簡易檢索 / 詳目顯示

研究生: 利嘉仁
Chia-Jen Li
論文名稱: 共濺鍍法沉積銅摻雜二氧化矽薄膜的電阻切換特性之研究
Study of Resistive Switching Properties of Co-Sputter Deposited Cu-SiO2 Film
指導教授: 周賢鎧
Shyankay Jou
口試委員: 施文欽
Wen-Ching Shih
鄭偉鈞
Wei-Chun Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 83
中文關鍵詞: 電阻式記憶體Cu-SiO2導電機制
外文關鍵詞: ReRam, Cu-SiO2, Electric conduction
相關次數: 點閱:280下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用Cu和SiO2靶材以共濺鍍法製備50nm厚之Cu-SiO2薄膜,Cu-SiO2薄膜之Cu/(Cu+Si)原子比為19.9%,經由XPS和TEM之結果可以確認中間層的型態為大小約為4~6nm之Cu2O顆粒散佈在非晶質之SiOx(x<2)。將Cu-SiO2中間層使用Cu上電極和Pt下電極製作成metal-oxide-metal (MOM) 元件,可以產生雙極式電阻轉換性質。
    本研究嘗試避免使用昂貴之Pt電極,選用Al和TaN作為替代電極,此兩種MOM元件也可產生雙極式電阻轉換性質。在元件使用Pt時,高電阻狀態時導電機制符合空間電荷傳導機制,而使用Al電極時變成符合Schottky發射機制,其原因可能由於在Al和Cu-SiO2中間層之間形成一層AlOx之超薄氧化層;而使用TaN電極時導電機制隨著循環次數增加由Schottky發射機制變成空間電荷傳導機制,原因也是TaN和混合氧化物層之間有一超薄氧化層。
    接著比較Cu-SiO2中間層之Cu濃度對元件的影響,發現較高Cu濃度之Cu-SiO2中間層會產生永久性的低電阻狀態,而Cu濃度減少會使高電阻狀態時之電阻值上升。隨著元件循環次數增加可以觀察到高電阻狀態之電阻值稍下降,原因是上電極之Cu會進入到Cu-SiO2中間層使Cu濃度增加,進而使高電阻狀態之電阻值稍下降,因此改用上下皆為Al和TaN電極來避免此現象,此元件之高電阻狀態和低電阻狀態皆較穩定。


    A copper-doped silica (Cu-SiO2) film of 50 nm thick was prepared by co-sputter deposition of Cu and SiO2 targets. The Cu / (Cu+Si) atomic ratio in the Cu-SiO2 layer was 19.9%, investigated by XPS. TEM result indicated the Cu2O particles were dispersed in amorphous SiOx (x<2), and the Cu2O particle size was about 4~6 nm. A metal oxide metal (MOM) cell comprising an intermediated Cu-SiO2 layer sandwiched between a Cu top electrode and a Pt bottom electrode was utilized to characterize resistive switching behavior. The cells exhibited bipolar switching behavior.
    We try to avoid use the expensive Pt bottom electrode, but choosing Al and TaN as the bottom electrodes, Both cells exhibited bipolar switching behavior. Electric conduction of the cell in high resistance state (HRS) using Pt bottom electrode followed space-charge-limited-current (SCLC) mechanism, whereas the cell using Al bottom electrode exhibited Schottky emission. An intermediate oxide layer was observed and attributed to the Schottky emission in the cell using Al bottom electrode. A thin oxide layer between TaN electrode and intermediated Cu-SiO2 layer was also observed in the as prepared Cu/Cu-SiO2/TaN cell. Electric conduction of the cell with TaN electrode change from Schottky emission to SCLC mechanism after cycling test.
    Comparing intermediated Cu-SiO2 layer with different Cu concentration, high Cu concentration induced permanent low resistance state (LRS). And the resistance of HRS was increased with decreasing Cu concentration. When Switching cycle times were increased the resistance of HRS decreased. It was suggested that the Cu from top electrode moved into the intermediated Cu-SiO2 layer, thus the Cu concentration of intermediated Cu-SiO2 layer increased. When Al and TaN were used as both top and bottom electrodes, the HRS and LRS became stable.

    中文摘要.........................................................................................................................i 英文摘要........................................................................................................................ii 致謝...............................................................................................................................iii 目錄...............................................................................................................................iv 圖目錄..........................................................................................................................vii 表目錄............................................................................................................................x 第一章 前言..................................................................................................................1 第二章 文獻回顧..........................................................................................................2 2-1 非揮發式記憶體.............................................................................................2 2-1-1鐵電式記憶體….............................................................................…..2 2-1-2磁阻式記憶體.......................................................................................2 2-1-3相變化式記憶體...................................................................................3 2-2 電阻式記憶體.................................................................................................3 2-3電阻轉換之機制..............................................................................................7 2-3-1 LRS單極和雙極導電機制比較..........................................................7 2-3-1.a單極之燈絲理論................................................................7 2-3-1.b 雙極之導電路徑理論……..............................................8 2-3-2 Fowler-Nordheim穿隧....................................................................11 2-3-4蕭基發射.............................................................................................12 2-3-5空間電荷傳導.....................................................................................14 2-3-6普爾-法蘭克發射...............................................................................17 2-4 含有Cu之絕緣層.........................................................................................18 2-5 Cu-SiO2層之製備..........................................................................................19 2-5-1熱擴散法.............................................................................................19 2-5-2共濺鍍法.............................................................................................20 第三章 實驗方法與步驟............................................................................................21 3-1真空鍍膜製程................................................................................................21 3-1-1電漿.....................................................................................................21 3-1-2磁控濺鍍.............................................................................................22 3-2儀器實驗原理................................................................................................23 3-2-1 X光光電子能譜分析儀.....................................................................23 3-3實驗耗材簡介................................................................................................24 3-4實驗儀器簡介................................................................................................25 3-5實驗流程........................................................................................................26 3-5-1矽基材清洗.........................................................................................27 3-5-2用陰影遮罩鍍膜…….........................................................................27 3-5-3 TEM截面試片製備...........................................................................32 3-5 分析與鑑定...........................................................................................35 3-6-1膜厚量測.....................................................................................35 3-6-2薄膜成分分析.............................................................................35 3-6-3截面形態.....................................................................................35 3-6-4電性量測.....................................................................................36 第四章 結果與討論....................................................................................................37 4-1 Cu-SiO2絕緣層成分分析..............................................................................37 4-2 Cu-SiO2絕緣層膜厚測量..............................................................................42 4-3 MOM三層結構截面形態分析.....................................................................43 4-3-1 掃描式電子顯微鏡分析...................................................................43 4-3-2 穿透式電子顯微鏡分析...................................................................44 4-4電性量測........................................................................................................49 4-4-1電阻轉換操作.....................................................................................49 4-4-2導電機制分析.....................................................................................51 4-4-3 Cu/Cu-SiO2/Pt原件持久性測試........................................................52 4-4改變下電極比較............................................................................................54 4-4-1 Al下電極.........................................................................................54 4-4-2 TaN下電極......................................................................................61 4-4-2.a 製作TaN薄膜......................................................................61 4-4-2.b TaN下電極原件電性量測...................................................63 4-5 比較混合氧化物層之Cu含量對電阻轉換性值之影響.............................68 4-5-1 高Cu含量之混合氧化物層..............................................................68 4-5-2 低Cu含量之混合氧化物層.............................................................69 4-5 非Cu上電極.................................................................................................71 4-5-1上下電極皆使用Al電極....................................................................71 4-5-2上下電極皆使用TaN電極.................................................................73 4-6下電極表面租糙度比較................................................................................75 第五章 結論................................................................................................................76 參考文獻......................................................................................................................78 附錄……......................................................................................................................82

    [1] A. Sawa,“Resistive switching in transition metal oxides”, Materials Today ,Volume 11, Issue 6, Pages 28-36, (2008) .
    [2] 蔡濬名,「氧化鋅薄膜於非揮發電阻式記憶體特性之研究」,碩士論文,國立清華大學,新竹 (2008)。
    [3] G. S. Park, X. S. Li, D. C. Kim, R. J. Jung, M. J. Lee, and S. Seo,“Observation of electric-field induced Ni filament channels in polycrystalline NiOx film”, Applied Physics Letters, Volume 91, 222103, (2007).
    [4] S. Seo, M. J. Lee, D. H. Seo, S. K. Choi, D. S. Suh, Y. S. Joung, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim, and B. H. Park,“Conductivity switching characteristics and reset currents in NiO films”, Applied Physics Letters, Volume 86, 093509, (2005).
    [5] K. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Jizuka, Y. Ito, A. Takahashi, A. Okano,Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama ,“Low Power and High Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3V”, Technical Digest - International Electron Devices Meeting, IEDM, 4419060, (2007).
    [6] L. E. Yu, S. Kim, M. K. Ryu, S. Y. Choi, and Y. K. Choi,“Structure Effects on Resistive Switching of Al/TiOx/Al Devices for RRAM Applications”, IEEE Electron Device Letters, Volume 29, NO. 4, (2008).
    [7] W. Y. Chang, Y. C. Lai,T. B. Wu, S. F. Wang, F. Chen,M. J. Tsai,“Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications”, Applied Physics Letters, Volume 92, 022110, (2008).
    [8] J. W. Seo, J. W. Park, K. S. Lim,J. H. Yang, and S. J. Kang,“Transparent resistive random access memory and its characteristics for nonvolatile resistive switching”, Applied Physics Letters, Volume 93, 223505, (2008).
    [9] A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer,“Reproducible switching effect in thin oxide films for memory applications”, Applied Physics Letters, Volume 77, Issue 1, Pages 139-141, (2000).
    [10] Y. Hosoi, Y. Tamai, T. Ohnishi, K. Ishihara, T. Shibuya, Y. Inoue, S. Yamazaki, T. Nakano,S. Ohnishi, N. Awaya, I. H. Inoue, H. Shima, H. Akinaga, H. Takagi, H. Akoh, and Y. Tokura,“High Speed Unipolar Switching Resistance RAM (RRAM) Technology”, Technical Digest-International Electron Devices Meeting, IEDM, 4154333, (2006).

    [11] J. W. Parka, J. W. Park, K. Jung, M. K. Yang, and J. K. Lee,“Influence of oxygen content on electrical properties of NiO films grown by RF reactive sputtering for resistive random-access memory applications”, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, Volume 24, Issue 5, Pages 2205-2208, (2006).
    [12] G. S. Park, X. S. Li, D. C. Kim, R. J. Jung, M. J. Lee, and S. Seo,“Observation of electric-field induced Ni filament channels in polycrystalline NiOx film”, Applied Physics Letters, Volume 91, 222103, (2007).
    [13] C. Schindler, G. Staikov, and R. Waser,“Electrode kinetics of Cu–SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories”, Applied Physics Letters, Volume 94, 072109, (2009).
    [14] J. Yi, S. W. Kim, Y. Nishi, Y. T. Hwang, S. W. Chung, S. J. Hong, and S. W. Park,“Research on Switching property of an oxide/copper sulfide hybrid memory”, Proceedings-2008 9th Annual Non-Volatile Memory Technology Symposium, NVMTS 2008, 4731189, (2008).
    [15] C. Schindler, S. C. P. Thermadam, R. Waser, Member, and M. N. Kozicki, “Bipolar and Unipolar Resistive Switching in Cu-Doped SiO2”, IEEE Transactions on Electron Device , Volume 54, NO. 10, (2007).
    [16] 陳逸書,「以稀土氧化物Y2O3為金氧半場效電晶體閘極氧化層之研究」,碩士論文,私立中原大學,桃園 (2002)。
    [17] 王之賢,「鐵酸鉍薄膜之電阻轉換效應」,碩士論文,國立清華大學,新竹 (2007)。
    [18] W. G. Kim, and S. W. Rhee,“Effect of the top electrode material on the resistive switching of TiO2 thin film”, Microelectronic Engineering, Volume 87, Issue 2, Pages 98-103, (2010).
    [19] D. A. Neamea, Semiconductor Physics & Devices, McGraw-Hill Science Inc., pages 376, New York, (2002).
    [20] Y. S. Lai, C. H. Tu, D. L. Kwong, and J. S. Chen,“Charge-Transport Characteristics in Bistable Resistive Poly(N-Vinylcarbazole) Films”, IEEE Electron Device Letters , Volume 27, NO. 6, pages 451-453, (2006).
    [21] Y. Xia, W. He, L. Chen, X. Meng, Z. Liu,“Field-induced resistive switching based on space-charge-limited current”, Applied Physics Letters, Volume 90, 022907, (2007).
    [22] 李俊諺,「稀土族氧化物薄膜應用於金氧半原件的應用分析」,碩士論文,私立銘傳大學,台北 (2009)。

    [23] J. Yoon, J. Lee, H. Choi, J. B. Park, D. j. Seong, W. Lee, C. Cho, S. Kim, H. Hwang,“Analysis of copper ion filaments and retention of dual-layered devices for resistance random access memory applications”, Microelectronic Engineering, Volume 86, Issue 7-9, Pages 1929-1932, (2009).
    [24] W. Guan, S. Long, Q. Liu,M. Liu, and W. Wang,“Nonpolar nonvolatile resistive switching in Cu doped ZrO2”, IEEE Electron Device Letters, Volume 29, Issue 5, Pages 434-437, (2008).
    [25] W. Guan, M. Liu, S. Long, Q. Liu, and W. Wang,“On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt”, Applied Physics Letters, Volume 93, 223506, (2008).
    [26] K. Fujiwara, T. Yajima, Y. Nakamura, M.J. Rozenberg, and H. Takagi, “Electrode-Geometry control of the formation of a conductive bridge in oxide resistance switching devices”, Applied Physics Express, Volume 2, 081401, (2009).
    [27] L. Zhang, R. Huang, A. Z. H. Wang, D. Wu, R. Wangl, and Y. Kuang,“The Parasitic Effects Induced by the Contact in RRAM with MIM Structure”, International Conference on Solid-State and Integrated Circuits Technology Proceedings, ICSICT, 4734687, (2008).
    [28] T. Y. Lin, L. M. Chen, S. C. Chang, and T. S. Chin,“Electrical resistance switching in Ti added amorphous SiOx”, Applied Physics Letters, Volume 95, 162105, (2009).
    [29] 王貞芮,「添加銅之二氧化矽複合薄膜之研究」,碩士論文,國立台灣科技大學,台北 (2004)。
    [30] B. Chapman, Glow discharge Process, John Wiley & Sons, New York, (1982).
    [31] H. V. Boening, Plasma science and technology, Cornell University Press, New York, (1982).
    [32] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, Minnesota, (1992).
    [33] Y. C. Zhang, J. Y. Tang, G. L. Wang, M. Zhang, and X. Y. Hu,“Facile synthesis of submicron Cu2O and CuO crystallites from a solid metallorganic molecular precursor”, Journal of Crystal Growth, Volume 294, Issue 2, Pages 278-282, (2006).
    [34] H. B. Lv, M. Yin, P. Zhou, T. A. Tang, B. A. Chen, Y.Y. Lin, A. Bao, and M. H. Chi,“Improvement of Endurance and Switching Stability of Forming-free CuxO RRAM”, 2008 Joint Non-Volatile Semiconductor Memory Workshop and International Conference on Memory Technology and Design, Proceedings, NVSMW/ICMTD, 4531821, (2008).

    [35] J. W. Seo, J. W. Park, K. S. Lim, J. H. Yang, and S. J. Kang,“Transparent resistive random access memory and its characteristics for nonvolatile resistive switching”, Applied Physics Letters,Volume 93, 223505, (2008).
    [36] K. Nagashima, T. Yanagida, K. Oka, and T. Kawai ,“Unipolar resistive switching characteristics of room temperature grown SnO2 thin films”, Applied Physics Letters, Volume 94, 242902, (2009).
    [37] D. R. Gaskell, Introduction to the Thermodynamics of Materials, Taylor and Francis, page 359, New York, (2003).
    [38] S. Kim, O. Yarimaga, S. J. Choi, and Y. K. Choi,“Highly durable and flexible memory based on resistance switching”, Solid-State Electronics, Volume 54, Issue 4, Pages 392-396, (2010).
    [39] T. Riekkinen, J. Molarius, T. Laurila, A. Nurmela, I. Suni, and J.K. Kivilahti,“R eactive sputter deposition and properties of TaxN thin films”, Microelectronic Engineering, Volume 64, Issue 1-4, Pages 289-297, (2002).
    [40] 楊宗穎,「二氧化矽與五氧化二鉭相關之一維奈米結構製備與量測」,碩士論文,國立清華大學,新竹 (2006)。
    [41] A. Awasthi, Y.J. Bhatt, N. Krishnamurthy, Y. Ueda, S.P. Garg,“The reduction of niobium and tantalum pentoxides by silicon in vacuum”, Journal of Alloys and Compounds, Volume 315, pages 187–192, (2001).

    QR CODE