簡易檢索 / 詳目顯示

研究生: 陳信戎
Hsin-Jung Chen
論文名稱: 具低電壓高響應度之綠光光感測薄膜電晶體之技術開發與研究
Investigation of Green Light Organic Thin-Film Phototransistors with Low Operating-Voltage and High Photo-responsivity
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 劉舜維
李志堅
顏文正
范慶麟
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 109
中文關鍵詞: 有機薄膜電晶體有機光電晶體
外文關鍵詞: OTFT, OPT
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文將以Pentacene作為主動層材料,並分為兩部分來探討,第一部分為製作成低電壓有機薄膜電晶體,元件使用雙層High-K閘極絕緣層PVA與ALD-Al2O3來降低電晶體之電壓,利用SEM量測PVA的厚度,並進行電容量測確定PVA與ALD-Al2O3的介電係數,經由實驗結果得知此雙絕緣層結構相較於單層絕緣層結構之元件有著更佳的電特性,由Contact Angle佐證,ALD-Al2O3有極高的疏水性。藉由磁滯測試得知此雙層結構元件有更佳的穩定度,另外可由AFM材料分析得知不同元件的材料晶相差異,此較佳的電特性將利用AFM表面粗糙度來解釋。
第二部分為製作成有機光感測薄膜電晶體,結構與第一部分相同,在此部分Pentacene兼具作為吸光層與通道層的作用,元件製作完後照綠光,量測照光後變化的電特性,並計算出分別之光響應度,光靈敏度、EQE與偵測度。
首先 PVA 將不使用有毒性的交聯劑,而是與 DI.Water 混和,使用實驗室已知的比例 PVA: DI.Water = 1:8,隨後配合旋轉塗佈初轉速 500 rpm,時間 20 秒,末轉速 3500 rpm,持續時間為 40 秒,然後放進烤箱,以 110°C 烘烤 90 分鐘去除絕緣層內之水分得到較佳成膜品質,接著以原子層沉積(Atomic Layer Deposition, ALD)的方式沉積不同厚度之ALD-Al2O3 (0、10、20、30 nm),經由實驗結果可明顯得知10 nm厚度之ALD-Al2O3為電特性較佳之有機薄膜電晶體。
從第一部分可以得知雙High-K閘極絕緣層具有較好的電特性後,通過調變吸光層(Pentacene)厚度(30、50、70 nm)至元件電特性及響應度達最佳值,並利用UV-Visible 光譜儀量測薄膜之光吸收度,驗證Pentacene之厚度變化在綠光波段的吸收度確實明顯的提升,最後搭以元件負閘極長時間偏壓測試與磁滯的數據,加以說明此雙High-K閘極絕緣層不僅改善表面提升元件電特性與光特性,同時也通過降低界面缺陷增加了元件的穩定性。


The emerge of organic thin-film transistors (OTFTs) have provided a path to achieve low cost and less complexity of device fabrication. Among all organic materials, pentacene based OTFT is considered to be the most potential candidate for practical application including flexible displays, large-area sensors for artificial skin applications, and radio-frequency power transmission devices.
For OTFT, power consumption of device has always been our great concern. Basically, two paths are provided to solve this difficulty. One is thickness reduction of dielectric, the other is adoption of high-k dielectric. For the first path, due to the fabrication method of organic thin film (spin coating), density of grain boundaries, defects, and pinholes will increase dramatically and lead to degradation of the device. Therefore, we utilize high-K dielectric material, in this study, we selected PVA, an organic high k material, as our gate dielectric since its compatibility of flexible device fabrication. However, PVA is a hydrophilic material, which means that Pentacene should be deposited after a specific curing process or surface engineering design. Here we add an ALD-Al2O3 layer, which is also a high-K material to turn the surface into a hydrophobic surface. By doing so, the device can achieve low-voltage operation with significant improvements in electrical performance.
After achieving a low-voltage OTFT device, we will adopt the structure to make an organic photo-transistor (OPT). In this device, pentacene functions as both a light absorbing layer and a channel layer. After the device is manufactured, it will be illuminated with green light and measured the electrical characteristics, and calculate the photo-responsivity, photo-sensitivity, EQE and detectivity.

論文摘要 I ABSTRACT III 致謝 V 目錄 VI 圖目錄 X 表目錄 XVII 第一章 概論 1 1.1 研究背景 1 1.2 研究動機 2 第二章 有機薄膜電晶體介紹 4 2.1 有機半導體介紹 4 2.1.1 有機半導體材料介紹 6 2.1.2 有機半導體Pentacene之特性介紹 8 2.2 有機半導體之傳輸機制 9 2.2.1 載子跳躍模型機制(Hopping Model)[45-46] 10 2.2.2 陷阱補捉與熱釋放模型機制 (Multiple Trapping and Release) 11 2.2.3 偏極子模型機制 (The Polaron Model) [49] 12 2.3 閘極絕緣層介紹 13 2.3.1 閘極絕緣層材料 13 2.3.2 高介電常數(High-K)之介紹 14 2.4 有機薄膜電晶體結構 15 2.5 有機薄膜電晶體之操作模式 17 2.6 電性參數萃取方式 20 2.6.1 載子移動率(Mobility, μ) 21 2.6.2 臨界電壓(Threshold Voltage, Vth) 22 2.6.3 次臨界斜率(Subthreshold Swing, S.S.) 23 2.6.4 開關電流比(On/Off Current Ratio, Ion/Ioff) 24 2.7 有機光感測薄膜電晶體 25 2.8 光電流產生機制 26 2.9 有機光感測薄膜電晶體評價參數[63] 27 第三章 雙High-K閘極絕緣層低電壓有機薄膜電晶體之製作方法與流程 29 3.1 基板(Substrate)與閘極(Gate Electrode) 29 3.2 雙High-K閘極絕緣層( High-K Bilayer Gate Dielectric) 30 3.3 主動層 32 3.4 源極/汲極 34 3.5 製程機台及分析設備介紹 35 3.5.1 製程機台 36 3.5.2 原子層沉積系統(Atomic Layer Deposition, ALD) 39 3.5.3 半導體參數分析儀(Semiconductor Parameter Analyze) 40 3.5.4 原子力顯微鏡(ATOMIC FORCE MICROSCOPE,AFM) 41 3.5.5 接觸角量測儀(CONTACT ANGLE) 42 3.5.6 電感電容阻抗量測儀(LCR METER) 43 3.5.7 紫外光-可見光光譜儀(Ultraviolet/Visible Spectrophotometer) 43 3.5.8 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 44 第四章 雙High-K絕緣層結構有機薄膜電晶體實驗結果 45 4.1 使用PVA當閘極絕緣層元件電特性 45 4.2 使用ALD-Al2O3改善元件絕緣層與主動層間之親水性 50 4.2.1 使用ALD-Al2O3之雙High-K絕緣層元件特性分析 52 4.3 挑選ALD-Al2O3沉積於PVA上之最佳厚度參數值 58 4.4 雙High-K絕緣層結構元件可靠性測試 67 第五章 雙High-K絕緣層有機光感測薄膜電晶體實驗結果 73 5.1 使用PVA當閘極絕緣層元件電特性 73 5.2 吸光層厚度最佳化 78 5.3 元件於可見光波段之響應度與吸收光譜關係 84 5.4 元件可靠性分析 95 第六章 結論與未來展望 101 6.1 結論 101 6.2 未來展望 103 參考文獻 104

[1] Qiang Ren, Qingsheng Xu, Hongquan Xia, Xiao Luo, Feiyu Zhao, Lei Sun, and Yao Li, Organic Electronics, vol. 51, p. 142 (2017).
[2] Shuo-Huang Yuan, “Effect of Metallic Nanoparticles on the Photodetection Behavior of an Organic Phototransistor,” National Central University (2016).
[3] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, Nature Nanotechnol., vol. 7, p. 363 (2012).
[4] B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, Phys. Rev. Lett., vol. 84, p. 4721 (2000).
[5] R. Zakaria, W. K. Lin, and C. C. Lim, Appl. Phys. Exp., vol. 5, p. 082002 (2012).
[6] Wenli Lv , Lili Du , Yingquan Peng , Zhong ZhaoY. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, Applied Physics Letters, vol. 81, p.562 (2002).
[7] R. Schroeder, L. A. Majewski, M. Grell, J. Maunoury, J. Gautrot, P. Hodge, and M Turner, Appl. Phys. Lett., vol. 87, p.113501 (2005).
[8] Bang Joo Song, Kihyon Hong, Woong-Kwon Kim, Kisoo Kim, Sungjun Kim, and
Jong-Lam Lee, J. Phys. Chem. B, vol. 114, p. 14854 (2010).
[9] S. T. Zhang, X. M. Ding, J. M. Zhao, H. Z. Shi, J. He, Z. H. Xiong, H. J. Ding, E. G. Obbard, Y. Q. Zhan, W. Huang, and X. Y. Hou, Appl. Phys. Lett., vol. 84, p.425 (2004).
[10] X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H. Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, X. M. Ding, W. Huang, and X. Y. Hou, J. Appl. Phys., vol. 95, p.3828 (2004).
[11] V. Subramanian, J. M. J. Frechent, P. C. Chang, and S. K. Volkman, Proceeding of the IEEE, vol. 93, p. 1330 (2005).
[12] H. Kim, S. Sohn, D. Jung, W. J. Maeng, H. Kim, T.S. Kim, J. Hahn, S. Lee, Y. Yi, and M. H. Cho, Organic Electronics, vol. 9, p. 1140 (2008).
[13] M. W. Shin and S. H. Jang, Organic Electronics, vol. 13, p.767 (2012).
[14] T. Ahn, H. Jung, H. J. Suk, and M. H. Yi, Synthetic Metals, vol. 159, p. 1277 (2009).
[15] A. Tsumura, H. Koezuka, and T. Ando, Appl. Phys. Lett., vol. 49, p. 1210 (1986).
[16] A. Assadi, C. Svensson, M. Willander, and O. Ingans, Appl. Phys. Lett., vol. 53. p. 195 (1988).
[17] J. Paloheimo, E. Punkka, H. Stubb, P.Kuivalainen, in Lower Dimensional Systems and Molecular Devices, Proceedings of NATO ASI, Spetses, Greece (Ed: R. M. Mertzger), Plenum, New York, (1989).
[18] Z. Bao, A. Dodabalapur, and A. J. Lovinger, Appl. Phys. Lett., vol. 69, p. 4108 (1996).
[19] H. Sirringhaus, N. Tessler, R. H. Friend, Science, vol. 280, p. 1741 (1998).
[20] F. Ebisawa, T. Kurokawa, S. Nara, Journal of Applied Physics, vol. 54, p. 3255 (1983).
[21] J. H. Burroughes, C. A. Jones, and R. H. Friend, Nature, vol. 335, p. 137 (1988).
[22] H. Fuchigami, A. Tsumura, and H. Koezuka, Appl. Phys. Lett., vol. 63, p. 1372, (1993).
[23] F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, and P. Alnot, Journal of the American Chemical Society, vol. 115, p. 8716 (1993).
[24] B.Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui, P. Lang, and F. Garnier, Chemistry of Materials, vol. 6, pp 1809 (1994).
[25] A. Dodabalapur, L. Torsi, and H. E. Katz, Science, vol. 268, p. 270 (1995).
[26] C. D. Dimitrakopoulos, B. K. Furman, T. Graham, S. Hegde, and S. Purushothaman, Synthetic Metals, vol. 92, p. 47 (1998).
[27] H. E. Katz, L. Torsi, and A. Dodabalapur, Chemistry of Materials, vol. 7, p. 2235 (1995).
[28] R. Hajlaoui, D. Fichou, G. Horowitz, B. Nessakh, M. Constant, and F. Garnier, Advanced Material, vol. 9, p. 557 (1997).
[29] R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A. Elkassmi, F. Demanze, and F. Kouki, Advanced Material, vol. 9, p. 389 (1997).
[30] J. H. Schön, Ch. Kloc, and B. Batlogg, Organic Electronics, vol. 1, p. 57 (2000).
[31] Y. -Y. Lin, D. J. Gundlach, S. Nelson, and T. N. Jackson, IEEE Electron Device Letters, vol. 18, p. 606 (1997).
[32] C. D. Dimitrakopoulos, A. R. Brown, A. Pomp, Journal of Applied Physics, vol. 80, p. 2501 (1996).
[33] Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, “High Mobility Pentacene Organic Thin Film Transistors,” 54th Annual Device Research Conference Digest, New York, p. 80 (1996).
[34] G. Horowitz, X. Peng, D. Fichou, and F. Garnier, Synthetic Metals, vol. 51, p. 419 (1992).
[35] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming, Applied Physics Letter, vol. 67, p. 121 (1995).
