶鑽石之雷射切割製程 42 3.4.2 多晶鑽石之雷射表面修整製程 46 3.4.3 加工過切現象與表面條紋改善 49 3.5 實驗儀器介紹 51 3.5.1光學顯微鏡(OM) 51 3.5.2掃描式電子顯微鏡(SEM) 52 3.5.3綠光干涉儀 53 3.5.4超音波洗淨機 54 第四章、實驗結果與討論 55 4.1光纖雷射加工實驗 55 4.1.1 雷射加工焦距測定 55 4.1.2 延遲參數調整前後差異 57 4.1.3 雷射加工參數影響 59 4.2 多晶鑽石之雷射切割 65 4.2.1 不同參數對多晶鑽石的加工深度影響 65 4.2.2 多晶鑽石之雷射切割結果 71 4.3 多晶鑽石之雷射表面修整製程 74 4.3.1 雷射表面修整結果 74 4.3.2 切口加工斜面改善 80 4.3.3 雷射表面修整參數選用 82 4.3.4 雷射表面修整製程驗證 85 4.4 加工過切現象與表面條紋改善 87 4.4.1 夾持矽晶片加工對過切現象之影響 87 4.4.2 矽晶片厚度對加工表面條紋之影響 89 第五章、結論及未來展望 94 5.1 結論 94 5.2 未來展望 95 參考文獻 97

[1]白清順、姚英學,「聚晶金剛石(PCD)刀具發展綜述」,工具技術,第36卷,第3期,第7-10頁,2002。
[2]A. Hosseini, H. A. Kishawy, “Cutting tool materials and tool wear”, Machining of Titanium Alloys. Springer Berlin Heidelber, pp. 31-56, 2014.
[3]M. Galindo-Fernandez, C. Diver, W. Leahy, “The prediction of surface finish and cutting speed for wire electro-discharge machining of Polycrystalline Diamond”, Procedia CIRP, 42, pp. 297-304, 2016.
[4]閻吉祥、鄭壽昌,「雷射原理與技術」,新文京開發出版股份有限公司,2007。
[5]USGS, “Minerals year book”, Diamond(Industrial), U.S. Department of the interior, 2013.
[6]Global Information Inc, “Aerospace Composites Market by Fiber Type, Resin Type, Aircraft Type, Application and Region - Global Forecast to 2021”, Markets and Markets, 2016.
[7]K. Thomas, K. Michael, “Composites-Marktbericht”, Carbon Composites, AVK Industrievereinigung verstärkte Kunststoffe, 2015.
[8]J. P. Davim, “Traditional Machining Processes”, Berlin, Heidelberg: Springer Berlin Heidelberg, p. 11, 2015.
[9]P. L. Tso, Y. G. Liu, “Study on PCD machining”, International Journal of machine tools and manufacture, 42(3), pp. 331-334, 2002.
[10]C. Dold, M. Henerichs, L. Bochmann, K. Wegener, “Comparison of ground and laser machined polycrystalline diamond (PCD) tools in cutting carbon fiber reinforced plastics (CFRP) for aircraft structures”, Procedia CIRP, 1, pp. 178-183, 2012.
[11]C. Gao, Z. Zhan, S. Wang, N. He, L. Li, “Research on WEDM process optimization for PCD micro milling tool”, Procedia CIRP, 6, pp. 191-214, 2013.
[12]P. Butler-Smith, M. Warhanek, D. Axinte, M. Fay, J. F. Bucourt, R. Ragueneau, K. Wegener, “The influences of pulsed-laser-ablation and electro-discharge-grinding processes on the cutting performances of polycrystalline diamond micro-drills”, CIRP Annals-Manufacturing Technology, 65(1), pp. 105-108, 2016
[13]M. W. Cook, P. K. Bossom, “Trends and recent developments in the material manufacture and cutting tool application of polycrystalline diamond and polycrystalline cubic boron nitride”, International Journal of Refractory Metals and Hard Materials, 18(2), pp. 147-152, 2000.
[14]J. R. Davis, “ASM specialty handbook: tool materials”, ASM international, p. 88, 1995.
[15]Q. Bai, Y. Yao, and S. Chen, “Reasearch and development of polycrystalline diamond woodworking tools”, International Journal of Refractory Metals and Hard Materials, 20(5), pp. 395-400, 2002.
[16]宋健民,鑽石合成,「全華圖書股份有限公司」,2000。
[17]張勤儉、曹鳳國、劉媛、王先逵,「聚晶金剛石加工技術進展」,金剛石磨料磨具工程學刊,第4卷,第76-80頁,2006。
[18]P. M. Harrison, M. Henry, M. Brownell, “Laser processing of polycrystalline diamond, tungsten carbide, and a related composite material”, Journal of laser applications, 18(2), pp. 117-126, 2006.
