簡易檢索 / 詳目顯示

研究生: 鄧詠勻
Yong-yun Deng
論文名稱: 考慮區域與全域自調式機制的適應性PID控制器之研究
Study on Adaptive PID Controllers with Local and Global Self-Tuning Mechanisms
指導教授: 蘇順豐
Shun-Feng Su
郭中豐
Chung-Feng Kuo
口試委員: 姚立德
Leehter Yao
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 61
中文關鍵詞: PID類神經梯度法滑動模式
外文關鍵詞: PID, neural, gradient method, sliding mode
相關次數: 點閱:228下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以自我調整PID控制器的增益參數方法為主要架構,並將自調式PID控制器以調整方法產生的修正增益參數特性,區分成區域性調整和全域性調整兩種型式,作為本論文的兩個主要主題。第一個主題,透過模擬探討有關使用原本的自調式類神經PID控制器方法的問題,由於使用雙彎曲函數對PID增益參數的修正範圍特性只能區域性的修正參數,因此考慮到這一項缺點,本論文提出了可以全域性的修正PID增益參數方法,作為本文第二個主題。第二個主題,由於許多函數可由二次型式函數近似,基於這個理論,我們利用了梯度最佳化觀念的特性再加上滑動模式控制的穩定概念,來設計出適應性控制所需要的適應法則,有別於一般使用李亞諾夫分析方法求得的方式。我們並透過混沌系統和倒單擺系統來進行模擬實驗,並由實驗結果可以看出本文所提出的方法也有不錯的效果,並且能達到全域性調整的目的。


    This research is based on the self-tuning PID control method for three PID control gains adjustment. In this study, the self-tuning PID control method is classified into two types as local tuning and global tuning. The first one is through simulation to discuss the problem of using the original self-tuning neural PID approach. Due to the use of sigmoid function, the modification range of parameters is only local. In view of this drawback, we proposed a novel self-tuning method for PID control gains adjustment which can have global modification for those parameters. This approach utilizes the gradient optimum concept property and sliding mode stable idea to design the adaptive laws. This approach is different from the general way of designing the adaptive laws which is usually obtained by using the concept of the Lyapunov analysis method. Furthermore, an inverted pendulum system and an uncertain chaotic system are employed to demonstrate the control performance of the proposed approach. Good efficiency is shown in our simulation results.

    摘要………………………………………………........I Abstract………………………………………….......II 誌謝………………………………………………......III Table of Contents………………………………......IV List of Tables………………………………......……V List of Figures………………………………......….V Chapter 1 Introduction………………………....……1 Chapter 2 Self-Tuning PID Neural Controller.....3 2.1 Preface……………………………………….......3 2.2 Self-Tuning PID Neural Controller.………....3 2.3 Simulation Results……………….………. ..8 2.4 Summary and Discussion………………………...23 Chapter 3 Design Global Tuning PID Controller Using Gradient Optimization Concept……………………...26 3.1 Preface………………………………...……… ..26 3.2 Sliding Adaptive PID Control….…………. ..26 3.3 The adaptive laws obtained…........... ..30 3.4 The Incorporation of Hitting Control.….. ..33 3.5 Simulation…………………………………….. ..40 3.6 Summary…………………………………………… ..55 Chapter 4 Conclusions and Future Work.….……...57 4.1 Conclusions……….………………………... ..57 4.2 Future Work……………………………... ..58 Reference……………………………………………… ..59