[36] J. Kastner, J. Paloheimo, and H. Kuzmany, in Solid State Sciences, edited by H. Kuzmany, M. Mehring, and J. Fink, Springer, New York, p. 512 (1993).
[37] A. R. Brown, D. M. de Leeuw, E. J. Lous, and E. E. Havinga, Synthetic Metals, vol. 66, p. 257 (1994)
[38] J. G. Laquindanum, H. E. Katz, A. Dodabalapur, and A. J. Lovinger, Journal of the American Chemical Society, vol. 118, p. 11331 (1996).
[39] G. Guillaud, M. Al Sadound, and M. Maitrot, Chemical Physics Letters, vol. 167, p. 503 (1990).
[40] Z. Bao, A. J. Lovinger, and J. Brown, Journal of the American Chemical Society, vol. 120, p. 207 (1998).
[41] H. Fuchigami, A. Tsumura, and H. Koezuka, Applied Physics Letter, vol. 63, p. 1372 (1993).
[42] Ke Zhou, Huanli Dong, Hao-li Zhang and Wenping Hu, Chem. Phys, vol. 16, p. 22448 (2014).
[43] J. M. Shaw, and P. F. Seidler, “Organic Electronic: Introduction,” IBM Journal of Research and Development, vol.45, no.1, p.3 (2001).
[44] M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S. Forrest, Advanced Material, vol. 10, p. 234 (1998).
[45] E. M. Conwell, Physical Review Letters, vol. 103, p. 51 (1956).
[46] N. F. Mott, Canadian Journal of Physics. vol. 34, p. 1356 (1956).
[47] S. Locci, “Modeling of Physical and Electrical Characteristics of Organic Thin Film Transistors,” Masters Thesis, University of Cagliari (2009).
[48] P. G. Le Comber, and W. E. Spear, Physical Review Letters, vol. 25, p. 509 (1970).
[49] C.W.Kuo, “Properties of Carriers Transportation in Organic Thin Film Transistors,” Masters Thesis, National Cheng Kung University, Tainan, Taiwan (2006).
[50] Y. X. Ma, W. M. Tang, and P. T. Lai, IEEE Electron Device Letters, vol. 39, no. 10, p.1516 (2018).
[51] L. Guo, X. Zhu, S. Sun, C. Cong, Q. Zhou, X. Sun, and Y. Liu, Organic Electronics, vol. 69, p. 308 (2019).
[52] R. Ye, M. Baba, K. Suzuki, Y. Ohishi, K. Mori, Thin Solid Films, vol. 464-465, p. 437 (2004).
[53] D. Kumaki, T. Umeda, and S. Tokito, Applied Physics Letter, vol. 92, p. 093309 (2008).
[54] Y. H. Noh, Y. Park, S. M. Seo, and H. H. Lee, Organic Electronics, vol. 7, p. 271 (2006).
[55] Y. Roichman and N. Tessler, Applied Physics Letter, vol. 80, p. 151 (2002).
[56] I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, IEEE Transactions on Electron Devices, vol. 48, no. 6 (2001).
[57] G. B. Blanchet, C. R. Fincher, and M. Lefenfeld, Applied Physics Letters, vol. 84, no. 2 (2004).
[58] A. R. Brown, C. P. Jarrett, D. M. de Leeuw and M. Matters, Synthetic Metals, vol. 88, p. 37 (1997).
[59] A.Pierre, A.Gaikwad, and A.C.Arias, Nature Photonics, vol. 11, p. 193 (2017).
[60] Richard D. Yang, T. Gredig, Corneliu N. Colesniuc, Jeongwon Park, Ivan K. Schuller, William C. Trogler, and Andrew C. Kummel, Appl. Phys. Lett., vol. 90, p. 263506 (2007).
[61] S. C. Chen, K.H. Wu, J.-X. Li, A. Yabushita, S.H. Tang, C. W. Luo, J.Y. Juang, H.C.Kuo, Y.L. Chueh, Sci. Rep., vol. 5, p. 18354 (2015).
[62] Chen Dongxian, “Metal Oxides as the Buffer Layers for Organic Thin-Film Transistors,” Submitted to Institute of Display College of Electrical and Computer Engineering Nation Chiao Tung University, Hsinchu, Taiwan (2005).
[63] Lin Jingzhe, “Zinc oxide nanoparticle thin films by thermal evaporation and their optical properties,” National Taiwan University of Science and Technology, Taipei, Taiwan (2016).
[64] L. Guo, X. Zhu, S. Sun, C. Cong, Q. Zhou, X. Sun, and Y. Liu, Organic Electronics, vol. 69, p. 308 (2019).
[65] Y. X. Yuan, C. Y. Han, W. M. Tang, and P. T. Lai, IEEE Electron Device Lett., vol. 39, no. 7, p. 963 (2018).
[66] A. Yu, Q. Qi, P. Jiang, and C. Jiang, Synthetic Metals, vol. 159, p. 1467 (2009).
[67] W. C. Shin, H. Moon, S. Yoo, and B. J. Cho, 10th IEEE International Conference on Nanotechnology (2010).
[68] B. Xu, P. Wang, J. Zhong, 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices; 96861Q (2016).
[69] N. V. Cvetkovic, K. Sidler, V. Savu, J. Brugger, D. Tsamados, and A. M. Ionescu, Microelectronic Engineering, vol. 88, p. 2496 (2011).
[70] Y. X. Ma, W. M. Tang, and P. T. Lai, IEEE International Conference on Electron Devices and Solid-State Circuits (2018).
[71] K. D. Kim and C. K. Song, Appl. Phys. Lett., vol. 88, p. 233508 (2006).
[72] S. Lee, D. Yun, S. Rhee, and K. Yong, J. Mater. Chem., vol.19, p. 6857 (2009).
[73] D. Yun, S. Lim, T. Lee, and S. Rhee, Organic Electronics, vol. 10, p. 970 (2009).
[74] S. Yuan, Z. Pei, H. Lai, C. Chen, P. Li, and Y. Chan, IEEE ELECTRON DEVICE LETTERS, vol. 36, no. 11, p. 1186 (2015).
[75] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. Pelayo Garcia de Arquer, F. Gatti and Frank H. L. Koppens, Nature Nanotechnology, vol. 7, p. 363 (2012).
[76] S. Gorgolis, A. Giannopoulou, D. Anastassopoulos, and P. Kounavis, J. Appl. Phys., vol. 112, p. 013101 (2012).
[77] S. Nam, J. Seo, S. Park, S. Lee, J. Jeong, H. Lee, H. Kim, and Y. Kim, ACS Appl. Mater. Interfaces, vol. 5, p. 1385−1392 (2013).
[78] X. Liu, M. Zhang, G. Dong, X. Zhang, Y. Wang, L. Duan, L. Wang, and Y. Qiu, Organic Electronics, vol. 15, p.1664 (2014).
[79] X. Liu, E. K. Lee, D. Y. Kim, H. Yu, and J. H. Oh, ACS Appl. Mater. Interfaces, vol. 8, p. 7291 (2016).
[80] Suman Kalyan Samanta, Inho Song, Jong Heun Yoo, and Joon Hak Oh, ACS Appl. Mater. Interfaces, vol. 10, p.32444 (2018).
[81] Chulyeon Lee, Hyemi Han, Myeonghun Song, Jooyeok Seo, Hwajeong Kim, and Youngkyoo Kim, IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 2, p.1 (2018).
[82] Qian-Min Wang and Zhi-Yong Yang, Carbon, vol. 138, p. 90 (2018).
[83] Y. Wang, L. Zhu, T. Wang, Y. Hu, Z. Deng, Q. Cui, Z. Lou, Y. Hou, and F. Teng, Organic Electronics, vol.62, p. 448 (2018).
[84] Guiheng Wang, Kaiqiang Huang, Zhen Liu, Yuchang Du, Xiaohong Wang, Hongbo Lu, Guobing Zhang, and Longzhen Qiu, ACS Appl. Mater. Interfaces, vol. 10, p.36177 (2018).
[85] Y. Che, G. Zhang, Y. Zhang, X. Cao, M. Cao, Y. Yu, H. Dai, J. Yao, Optics Communications, vol. 425 p. 161 (2018).
[86] K. Yeliu, J. Zhong, X. Wang, Y. Yan, Q. Chen, Y. Ye, H. Chen, and T. Guo, Organic Electronics, vol. 67, p. 200 (2019)
[87] Erwin Kessels, “ALD presentation Vacuum Expo,” Technische Universiteit Eindhoven.
[88] W.M.M. Kessels and M. Putkonen, MRS Bulletin, vol. 36, 11, p. 907 (2011).

無法下載圖示 全文公開日期 2025/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE