簡易檢索 / 詳目顯示

研究生: 陳聖儒
CHEN - SHENG RU
論文名稱: 應用相位平移輪廓法於覆晶製程中錫球凸塊高度之量測與分析
Application of Phase Shifting Profilometry to Measurement and Analysis of Height of Solder Bumps in Flip Chip Process
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 黃昌群
Chang-Chiun Huang
張嘉德
Chia-Der Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 98
中文關鍵詞: 覆晶構裝相位平移輪廓法仿射座標轉換迴歸分析灰關聯分析
外文關鍵詞: Flip-chip, phase-shifting profilometry, affine coordinate transformation, regression analysis, gray correlation coefficient.
相關次數: 點閱:236下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要之目的是對覆晶(Flip chip)構裝製程上所使用之錫球凸塊高度進行高度重建,由於錫球凸塊的大小跟共面性對於封裝後電子元件之效能影響甚鉅,故對於錫球凸塊的形貌資訊是不可或缺的。
    本研究應用數位光處理(digital light processing, DLP)投影機做為投影光源,利用四步及六步相位平移輪廓法進行機台精度的計算以及覆晶構裝上錫球凸塊之重建。對於因為光學透鏡所造成之投影光源不均勻之現象,使用了仿射座標轉換(affine coordinate transformation)找出投影光源對應至影像擷取元件之座標轉換關係,再利用投影均勻光源推估出光源不均勻之分佈,最後配合座標轉換之參數成功地將光源不均之問題解決,成功的將弦波擬合均方根誤差達10.5的未進行光源校正之條紋,大量降低至2.902。條紋參數之調整,使用了灰關聯分析來進行參數對於解纏繞平面的影響分析,並應用解纏繞平面之最佳直線定義解纏繞平面之平整性,使用多組不同條紋之影像配合迴歸分析理論找出條紋之最佳參數,並配合適應性k值求取高度重建之參數,解決的斜向投影產生條紋變形的問題。
    經由實驗結果確認,振幅之平均灰關聯係數為0.5612,週期之平均灰關聯係數為0.537,且由迴歸模型也驗證了灰關聯係數計算之結果。本研究所使用之實驗機台應用四步相位平移平均誤差3.57 um,最大誤差為4.74 um,最大標準差為8.38 um;六步相位平移平均誤差1.19 um,最大誤差為2.92 um,最大標準差為4.95 um,顯示本研究所使用之實驗機台具有高精度及重現性。經由四步及六步之相位平移輪廓法之重建結果,發現六步相位平移輪廓法對於漫射干擾的抵抗力極優。


    This study reconstructed the height of the solder bumps for flip chip packaging process. As the size and coplanarity of solder bumps have significant influences on the effectiveness of the packaged electronic modules, the shape information of solder bumps is indispensable.
    This study used digital light processing (DLP) projector as the projection light source, and used 4-steps phase shifting profilometry and 6-steps phase shifting profilometry to calculate the machine accuracy and reconstruct the solder bumps in flip chip packaging. For the nonuniformity of projection light source resulted from optical lens, the affine coordinate transformation was used to determine the coordinate transformation relationship between projection light source and image capture component. The nonuniform distribution of light source was estimated by projecting uniform light source. Finally, the parameters of coordinate transformation were used to solve the problem of nonuniform light source successfully. The cosine fitting RMSE of 10.5 of the stripes without light source correction was reduced to 2.902 significantly. In terms of adjustment of stripe parameters, the gray relative analysis method was used to analyze the influence of the parameters on the phase unwrapping plane, and the best straight line of phase unwrapping plane was used to define the leveling of the phase unwrapping plane. Multiple images of different stripes and the theory of regression analysis were used to determine the optimal parameters of stripes. The adaptive k value was used to determine the parameters of height reconstruction, and the stripe transformation resulted from oblique projection was solved.
    The experimental results proved that the average gray correlation coefficient of amplitude is 0.5612, the average gray correlation coefficient of period is 0.537, and the regression model has validated the results of gray correlation coefficient. The mean error of the experimental machine used in this study using 4-steps phase shifting is 3.57 um , the maximum error is 4.74 um , and the maximum standard deviation is 8.38 um . The mean error of 6-steps phase shifting is 1.19 um, the maximum error is 2.92 um, and the maximum standard deviation is 4.95 um. In other words, the experimental machine used in this study has high precision and reproducibility. According to the reconstruction results of 4-steps and 6-steps phase shifting profilometry, the 6-steps phase shifting profilometry has excellent resistance to the diffusion interference.

    誌謝 I 摘要 III Abstract V 目錄 VII 表目錄 X 圖目錄 XI 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 文獻回顧 5 1.3.1 錫球凸塊檢測方法 6 1.3.2 非接觸式三維量測技術 8 1.3.3 條紋輪廓投影技術 10 1.3.4 條紋輪廓投影校正技術 12 1.4 論文架構及研究流程圖 14 第2章 硬體架構及量測系統 17 2.1 數位光處理技術 17 2.2 機台架構圖 19 2.3 硬體與軟體設備 21 第3章 研究方法及相關理論 23 3.1 條紋輪廓投影法 23 3.2 傅立葉級數及傅立葉轉換 26 3.3 相位平移條紋輪廓法 29 3.4 解纏繞相位 33 3.5 灰色關聯度分析 41 3.6 迴歸分析 44 3.6.1 一階迴歸係數之計算 44 3.6.2 二階迴歸係數計算 47 3.6.3 迴歸係數及模型之判定 48 3.7 中值濾波 50 第4章 系統校正方法 52 4.1 投影週期變化 52 4.2 投影光源校正 55 4.2.1 仿射座標轉換 57 4.3 重建高度校正 65 第5章 實驗規劃與方法 66 5.1 條紋參數調整 66 5.2 高度重建結果 83 第6章 結論與未來展望 89 6.1 結論 89 6.2 未來展望 90

    [1] 林宸生,「資電科技與人文」,滄海書局,2005。
    [2] 唐經洲,「跳脫製程技術極限思維 3D IC再續莫爾定律」,新通訊元件雜誌,2011。
    [3] 張俊彥、鄭晃忠,「積體電路製程及設備技術手冊,經濟部技術處」, 經濟部技術處,1997。
    [4] 呂宗興,「從IC封裝的角度看系統產品組裝製程及使用期間所產生IC元件失效問題」, SMTsolution,2010
    [5] 陳信文,「電子構裝技術與材料」,高立圖書,2005。
    [6] 田民波,「半導體電子元件構裝技術」,五南圖書,2005。
    [7] 鍾文仁,「IC封裝製程與CAE應用」,全華圖書,2005。
    [8] 林高輝,「映射函數三維空間影像量測技術研究」,中原大學機械工程學系博士論文,2002。
    [9] P. Kim and S. Rhee, “Three-dimensional inspection of ball grid array using laser vision system,” IEEE Transactions on Electronics Packing Manufacturing , Vol. 22, No. 2, pp. 151-155, 1999.
    [10] C. S. Lin and L. W. Lue, “An image system for fast positioning and accuracy inspection of ball grid array boards,” Microelectronics Reliability, Vol. 41, No. 1, pp. 119-128, 2001.
    [11] C. Qixin, F. Zhuang, X. Nianjiong and F. L. Lewis, “A binocular machine vision system for ball grid array package inspection,” Assembly automation, Vol. 25, No. 3, pp. 217-222, 2005.
    [12] H. N. Yen, D. M. Tsai and S. K. Feng, “Full-field 3-D Flip-chip solder bumps measurement using DLP-based phase shifting technique,” IEEE Components, Packaging, and Manufacturing Technology Society, Vol. 31, No. 4, pp. 830-840, 2008.
    [13] 林源益,「應用同步代數重建法餘BGA檢測之研究」,國立清華大學動力機械工程學系碩士論文,2008。
    [14] Z. Wei, Z. Xiao, X. Zhang and H. Zhou, “Coplanarity inspection of BGA solder balls Based on Laser interference structure light,” 2011 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems, Beijing, Vol. 8201, Nov. 2011.
    [15] J. Liu, T. Shi, Q. Xia and G. Liao, “Flip chip solder bump inspection using vibration analysis,” Microsystem technologies-micro-and nanosystems-information storage and processing system, Vol. 18, No. 3, pp. 303-309, 2012.
    [16] 林建忠,「雷射測距技術與研究現況」,OPTOLINK,1999。
    [17] 吳欣學,「應用投影條紋法於三維曲面之重建」,國立成功大學醫學工程研究所碩士論文,2007。
    [18] 張文龍、許富銓、莊殷,「比較雷射干涉儀與空間對角線量測法線性誤差精度之研究」,中國機械工程學會第二十四屆全國學術研討會論文集,桃園中壢,2007。
    [19] B. Bowe and V. Toal, “White light interferometric surface profiler,” Optical Engineering, Vol. 37, No. 6, pp. 1796-1799, 1998.
    [20] 蘇理中,「應用雲紋干涉儀分析打線封裝產品熱變形行為」,國立成功大學機械工程學系碩士論文,2009。
    [21] 蔡文元,「具有濕度自動修正功能的新型超音波空氣溫度量測系統之設計」,國立成功大學工程科學系博士論文,2007。
    [22] Y. Ichioka and M. Inuiya, “Direct phase detecting system,” Applied Optics, Vol. 11, No. 7, pp. 1507-1514, 1972.
    [23] J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White and D. J. brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Applied Optics, Vol. 13, No. 11, pp. 2693-2703, 1974.
    [24] M. Takeda, H. Ina and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” Optical Society of America, Vol. 72, No. 1, pp. 156-160, 1982.
    [25] P. Hariharan, B. F. Oreb and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Applied Optics, Vol. 25, No. 13, pp. 2504-2506, 1987.
    [26] P. Jia, J. Kofman and C. English, “Two-step triangular-pattern phase-shifting method for three-dimensional object shape measurement,” Optical Engineering, Vol. 46, No. 8, pp. 083201-1- 083201-9, 2007
    [27] P. Jia, J. Kofman and C. English, “Multiple-step triangular-pattern phase shifting and the influence of number of steps and pitch on measurement accuracy,” Applied Optics, Vol. 46, No. 16, pp. 3253-3262, 2007.
    [28] Z. Zhang, D. Zhang and X. Peng, “Performance analysis of a 3D full-field sensor based on fringe projection,” Optics and Laser in Engineering, Vol. 42, No. 3, pp. 341-353, 2004.
    [29] X. L. Zhang, Y. C. Lin, M. R. Zhao, X. B. Niu and Y. G. Huang, “Calibration of a fringe projection profilometry system using virtual phase calibration model planes,” Journal of optics A: Pure and Applied Optics, Vol. 7, No. 4, pp. 192-197, 2005.
    [30] Y. H. He and Y. P. Cao, “Three-dimesional measurement method with orthogonal composite grating aided by fringe contrast and background calibration,” Optical Engineering, Vol. 47, No. 073603, pp. 70303-1-70303-6, 2010.
    [31] L. J. Hornbeck, “Digital light processing and MEMS: timely convergence for a bright future,” Texas Instruments Inc.
    [32] J. B. Sampsell, “Digital micromirror device and its application to projection displays,” Journal of Vacuum Science & Technology B, Vol. 12, No. 6, pp. 3242-3246, 1994.
    [33] J. B. Sampsell, “The digital micromirror device,” 7th ICSS&A, Yokohama, Japan, 1993.
    [34] 林家銘,「數位動態紅外目標產生器之設計」,逢甲大學自動控制工程學系碩士論文,2006。
    [35] 陳芳鈿,「拼接式多投影機的自動色彩匹配」,國立中央大學資訊工程研究所碩士論文,2006。
    [36] 蔡福森,「DLP投影機技術與產品動態」,光連雙月刊,Vol. 18,1998。
    [37] W. H. Su, “Color-encoded fringe projection for 3D shape measurements,” Optics Express, Vol. 15, No.20, pp.13167-13181, 2007.
    [38] T. Bose, “Digital signal and image processing,” Willy, pp. 77, 2003.
    [39] M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Applied Optics, Vol. 22, No. 24, pp. 3977-3982, 1983.
    [40] R. Cusack , J. M. Huntley and H. T. Goldrein, “Improved noise-immune phase-unwrapping algorithm,” Applied Optics, Vol. 34, No. 5, pp. 781-789, 1995.
    [41] W. W. Macy, “Two-dimensional fringe-pattern analysis,” Vol. 22, No. 23, pp. 3898-3901, 1983
    [42] M. Costantini, “A novel phase unwrapping method based on Network programming,” IEEE Geoscience and Remote Sensing, Vol. 36, No. 3, pp. 813-821, 1998.
    [43] B. Gutmann and H. Weber, “Phase unwrapping with the branch-cut method: clustering of discontinuity sources and reverse simulated annealing,” Applied Optics, Vol. 38, No. 26, pp. 557-559, 1999.
    [44] H. Zhong, J. Tang, S. Zhang and M. Chen, “An improved quality-guided phase-unwrapping algorithm based on priority,” IEEE Geoscience and Remote Sensing, Vol. 8, No. 2, pp. 364-367, 2011.
    [45] D. C. Ghiglia, G. A. Mastin and L. A. Romero, “Cellular-automata method for phase unwrapping,” Journal of the Optical Society of America A, Vol. 4, No. 1, pp. 267-280, 1987.
    [46] A. Ferretti, A. M. Guarnieri, C. Parati and F. Roccs, “InSAR Principles:guildeline for SAR interferometry processing and interpretation,” ESA Publications, 2007
    [47] K. Itoh, “Analysis of the phase unwrapping algorithm,” Applied Optics, Vol. 21, No. 14, pp.2470, 1982.
    [48] 鄧聚龍 、郭洪,「灰預測原理及應用」,全華圖書,1996。
    [49] 葉怡成,「高等實驗計畫」,五南圖書,2009。
    [50] 余桂霖,「多元迴歸分析」,五南圖書,2012。
    [51] R. G. Gonzalez, and R. E. Woods, “Digital image processing 3rd Edition,” Prentice Hall, 2008.
    [52] 楊笙貝,「XML為基礎之Web GIS研究-以SVG為例」,國立中山大學,海洋環境及工程學研究所,碩士論文,2003。

    QR CODE