    [1] S. Omatu, M. Khalid and R. Yusof, Neuro-Control and its Applications, Springer, 1996.
    [2] T. Aoyama and S. Omatu, ‘‘Design of a Self-Tuning PID Control System by Neural Networks,” Trans. on IEE of Japan, Vol. 116-c, No. 11, pp.1197-1201, 1989 (in Japanese).
    [3] S. Omatu, T. Fujinaka and M. Yoshioka, “Neuro-PID Control for Inverted Single and Double Pendulums,” IEEE International Conference on System, Man, and Cybernetics, Vol. 4, pp.2685-2690, 2000.
    [4] S. Omatu, T. Iwasa and M. Yoshioka, “Skill-Based PID Control by Using Neural Networks,” IEEE International Conference on System, Man, Cybernetics, Vol. 2, pp.1972-1977, 1998.
    [5] K. Tanaky, M. Oka, A. Uchibori, Y. Iwata and H. Morioka, “Precise Position Control of an Ultrasonic Motor Using the PID Controller Combined with NN,” 2003 Wiley Periodicals, Inc. Electrical Engineering in Japan, Vol. 143, No. 3, pp.46–54, 2004.
    [6] S. Omatu and M. Yoshioka, “Self-Tuning Neuro-PID Control and Applications,” IEEE International Conference on System, Man, and Cybernetics, Vol. 3, pp.1985-1989, 1997.
    [7] S. Akhyar and S. Omatu, “Neuromorphic Self-Tuning PID Controller”, IEEE International Conference on Neural Networks, Vol. 1, pp. 552-557, 1993.
    [8] M. C. Tsai, A Self-Tuning Neuro-PID Controller for Vibration of a Roller, Master Thesis, National Taiwan University of Science and Technology, Taiwan, 2001.
    [9] L. X. Wang, A Course in Fuzzy Systems and Control, Upper Saddle River, Prentice-Hall, New Jersey, 1997.
    [10] J. A. Farrell and M. M. Polycarpou, Adaptive Approximation Based Control : Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches, Wiley, 2006.
    [11] P. A. Ioannou and J. Sun, Robust Adaptive Control, Prentice Hall, Upper Saddle River, NJ, 1996.
    [12] W. D. Chang, J. J. Yan, “Adaptive Robust PID Controller Design Based on a Sliding Mode for Uncertain Chaotic Systems,” Chaos, Solitons and Fractals, Vol. 26, No. 1, pp. 167-175, 2005.
    [13] W. D. Chang, R. C. Hwang, J. G. Hsieh, “A Self-Tuning PID Control for a Class of Nonlinear Systems Based on the Lyapunov Approach,” Journal of Process Control, Vol. 12, Issue 2, pp. 233-242, 2002.
    [14] A. Leva, “PID Autotuning Algorithm Based on Relay Feedback,” IEE Proceedings-D, Vol. 140, pp.328–337, 1993.5.
    [15] L. X. Wang, Adaptive Fuzzy Systems and Control Design and Stability Analysis, Prentice-Hall, New Jersey, 1994.
    [16] H. F. Ho, Y. K. Wong and A. B. Rad, “Adaptive Fuzzy Sliding Mode Control Design: Lyapunov Approach,”5th Asian Control Conference, pp.1502-1507, 2004.
    [17] J. Y. Chen, “Rule Adaptation of Fuzzy Sliding Mode Controller Design,” Fuzzy Systems Proceedings, IEEE International Conference, Vol. 1, pp. 504-509, 1998.
    [18] H. T. Yau, C. K. Chen and C. L. Chen, “Sliding Mode Control of Chaotic System With Uncertainties,” International Journal of Bifurcation and Chaos, Vol. 10, No. 5, pp.1139-1147, 2000.
    [19] J. J. Yan, “Design of Robust Controllers for Uncertain Chaotic Systems With Nonlinear Inputs,” Chaos, Solitons and Fractals, Vol. 19, pp.541–547, 2004.
    [20] J. Lee and S. W. Sung, “Comparison of Two Identification Methods for PID ControllerTuning,” An Official Publication of the American Institute of Chemical Engineers Journal, Vol. 39, Issue 4 , pp. 695 – 697, 1993.
    [21] Y. M. Park, M. S. Choi and K.Y. Lee, “An Optimal Tracking Neuro-Controller for Nonlinear Dynamic Systems,” IEEE Transactions Neural Network, Vol. 7, pp.1099–110, 1996.
    [22] J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall Englewood Cliffs, NJ, Inc., 1991.
    [23] B. C. Kuo, Automatic Control Systems, John Wiley& Sons, Inc. 7th, 1995.
    [24] L. Hasdofrr, Gradient Optimization and Nonlinear Control, John Wiley & Sons, 1976.
    [25] E. K. P. Chong and S. H. Zak, An introduction to optimization, John Wiley & Sons, Inc. second edition, 2001.
    [26] T. M. Huang, A Study of PID Controller Design Based on Artificial Neural Network, Master Thesis, Da-Yeh University, Taiwan, 2004.
    [27] D. L. Tsay, H. Y. Chung, C.J. Lee, “The adaptive control of nonlinear systems using the Sugeno-type of fuzzy logic,” IEEE Transactions on Fuzzy Systems, Vol.7, Issue 2, pp.225–229, 1999.
    [28] F. J. Lin, W. J. Hwang, R. J. Wai, “A Supervisory Fuzzy Neural Network Control System for Tracking Periodic Inputs,” IEEE Transactions on Fuzzy Systems, Vol.7, Issue 1, pp.41–52, 1999.
    [29] S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence, and Robustness, Prentice-Hall, New Jersey, 1989.
    [30] K. W. Yu and C. E. Wu, “Tracking control of a ship by PI -type sliding controller,” Journal of Marine Science and Technology, Vol. 12, No. 3, pp. 183-188, 2004.

    無法下載圖示 全文公開日期 2012/08/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE