簡易檢索 / 詳目顯示

研究生: 吳政勳
Cheng-Hsun Wu
論文名稱: 準等向性及頻率場型可重置化自振主動天線之研究
A Study of Quasi-Isotropic and Reconfigurable Self-Oscillating Active Integrated Antennas with Frequency and Pattern Agility
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 林育德
Yu-De Lin
林根煌
Ken-Huang Lin
盧信嘉
Hsin-Chia Lu
張嘉展
Chia-Chan Chang
楊慶隆
Chin-Lung Yang
楊成發
Chang-Fa Yang
劉馨勤
Hsin-Chin Liu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 86
中文關鍵詞: 自振主動集成天線無線充電與功率傳輸迴圈天線準等向性輻射偶極天線慢波負載等效全向輻射功率頻率捷變可重置天線單極天線超穎物質多載波射頻辨識系統
外文關鍵詞: self-oscillating active integrated antenna, wireless charging and power transmission, loop antenna, quasi-isotropic radiation, dipole antenna, slow-wave loading, effective isotropic radiated power, frequency agility, reconfigurable antenna, monopole antenna, metamaterial, multi-carrier RFID system
相關次數: 點閱:526下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文致力於實現多款具迥異輻射特性之自振主動集成天線,並探討其無線傳能與射頻辨識應用。該創新設計法則之基礎,乃交互使用全波模擬與電路模擬軟體,突破既有模擬方法之限制,成為高度整合主動天線之新式設計準則。該創新方法,可準確預測低輻射效率如電氣小型主動天線之輻射參數與電氣響應,並由一款尺寸及效能與傳統貼片天線相當之雙環自振主動天線加以驗證。
    其次,本論文嘗試將環形輻射體置於一截斷接地面,並與電晶體直接整合,實現一款微型化且具準等向性輻射之自振主動天線。該輻射體同時產生等效電、磁偶極,達到幾近等向輻射之特性。因其環形輻射體之慢波負載,該自振主動天線之電路面積為文獻尖端設計之最小,但仍具有可觀的等效全向輻射功率。
    其次,乃提出具頻率捷變特性之半環型自振主動天線。藉由引入開關二極體、變容器,該設計可操作在兩個截然不同的振盪組態,且對每一個組態而言,其振盪頻率皆可於一定頻率區間內作壓控,以利適應實際佈建環境之需求。
    再者,則整合半環型輻射體與單極天線,並嵌入開關二極體、變容器與不穩定電晶體,成功實現同時具頻率捷變與場型可重置特性之自振主動天線。該輻射體透過二極體切換於四個組態間,各組態皆具有獨自的輻射場型與極化。此外,變容器使振盪頻率於一定頻率區間內可調,是為二維可重置主動天線。
    最終,則探索該高度整合自振主動天線於無線傳能與多載波射頻辨識系統的潛在應用。該雙環自振天線成功驗證無線充電之基本概念,而一款新式超穎物質自振主動天線,更用於多載波射頻辨識系統之測試,證實自振主動天線可顯著擴展一般商用詢問機之涵蓋距離。


    Using a new simulation scheme for fully integrated active antennas, in this dissertation, innovative self-oscillating active integrated antennas (AIAs) with a variety of distinct radiation characteristics are proposed and demonstrated for wireless power transmission and radio frequency identification (RFID) applications.
    The new simulation scheme relies on alternative uses of the full-wave simulator HFSS and circuit emulator ADS, and is capable of accurately predicting the radiation characteristics and oscillation behaviors of a fully integrated self-oscillating AIA even if its size is electrically small compared to the wavelength. The simulation method is verified using a dual-ring AIA whose size and radiation characteristics are comparable to those of a traditional rectangular patch.
    By placing a loop radiator over a truncated ground plane, a miniaturized self-oscillating AIA with quasi-isotropic radiation is then proposed. The AIA directly integrates a loop radiator and an unstable transistor. As the radiator is partially shielded by the ground plane, equivalent electric and magnetic dipole moments are generated simultaneously, therefore giving rise to nearly uniform radiation in terms of the total electric field. Benefitting from slow-wave loadings connected to the loop radiator, the proposed AIA shows the smallest footprint among the state-of-the-art designs in open literature, but still features acceptable effective isotropic radiated power (EIRP).
    Thirdly, a compact frequency-agile self-oscillating semi-ring AIA is presented and investigated. The AIA can be operated at two distinct oscillation states by utilizing a PIN diode and a varactor diode. For each state, the oscillation frequency can be controlled by the reverse bias of the varactor to satisfy the spectrum regulation in real deployment scenarios.
    A pattern-reconfigurable self-oscillating AIA with frequency agility is proposed. By embedding two PIN diodes into the radiator, the antenna can be switched in four states, each associated with a unique radiation pattern and polarization. Additionally, for each state the oscillation frequency can be controlled by means of a varactor diode within a reasonable range. This design could be a pioneering work which combines two reconfigurable techniques into a single AIA.
    Finally, experiments are performed for the sake of exploring the potential applications of AIAs to wireless charging and multi-carrier RFID systems. The dual-ring AIA is used to verify the concept of wireless charging. A newly developed metamaterial AIA is then applied to demonstrate the applicability of self-oscillating AIAs for extending the coverage of a commercial interrogator.

    摘要 i Abstract ii 誌謝 iv Contents vi List of Figures ix List of Tables xiii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey 2 1.3 Contributions 5 1.4 Chapter Outline 7 Chapter 2 New Simulation Scheme for Fully Integrated Self-Oscillating Active Integrated Antennas and Its Demonstration 9 2.1 Introduction 9 2.2 New Simulation Scheme and the Flowchart 10 2.2.1 Measurement Setup 13 2.3 Dual-Ring AIA for Demonstration 15 2.4 Summary 21 Chapter 3 Miniaturized Self-Oscillating Active Integrated Antenna with Quasi-Isotropic Radiation 22 3.1 Introduction 22 3.2 Antenna Topology 22 3.3 Design Concept 23 3.4 Experimental Results and Validation 25 3.5 Summary 31 Chapter 4 Self-Oscillating Semi-Ring Active Integrated Antenna with Frequency Agility 32 4.1 Introduction 32 4.2 Antenna Topology 33 4.3 Operational Principle 34 4.3.1 Frequency Reconfigurability 34 4.3.2 Frequency Agility 37 4.4 Experimental Results and Validation 38 4.5 Summary 43 Chapter 5 Pattern-Reconfigurable Self-Oscillating Active Integrated Antenna with Frequency Agility 45 5.1 Introduction 45 5.2 Antenna Topology 46 5.3 Operational Principle 48 5.3.1 Pattern Reconfigurability 48 5.3.2 Frequency Agility 53 5.4 Experimental Results and Validation 54 5.4.1 EIRPs and Phase Noises 54 5.4.2 Radiation Patterns 57 5.4.3 Frequency Tunability 59 5.5 Summary 62 Chapter 6 Applications of Self-Oscillating Active Antennas in Wireless Charging 64 6.1 Introduction 64 6.2 Wireless Charging Network Using Self-Oscillating AIA 65 6.2.1 Operational Principle 65 6.2.2 Design of the Energy-Harvesting Circuit 66 6.2.3 Experimental Validation 68 6.3 Multi-Carrier RFID System with Self-Oscillating AIA 69 6.3.1 Design of the Metamaterial Self-Oscillating AIA 70 6.3.2 Validation of the Multi-Carrier RFID System 74 6.4 Summary 75 Chapter 7 Conclusion 76 7.1 Summary 76 7.2 Future Works 77 References 79 Publication List 87 Appendix 91

    [1] M. Zorzi, A. Gluhak, S. Lange, and A. Bassi, “From today's intranet of things to a future internet of things: a wireless- and mobility-related view,” IEEE Wireless Communications, vol. 17, pp. 44–51, 2010.
    [2] M. Zhang, F. Sun, and X. Cheng, “Architecture of internet of things and its key technology integration based-on RFID, ” in Proc. Int. Symp. on Computational Intelligence Design, 2012, pp. 294–297.
    [3] M.-H. Lee, C.-Y. Yao, and H.-C. Liu, “Passive tag for multi-carrier RFID systems,” in Proc. IEEE 17th Int. Conf. on Parallel and Distributed Systems, 2011, pp. 872–876.
    [4] P. V. Nikitin, S. Ramamurthy, R. Martinez, and K. V. S. Rao, “Passive tag-to-tag communication,” in Proc. IEEE Int. Conf. on RFID, 2012, pp. 177–184.
    [5] K. Chang, R. A. York, P. S. Hall, and T. Itoh, “Active integrated antennas,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 3, pp. 937–944, Mar. 2002.
    [6] Y. Qian and T. Itoh, “Progress in active integrated antennas and their applications,” IEEE Trans. Microw. Theory Techn., vol. 46, no. 11, pp. 1891–1900, Nov. 1998.
    [7] W. Duerr, W. Menzel, and H. Schumacher, “A low-noise active receiving antenna using a SiGe HBT,” IEEE Microw. Guided Wave Lett., vol. 7, no. 3, pp.63–65, Mar. 1997.
    [8] T. D. Ormiston, P. Gardner, and P. S. Hall, “Compact low noise receiving antenna,” Electron. Lett., vol. 34, no. 14, pp. 1367–1368, Jul. 1998.
    [9] B. De Mulder, G. Rogier, J. Vandewege, and D. De Zutter, “Highly sensitive, co-optimised active receiver antenna: its use in Doppler radar in 2.4 GHz ISM band,” Electron. Lett., vol. 39, no. 18, pp. 1299–1300, Sep. 2003.
    [10] A. S. Andrenko, I. V. Ivanchenko, D. I. Ivanchenko, S. Y. Karelin, A. M. Korolev, E. P. Laz’Ko, and N. A. Popenko, “Active broad X-band circular patch antenna,” IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 529–533, 2006.
    [11] D. Segovia-Vargas, D. Castro-Galan, L. E. Garcia-Munoz, and V. Gozalez-Posadas, “Broadband active receiving patch with resistive equalization,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 1, pp. 56–64, Jan. 2008.
    [12] F. Declercq and H. Rogier, “Active integrated wearable textile antenna with optimized noise characteristics,” IEEE Trans. Antennas Propag., vol. 58, no. 9, pp. 3050–3054, Sep. 2010.
    [13] W. R. Deal, V. Radisic, Y. Qian, and T. Itoh, “Integrated-antenna push-pull power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 8, pp. 1418–1425, Aug. 1999.
    [14] C. Y. Hang, W. R. Deal, Q. Yongxi, and T. Itoh, “Push-pull power amplifier integrated with microstrip leaky-wave antenna,” Electron. Lett., vol. 35, no. 22, pp. 1891–1893, Oct. 1999.
    [15] C. Y. Hang, W. R. Deal, Q. Yongxi, and T. Itoh, “High-efficiency push-pull power amplifier integrated with quasi-Yagi antenna,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 6, pp. 1155–1161, Jun. 2001.
    [16] C. H. Tsai, Y. A. Yang, S. J. Chung, and K. Chang, “A novel amplifying antenna array using patch-antenna couplers-design and measurement,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 8, pp. 1919–1926, Aug. 2002.
    [17] Y. Qin, S. Gao, and A. Sambell, “Broadband high-efficiency circularly polarized active antenna and array for RF front-end application,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 7, pp. 2910–2917, Jul. 2006.
    [18] H. Kim and Y. J. Yoon, “Wideband design of the fully integrated transmitter front-end with high power added efficiency,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 5, pp. 916–924, May 2007.
    [19] R. A. Flynt, L. Fan, J. A. Navarro, and K. Chang, “Low cost and compact active integrated antenna transceiver for system applications,” IEEE Trans. Microw. Theory Techn., vol. 44, no. 10, pp. 1642–1649, Oct. 1996.
    [20] C. M. Montiel, L. Fan, and K. Chang, “A novel active antenna with self-mixing and wideband varactor-tuning capabilities for communication and vehicle identification applications,” IEEE Trans. Microw. Theory Techn., vol. 44, no. 12, pp. 2421–2430, Dec. 1996.
    [21] C. M. Montiel, L. Fan, and K. Chang, “An X-band self-mixing oscillator antenna for transceiver and spatial power-combining applications,” IEEE Trans. Microw. Theory Techn., vol. 46, no. 10, pp. 1546–1551, Oct. 1998.
    [22] J. C. Liu, P. C. Lu, D. C. Chang, and C. C. Chang, “Double-ring active microstrip antenna and self-mixing oscillator in C-band,” IEE Proc. Microw. Antennas Propag., vol. 147, no. 6, pp. 479–482, Dec. 2000.
    [23] M. Krairiksh, W. Buasomboon, P. Ngamjanyaporn, and C. Phongcharoenpanich, “Spherical array self-mixing oscillator antenna,” Electron. Lett., vol. 38, no. 13, pp. 620–622, Jun. 2002.
    [24] J. Shi, J. X. Chen, and Q. Xue, “A differential voltage-controlled integrated antenna oscillator based on double-sided parallel-strip line,” IEEE Trans. Microw. Theory Techn., vol. 56, pp. 2207–2212, Oct. 2008.
    [25] D. H. Choi and S. O. Park, “A varactor-tuned active-integrated antenna using slot antenna,” IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 191–193, 2005.
    [26] F. Giuppi, A. Georgiadis, A. Collado, M. Bozzi, and L. Perregrini, “Tunable SIW cavity backed active antenna oscillator,” Electron. Lett., vol. 46, no. 15, pp. 1053–1054, Jul. 2010.
    [27] P. Liao and R. A. York, “A varactor tuned patch oscillator for active arrays,” IEEE Microw. Guided Wave Lett., vol. 4, no. 10, pp. 335–337, Oct. 1994.
    [28] H. P. Moyer and R. A. York, “Active cavity-backed slot antenna using MESFETs,” IEEE Microw. Guided Wave Lett., vol. 3, pp. 95–97, 1993.
    [29] F. Giuppi, A. Georgiadis, A. Collado, and M. Bozzi, “A compact, single-layer substrate integrated waveguide (SIW) cavity-backed active antenna oscillator,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 431–433, 2012.
    [30] M. Zheng, P. Gardener, P. S. Hall, Y. Hao, Q. Chen, and V. F. Fusco, “Cavity control of active integrated antenna oscillators,” Proc. Inst. Elect. Eng. Microw. Antennas Propag., vol. 148, pp. 15–20, 2001
    [31] J. W. Andrews and P. S. Hall, “Phase-locked-loop control of active microstrip patch antennas,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 1, pp. 201–206, Jan. 2002.
    [32] K. Chang, K. A. Hummer, and J. L. Klein, “Experiments on injection locking of active antenna elements for active phased arrays and spatial power combiners,” IEEE Trans. Microw. Theory Techn., vol. 37, no. 7, pp. 1078–1084, July 1989.
    [33] K. H. Y. Ip and G. V. Eleftheriades, “A compact CPW-based single-layer injection-locked active antenna for array applications,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 2, pp. 481–486, Feb. 2002.
    [34] Y. Chen and Z. Chen, “A dual-gate FET subharmonic injection-locked self-oscillating active integrated antenna for RF transmission,” IEEE Micorw. Wireless Compon. Lett., vol. 13, pp. 199–201, Jun. 2003.
    [35] M. D. Upadhayay, A. Basu, M. P. Abegaonkar, and S. K. Koul, “Active integrated antenna using BJT with floating base,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 4, pp. 202-204, Apr. 2013.
    [36] K. H. Y. Ip, T. M. Y. Kan, and G. V. Eleftheriades, “A single-layer CPW-fed active patch antenna,” IEEE Microw. Guided Wave Lett., vol. 10, no. 2, pp. 64–66, Feb. 2000.
    [37] W. J. Tseng and S. J. Chung, “Analysis and application of a two-port aperture-coupled microstrip antenna,” IEEE Trans. Microw. Theory Techn., vol. 46, no. 5, pp. 530–535, May 1998.
    [38] S.-L. Wang, T.-H. Chou, and S.-J. Chung, “A distributed-feedback antenna oscillator,” IEEE Trans. Microw. Theory Techn., vol. 48, no. 5, pp. 857–860, May 2000.
    [39] J. A. Hagerty and Z. Popovic, “A 10 GHz active annular ring antenna,” in IEEE Int. Symp. on Antennas and Propag. Dig., 2002, pp. 284–287.
    [40] C. H. Mueller, R. Q. Lee, R. R. Romanofsky, C. L. Kory, K. M. Lambert, F. W. V. Keuls, and F.A.Miranda, “Small-size X-band active integrated antenna with feedback loop,” IEEE Trans. Antennas Propag., vol. 56, no. 5, pp. 1236–1241, May 2008.
    [41] G. Forma and J. M. Laheurte, “Compact oscillating slot loop antenna with conductor backing,” Electron. Lett., vol. 32, no. 18, pp. 1633–1635, Aug. 1996.
    [42] D. Bonefacic, J. Baartolic, and Z. Mustic, “Circular active integrated antenna with push-pull oscillator,” Electron. Lett., vol. 38, no. 21, pp. 1238–1240, Oct. 2002.
    [43] D. Bonefacic and J. Bartolic, “Compact active integrated antenna with transistor oscillator and line impedance transformer,” Electron. Lett., vol. 36, no. 18, pp. 1519–1521, Aug. 2000.
    [44] M. D. Upadhayay, A. Basu, S. K. Koul, and M. P. Abegaonkar, “Dual port ASA for frequency switchable active antenna,” in Proc. Asia-Pacific Microw. Conf., 2009, pp. 2272–2725.
    [45] P. Kumar, M. P. Abegaonkar, S. K. Koul, and A. Basu, “Polarization reconfigurable active antenna,” presented at the Int. Symp. on Antennas and Propagation, 2010.
    [46] S. Xiao, Z. Shao, and M. Fujise, “Pattern reconfigurable millimeter wave microstrip quasi-Yagi active antenna,” in Proc. Asia-Pacific Microw. Conf., 2005, vol. 2.
    [47] M. J. Vaughan and R. C. Compton, “28 GHz oscillator for endfire quasioptical power combining arrays,” Electron. Lett., vol. 31, no. 17, pp. 1453–1455, Aug. 1995.
    [48] O. Y. Buslov, A. A. Golovkov, V. N. Keis, A. B. Kozyrev, S. V. Krasilnikov, T. B. Samoilova, A. Y. Shimko, D. S. Ginley, and T. Kaydanova, “Active integrated antenna based on planar dielectric resonator with tuning ferroelectric varactor,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2951–2956, Dec. 2007.
    [49] E. H. Lim and K. W. Leung, “Novel utilization of the dielectric resonator antenna as an oscillator load,” IEEE Trans. Antenna Propag., vol. 55, no. 10, pp. 2686–2691, 2007.
    [50] G.-J. Chou and C.-K. C. Tzuang, “Oscillator-type active-integrated antenna : The leaky-mode approach,” IEEE Trans. Microw. Theory Techn., vol. 44, no. 12, pp. 2265–2272, Dec. 1996.
    [51] B. A. Cetiner, G. R. Crusats, L. Jofre, and N. Biyikli, “RF MEMS integrated frequency reconfigurable annular slot antenna,” IEEE Trans. Antennas Propag., vol. 58, no. 3, pp. 626–632, Mar. 2010.
    [52] P.-Y. Qin, Y. J. Guo, A. R. Weily, and C.-H. Liang, “A pattern reconfigurable U-slot antenna and its applications in MIMO systems,” IEEE Trans. Antennas Propag., vol. 60, no. 2, pp. 516–528, Feb. 2012.
    [53] T. J. Jung, I.-J. Hyeon, C.-W. Baek, and S. Lim, “Circular/Linear polarization reconfigurable antenna on simplified RF-MEMS packaging platform in K-band,” IEEE Trans. Antennas Propag., vol. 60, no. 11, pp. 5039–5045, Nov. 2012.
    [54] Agilent EEsof Knowledge Center [Online]. Available: http://edadocs.software.keysight.com/display/support/Knowledge+Center
    [55] H. T. Friis, “A note on a simple transmission formula,” Proc. IRE, vol. 34, no. 5, pp. 254–256, May 1946.
    [56] Datasheet of Renesas NE3512S02 [Online]. Available: http://www.cel.com/product.do?command=viewOverviewDetail&group=4&level2=2407
    [57] P.-L. Chi, R. Waterhouse, and T. Itoh, “Antenna miniaturization using slow wave enhancement factor from loaded transmission line models,” IEEE Trans. Antennas Propag., vol. 59, no. 1, pp. 48–57, Jan. 2011.
    [58] X. Xu and Y. E. Wang, “Electrically samll loop loaded printed dipoles for broad coverage,” in IEEE Int. Symp. on Antennas and Propag. Dig., 2008.
    [59] Datasheet of Skyworks SMP1345 series [Online]. Available: http://www.skyworksinc.com/Product.aspx?ProductID=486
    [60] Datasheet of Infineon BB837/BB857 series [Online]. Available: http://www.infineon.com/search/en?q=BB857
    [61] R. G. Vaughan and J. B. Andersen, “Antenna diversity in mobile communication,” IEEE Trans. Veh. Techn., vol. 36, no. 4, pp. 149–172, Nov. 1987.
    [62] J. Garnica, R. A. Chinga, and J.-S. Lin, “Wireless power transmission: From far field to near field, ” Proc. IEEE, vol. 101, no. 6, pp. 1321–1331, Jun. 2013.
    [63] A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 544–554, Feb. 2011.
    [64] Y. Li and V. Jandhyala, “Design of retrodirective antenna arrays for short-range wireless power transmission,” IEEE Trans. Antennas Propag., vol. 60, no. 1, pp. 206–211, Jan. 2012.
    [65] H.-C. Liu, M.-C. Hua, C.-G. Peng, and J.-P. Ciou, “A novel battery assisted class-1 generation-2 RF identification tag design,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 5, pp. 1388–1397, May 2009.
    [66] Datasheet of Avago HSMS-286x series [Online]. Available: http://www.avagotech.com/pages/en/rf_microwave/diodes/schottky
    [67] Impinj - Speedway reader family brochure [Online]. Available: https://support.impinj.com/hc/en-us/categories/200156268-Speedway-Readers-Antennas-and-Accessories
    [68] Datasheet of Alien ALN-9540 SquiggleR Inlays [Online]. Available: http://www.falkensecurenetworks.com/Solutions11-Alien.html#ALN9540

    QR CODE