簡易檢索 / 詳目顯示

研究生: 吳宣鋒
Hsuan-Feng Wu
論文名稱: 以零階共振器實現低成本圓極化自振式主動集成天線
Low Cost Circularly Polarized Self-Oscillating Active Integrated Antennas by Using Zeroth Order Resonators
指導教授: 馬自莊
Tzyh-Ghuang Ma
朱輝南
Huy-Nam Chu
口試委員: 廖文照
Wen-Jiao Liao
陳筱青
Hsiao-Chin Chen
陳晏笙
Yen-Sheng Chen
馬自莊
Tzyh-Ghuang Ma
朱輝南
Huy-Nam Chu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 85
中文關鍵詞: 超穎物質複合式左右手傳輸線零階共振器圓極化自振式主動集成天線交錯耦合對
外文關鍵詞: self-oscillating active antenna, circularly polarized antenna, cross-coupled pair, metamaterial, composite right/left handed transmission line, zeroth-order resonator
相關次數: 點閱:396下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主旨,乃嘗試使用超穎物質共振器,並使其共振器操作在零階模態,再將其零階超穎物質共振器與交錯耦合對主動電路整合,使迴授振盪器在超穎物質共振器之零階模態滿足振盪條件,並將其振盪器與天線整合以實現自振式主動集成天線。
    本論文共提出兩款「圓極化自振式主動集成天線之實現」設計,其創新之處在於將零階模態自振式主動集成天線與圓極化天線整合,以解決當發射端與接收端面臨極化不匹配時所造成極化損失的問題,並同時具備較高的直流至射頻轉換效率。本研究首先提出一款零階模態線性極化自振式主動集成天線,將交錯耦合對與零階模態共振器整合成主動集成天線,並以此線性極化之主動集成天線為基礎,加以延伸出兩款零階模態圓極化自振式主動集成天線。
    第一款圓極化自振式主動集成天線透過耦合方式來實現;第二款圓極化自振式主動集成天線則是透過差動形式直接激發接地平面實現。第一款和第二款直流與輻射轉換效率分別為53.4% 和39%,等效全向輻射功率分別為 7 dBm和5.5 dBm,3dB 軸向比可使用之角度在xz平面分別為145度與160度,在yz平面上分別為75度與100度。
    本論文將詳細闡述零階超穎物質共振器、自振式主動天線與圓極化天線整合之研究主題。


    The main subject of this thesis is trying to design a metamaterial resonator and making the resonator operate at zeroth order mode. Then integrate the zeroth order mode resonator with a cross-coupled pair (XCP) circuit, and make the whole oscillator oscillate at the zeroth order mode frequency. Last, combine the oscillator with an antenna to complete the self-oscillating active integrated antenna (AIA).
    There are two versions of circularly polarized self-oscillating active integrated antenna (CP−AIA) are proposed and demonstrated, and the innovation of the designs is integrating the zeroth order mode self-oscillating AIA with a circularly polarized antenna. Using the zeroth order mode resonator provides the higher DC−RF conversion efficiency. There is a linearly polarized self-oscillating AIA proposed in this thesis first, and then use it as the base to develop two versions of CP−AIA.
    The first CP−AIA proposed is using coupling concept to achieve, and the second one is using differential feed concept to directly excite the ground plane to realize. The EIRP of the first one and second one are 7 dBm and 5.5 dBm, respectively. The DC−RF conversion efficiency of the first one and second one are 53.4 % and 39 %, respectively. The effective circularly polarized region of the xz cut and yz cut of the first one are 145 degrees and 75 degrees under a standard of 3−dB axial ratio (AR), respectively. The effective circularly polarized region of the xz cut and yz cut of the second one are 160 degrees and 100 degrees under a standard of 3−dB axial ratio (AR), respectively.

    摘要 I Abstract III 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 2 1.3 研究貢獻 4 1.4 論文組織 5 第二章 圓極化自振式主動集成天線之設計流程與理論 6 2.1 前言 6 2.2 自振式主動集成天線之設計與分析流程 8 2.3 超穎物質共振器之理論 10 2.4 以交錯耦合對整合零階共振器實現壓控振盪器 16 2.5 圓極化定義 17 2.6 零階模態主動天線設計[24] 20 2.6.1 零階共振器設計 20 2.6.2 交叉耦合對整合零階共振器 25 2.6.1 模擬與量測結果 31 2.7 結語 37 第三章 圓極化自振式主動集成天線設計 38 3.1 前言 38 3.2 以耦合方式實現零階模態之圓極化主動天線 38 3.2.1 圓極化天線設計與分析 38 3.2.2 量測與模擬之比較 48 3.3 以直接激發接地面方式實現零階模態之圓極化主動天線 54 3.3.1 圓極化天線設計與分析 54 3.3.2 模擬與量測之比較 63 3.4 文獻效力比較 69 3.5 結語 70 第四章 結論 71 4.1 總結 71 4.2 未來可行之研究方向 72 參考文獻 73

    [1] D. van Wageningen and T. Staring, “The Qi wireless power standard,” in Proc. 14th Int. Power Electron. Motion Control Conf. (EPE-PEMC), Sep. 2010, pp. S15-25–S15-32.
    [2] A. Kurs, A. Karalis, R. Maffat, J. D. Joannopoulos, P. Fisher, M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, pp. 83, July 2007.
    [3] C. J. Chen, T. H. Chu, C. L. Lin, and Z. C. Jou, “A study of loosely coupled coils for wireless power transfer,” IEEE Trans. Circuits Systems – II, vol. 57, no. 7, pp. 536-540, July 2010.
    [4] Z. Popovic, E. Falkenstein, D. Constinett, R. Zane, “Low-power farfield wireless powering for wireless sensors,” Proc. IEEE, vol. 101, pp. 139 –1409, June 2013.
    [5] Masuch, J., Delgado-Restituto M., Milosevic D., and Baltus P., “Co Integration of an RF Energy Harvester Into a 2.4 GHz Transceiver,” IEEE Journal of Solid-State Circuits, vol. 48, no. 7, pp.1565–1574, Mar. 2013.
    [6] H. Reinisch, et al., “An Electro-Magnetic Energy Harvesting System With 190 nW Idle Mode Power Consumption for a BAW Based Wireless Sensor Node,” in IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp. 1728-1741, Jul. 2011.
    [7] Z. Popović, E. A. Falkenstein, D. Costinett, and R. Zane, “Low-power far-field wireless powering for wireless sensors,” Proc. IEEE, vol. 101, no. 6, pp. 1397–1409, Jun. 2013.
    [8] J. Masuch, M. Delgado-Restituto, D. Milosevic, and P. Baltus, “Co-integration of an RF energy harvester into a 2.4 GHz transceiver,” IEEE J. Solid-State Circuits, vol. 48, no. 7, pp. 1565–1574, Jul. 2013.
    [9] H. Reinisch et al., “An electro-magnetic energy harvesting system with 190 nW idle mode power consumption for a BAW based wireless sensor node,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1728–1741, Jul. 2011.
    [10] D. H. Choi and S. O. Park, “A varactor-tuned active-integrated antenna using slot antenna,” IEEE Antennas Wireless Propagat. Lett., vol. 4, pp. 191–193, 2005.
    [11] H. P. Moyer and R. A. York, “Active cavity-backed slot antenna using MESFETs,” IEEE Microw. Guided Wave Lett., vol. 3, pp. 95–97, 1993.
    [12] K. H. Y. Ip and G. V. Eleftheriades, “A compact CPW-based single-layer injection-locked active antenna for array applications,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 2, pp. 481–486, Feb. 2012.
    [13] J. W. Andrews and P. S. Hall, “Phase-locked-loop control of active microstrip patch antennas,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 201–206, Jan. 2002.
    [14] Y. Chen and Z. Chen, “A dual-gate FET subharmonic injection-locked self-oscillating active integrated antenna for RF transmission,” IEEE Micorw. Wireless Compon. Lett., vol. 13, pp. 199–201, Jun. 2003.
    [15] M. D. Upadhayay and A. Basu, “Active integrated antenna using BJT with floating base,” IEEE Microw. Wireless Compon. Lett., vol. 23,no. 4, pp. 202-204, Apr, 2013.
    [16] W.J. Tseng and S.J. Chung, “Analysis and application of a two-port aperture-coupled microstrip antenna,” IEEE Trans. Microw. Theory Techn., vol. 46, no. 5, pp. 530-535, May, 1998.
    [17] K. H. Y. Ip, T. M. Y. Kan, and G. V. Eleftheriades, “A single-layer CPW-FED active patch antenna,” IEEE Microw. Guided Wave Lett., vol. 10, no. 2, pp. 64–66, Feb. 2000.
    [18] C. H. Mueller, R. Q. Lee, R. R. Romanofsky, C. L. Kory, K. M. Lambert, F. W. V. Keuls, F. A. Miranda, “Small-size X-band active integrated antenna with feedback loop,” IEEE Trans. Antennas Propagat., vol. 56, pp. 1236–1241, May 2008.
    [19] Y.-Y. Lin, C.-H. Wu, and T.-G. Ma, “Miniaturized self-oscillating annular ring active integrated antennas,” IEEE Trans. Antennas Propag.,vol. 59, no. 10, pp. 3597–3606, Oct. 2011.
    [20] Y.-Y. Lin and T.-G. Ma, “Frequency-reconfigurable self-oscillating active antenna with gap-loaded ring radiator,” IEEE Antennas Wireless Propag. Lett., vol.12 , pp.337-340, 2013.
    [21] C.-H. Wu and T.-G. Ma, “Self-oscillating semi-ring active integrated antenna with frequency reconfigurability and voltage-controllability,” IEEE Trans. Antennas Propag, vol.61 ,no.7 , pp.3880-3885 , Jul. 2013.
    [22] C.-H. Wu and T.-G. Ma, “Miniaturized self-oscillating active integrated antenna with quasi-isotropic radiation,” IEEE Trans. Antennas Propag, vol.62 ,no.2 , pp.933-936 , Feb. 2014.
    [23] C.-H. Wu and T.-G. Ma, “Pattern-reconfigurable self-oscillating active integrated antenna with frequency agility,” IEEE Trans. Antennas Propag, vol.62 ,no.12 , pp.5992-5999 , Dec. 2014.
    [24] Y.-W. Chang and T.-G. Ma, “Zeroth-order self-oscillating active integrated antenna using cross-coupled pair”, IEEE Trans. Antennas Propagat., vol. 65, no. 10, pp. 5011-5018, Oct. 2017.
    [25] B. D. Braaten, S. Roy, S. Nariyal, M. A. Aziz, B. Ijaz, and M. M. Masud, "A metamaterial-based series connected rectangular patch antenna array for UHF RFID Readers " in Proc. 6th European Conference on Antennas and Propagation (EUCAP), 2012, pp. 3164 – 3167.
    [26] J. Birkland and T. Itoh, “A circularly polarized FET oscillator active radiating element,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1991, pp. 1265–1268.
    [27] L. Dussopt and J. M. Laheurte, “Coupled oscillator array generating circular polarization,” IEEE Microw. Guided Wave Lett., vol. 9, pp. 160–162, Apr. 1999.
    [28] S.-D. Yang, V. F. Fusco and D. E. J. Humphrey, “Ring-coupled-oscillator sequentially rotated active antenna,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 8, pp. 1492–1497, Aug. 2001.
    [29] R. K. Singh, A. Basu, and S. K. Koul, “Asymmetric coupled polarization switchable oscillating active integrated antenna,” Asia-Pacific Microw. Conf. (APMC), pp. 1–4, Nov. 2016.
    [30] A. Lai, C. Carloz, and T. Itoh, “Composite right/left-handed transmission line metamaterials,” IEEE Microw. Mag., vol. 5, no. 3, pp. 34-50, Sep. 2004D. M. Pozar, Microwave Engineering, 3rd ed. Wiley, 2005.
    [31] “What is Polarization?,” in Polarimetry Tutorial, ESA Earth Online
    [32] C. A. Balanis, Antenna Theory: Analysis and Design. New York, NY, USA: Wiley, 2016.
    [33] A. S. Andrenko, "Novel circularly polarized loop coupled dipole antenna", Proc. Eur. Conf. Antennas Propag., pp. 1-4, 2006.
    [34] H. N. Chu, Y.-Y. Chen, Y.-L. Tsai, and T.-G. Ma, “Low-cost polarization sensing system for self-oscillating circularly-polarized active integrated antenna” IEEE Access, vol. 7, pp. 170534-170544, 2019.
    [35] Kapil Saraswat, Abhishek Kumar Awasthi, and A. R. Harish, "A Fishing hook shaped dipole antenna for broadband circular polarization", 3rd International Conference on Microwave and Photonics (ICMAP), Feb. 2018.
    [36] Z.-H. Liu, Y.-W. Chang and T.-G. Ma, “High-efficiency self-oscillating active integrated antenna using metamaterial resonators and its application to multicarrier radio frequency identification systems,” IEEE Trans. Antennas Propag., vol. 64, no. 9, pp. 3803–3810, Sept. 2016.
    [37] Z.-H. Liu, H.-N. Chu and T.-G. Ma, “Self-oscillating active integrated antenna with harmonic suppression using metamaterial resonators and ground radiation,” IEEE Antenna Wireless Propag. Lett., vol. 17, no. 9, pp.1687–1691, Sept. 2018.
    [38] Y.-L. Tsai, H. N. Chu, and T.-G. Ma, “Self-oscillating Circularly-Polarized Active Integrated Monopole Antenna Using Cross-Coupled Pair and Inverted-L Strip” IEEE Antenna Wireless Propag. Lett., Apr. 2020.

    QR CODE