[19]張國順、鄭壽昌,「現代雷射製造技術」,新文京開發出版股份有限公司,2008。
[20]蔡宗河,「CO2雷射加工」,全華圖書股份有限公司,1995。
[21]林三寶,「雷射原理與應用」,全華圖書股份有限公司,2009。
[22]DIY CNC CO2 Laser Site, Optics principles. Retrieved July 14, 2017, from web site: http://www.nilno.com/cgi-bin/optics.cgi#intro.
[23]J. Krüger, W. Kautek, “Ultrashort pulse laser interaction with dielectrics and polymers”, polymers and light, pp. 247-290, 2004.
[24]丁勝懋,「雷射工程導論」,中央圖書出版社,1995。
[25]許育豪,「飛秒雷射製作金屬玻璃微奈米轉印精密模具應用分析」,碩士論文,國立台灣科技大學,2011。
[26]Y. P. Kathuria, “Laser microprocessing of stent for medical therapy”, Proceedings of International Symposium on Micromechatronics and Human Science, pp. 111-114, 1998.
[27]H. Y. Meng, J. H. Liao, B. G. Guan, Q. M. Zhang, Y. H. Zhou, “Fiber laser cutting technology on coronary artery stent”, Chinese Journal of Lasers, 34(5), p.733, 2007.
[28]K. F. Kleine, B. Whitney, K. G. Watkins, “Use of fiber lasers for micro cutting applications in the medical device industry”, 21st International Congress on Applications of Lasers and Electro-Optics, Scottsdale, 2002.
[29]M. Baumeister, K. Dickmann, T. Hoult, “Fiber laser micro-cutting of stainless steel sheets”, Applied Physics A: Materials Science & Processing, 85(2), pp. 121-124, 2006.
[30]G. Kamlage, T. Bauer, A. Ostendorf, B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses”, Applied Physics A: Materials Science & Processing, 77(2), pp. 307-310, 2003.
[31]M. Sobih, P. L. Crouse, L. Li, “Striation-free fibre laser cutting of mild steel sheets”, Applied Physics A: Materials Science & Processing, 90(1), pp. 171-174, 2008.
[32]C. Chen, M. Gao, M. Jiang, X. Zeng, “Surface morphological features of fiber laser cutting of AA2219 aluminum alloy”, The International Journal of Advanced Manufacturing Technology, 86(5-8), pp. 1219-1226, 2016.
[33]高偉嘉,「以直接轉印技術製作線性光學尺」,碩士論文,國立台灣科技大學,2015。
[34]蕭文澤,「雷射技術與應用-振鏡掃描系統介紹」,國家實驗研究院儀器科技研究中心,2011。
[35]Y. Zhou, S. Zhang, S. Zhao, H. Chen, “Computer texture mapping for laser texturing of injection mold”, Advances in Mechanical Engineering, 6, Article ID 681563, 2014.
[36]洪嘉宏,「應用飛秒雷射移除加工製程於鎳鈦膽管支架加工之研究」,碩士論文,國立台灣科技大學,2012。
[37]鄭博謙,「膽管支架擴張製程與可取回設計」,碩士論文,國立台灣科技大學,2015。
[38]MarkingMate Manual, version 2.7, Eastern Logic Inc, Taiwan, 2015.
[39]G. Thawari, J. K. Sarin Sundar, G. Sundararajan, S.V. Joshi, “Influence of process parameters during pulsed Nd: YAG laser cutting of nickel-base superalloys”, Journal of Materials Processing Technology, 170(1), pp. 229-239, 2005.
[40]A. H. Hamad, “Effects of Different Laser Pulse Regimes (Nanosecond, Picosecond and Femtosecond) on the Ablation of Materials for Production of Nanoparticles in Liquid Solution”, High Energy and Short Pulse Lasers. InTech, 2016.
[41]G. N. Smith, K. Kalli, K. Sugden, “Advances in femtosecond micromachining and inscription of micro and nano photonic devices”, In Frontiers in Guided Wave Optics and Optoelectronics. InTech, 2010.
[42]L. Li, D. K. Y. Low, M. Ghoreshi, J. R. Crookall, “Hole taper characterisation and control in laser percussion drilling”, CIRP Annals-Manufacturing Technology, 51(1), pp. 153-156, 2002.

無法下載圖示 全文公開日期 2022/08/02 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE