簡易檢索 / 詳目顯示

研究生: 陳家豪
Chia-hao Chen
論文名稱: 引擎缸內噴油之設計與分析
Design and Analysis of a Gasoline Direct Injection Engine
指導教授: 黃榮芳
Rong-fang Huang
口試委員: 孫珍理
Jhen-li Sun
林怡均
Yi-jyun Lin
張家和
Chia-he chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 378
中文關鍵詞: 噴油嘴位置噴油角度噴油時機凹面活塞頭
外文關鍵詞: homogeneous charge, sauter mean diameter, piston concave crown model, spark plug
相關次數: 點閱:279下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用商業套裝計算流體動力學(Computational Fluid Dynamics, CFD)軟體STAR-CD,發展一套不需分析燃燒與排氣行程的方法,以尋找引擎缸內噴油的適當設計與操作參數。針對一四閥單缸四行程250c.c.引擎之兩類噴油嘴(扇頁式與多孔式)作分析,依據缸內噴油在homogeneous charge的模態,以最小的油滴粒徑與均勻的油氣濃度分佈做為準則,找出較佳之噴油嘴安裝位置與噴油角度。依據stratified charge的模態,透過油氣濃度集中現象來設計活塞頭形狀與火星塞安裝位置。以homogeneous charge的噴油時機作計算,改變不同的噴油嘴位置與噴油角度,判斷液滴大小與油氣濃度分佈,扇頁式噴嘴安裝在汽缸中央、噴油角度α=10°時,缸內燃油液滴平均粒徑(SMD)可達到最小且濃度分佈均勻;安裝在汽缸中央、噴油角度α=0°度的SMD次之且濃度分佈均勻;安裝在汽缸側邊、噴油角度α=-21°時的SMD很大且濃度分佈不平均。多孔式噴嘴安裝在汽缸中央、噴油角度α=10°時,缸內燃油液滴平均粒徑(SMD)可達到最小且濃度分佈均勻;安裝在汽缸中央、噴油角度α=0°的SMD次之;安裝在進氣閥側邊、噴油角度α=49°的SMD很大且濃度分佈不平均。將噴油嘴安裝在進氣閥側邊、噴油角度α=45°,透過stratified charge的油氣濃度集中現象來設計活塞頭形狀。結果顯示,活塞頭形狀設計為偏置的凹球狀弧(#3)且噴油時機CAinj=270°時,油氣濃度在汽缸頭中央最集中且靠近汽缸頂部,火星塞可以置於該區域。


CFD software (STAR-CD) was used to simulate the combustion mechanism of 4-strokes motorcycle engine. Fuel injection arrangements inside a cylinder during intake and compression strokes were studied through computer simulation. Fan-shaped and spray injector have been studied and air fuel mixture inside the engine cylinder has been analyzed in homogeneous and stratified charges. In homogenous charge, injector location and injection angle were varied to study droplet size and oil concentration distribution. In stratified charge, piston concave crown and spark plug location were determined based on oil concentration distribution. Sauter mean diameter (SMD) and uniform concentration techniques were used to compute droplet size formed by different injector locations and injection angles. When fan-shaped injector was placed at the the center of the cylinder, better uniform concentaration and smallest droplet size were found at 10 degrees injection angle. While the injector was placed at the center and 0 degree, uniform concentration was observed but droplet size was larger than that of 10 degrees. However for the case of injector placed near the rim of the cylinder and -21 degrees, both concentration distribution and droplet size were worst of the cases studied here. Similar results were obtained when spray injector was investigated. Piston concave crown model No. 3 showed better spark plug focus and provided concentrated droplet at the center of the cylinder head.

摘要 i Abstract ii 誌謝 iii 目錄 iv 符號索引 x 表圖索引 xiii 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 研究目的 7 第二章 計算模擬之模型與方法 9 2.1 標的引擎 9 2.1.1 引擎規格 9 2.1.2 活塞頭型式 9 2.1.3 噴嘴型式 10 2.2 計算流力軟體簡介 10 2.3 統御方程式 12 2.3.1 紊流模式 13 2.3.2 液滴分裂模型 16 2.3.3 液滴與壁面交互作用模型 18 2.4 數值求解方法 19 2.4.1 離散化方程式 19 2.4.2 PISO解法理論 21 2.4.3 收斂標準 27 2.5 網格與條件 28 2.5.1 計算網格 28 2.5.2 邊界條件 29 2.5.3 初始條件 30 2.5.4 取像相位與座標定義 31 2.5.5 物理參數定義 31 2.5.5.1 缸內燃油液滴平均粒徑SMD 31 2.5.5.2 空燃比A/F 34 2.5.5.3 燃燒比 35 2.5.5.4 空間分佈變異值Iy 35 第三章 缸內流場結構 37 3.1 扇頁式噴嘴速度與流線圖 37 3.1.1 Homogeneous injection 37 3.1.1.1 平面活塞頭之缸內流場結構與衍化過程 37 3.1.1.2 凹面活塞頭之缸內流場結構與衍化過程 38 3.1.2 Stratified injection 39 3.1.2.1 平面活塞頭之缸內流場結構與衍化過程 39 3.1.2.2 凹面活塞頭之缸內流場結構與衍化過程 39 3.2 多孔式噴嘴速度與流線圖 39 3.2.1 Homogeneous injection 39 3.2.1.1 平面活塞頭之缸內流場結構與衍化過程 39 3.2.1.2 凹面活塞頭之缸內流場結構與衍化過程 40 3.2.2 Stratified injection 41 3.2.2.1 平面活塞頭之缸內流場結構與衍化過程 41 3.2.2.2 凹面活塞頭之缸內流場結構與衍化過程 41 第四章 扇頁式噴嘴的缸內噴油-homogeneous injection 43 4.1 策略 43 4.2 燃油液滴缸內平均SMD變化 44 4.3 平面活塞頭的油氣濃度分佈 44 4.3.1 噴油嘴置於汽缸側邊(噴油角度 = - 21o)之油氣濃度 44 4.3.1.1 正面對稱面(z = 0)之油氣濃度分佈衍化過程 44 4.3.1.2 側面對稱面(x = 0)之油氣濃度分佈衍化過程 44 4.3.2 噴油嘴置於汽缸中央在不同噴油角度之油氣濃度 45 4.3.2.1 正面對稱面(z = 0)之油氣濃度分佈衍化過程 45 4.3.2.2 側面對稱面(x = 0)之油氣濃度分佈衍化過程 46 4.3.3 噴油嘴置於進氣閥側邊在不同噴油角度之油氣濃度 46 4.3.3.1 正面對稱面(z = 0)之油氣濃度分佈衍化過程 46 4.3.3.2 側面對稱面(x = 0)之油氣濃度分佈衍化過程 47 4.4 凹面與平面活塞頭之油氣濃度比較 48 4.4.1 噴油嘴置於汽缸中央(噴油角度 = 10o)之油氣濃度 48 4.4.1.1 正面對稱面(z = 0)之油氣濃度分佈衍化過程 48 4.4.1.2 側面對稱面(x = 0)之油氣濃度分佈衍化過程 48 4.4.2噴油嘴置於進氣閥側邊(噴油角度 = 45o)之油氣濃度 49 4.4.2.1 正面對稱面(z = 0)之油氣濃度分佈衍化過程 49 4.4.2.2 側面對稱面(x = 0)之油氣濃度分佈衍化過程 50 4.5 噴油嘴的位置、噴油角度與噴油時機 50 第五章 扇頁式噴嘴的缸內噴油-stratified injection 51 5.1 策略 51 5.2 平面活塞頭的油氣濃度分佈 51 5.2.1不同空燃比之油氣濃度 51 5.2.1.1 正面對稱面(z = 0)之油氣濃度分佈衍化過程 51 5.2.1.2 側面對稱面(x = 0)之油氣濃度分佈衍化過程 51 5.2.2 不同噴油時機之油氣濃度 52 5.2.2.1 正面對稱面(z = 0)之油氣濃度分佈衍化過程 52 5.2.2.2 側面對稱面(x = 0)之油氣濃度分佈衍化過程 52 5.3 凹面與平面活塞頭之油氣濃度比較 52 5.3.1 噴油嘴置於汽缸中央之油氣濃度 52 5.3.1.1 正面對稱面(z = 0)之油氣濃度分佈衍化過程 52 5.3.1.2 側面對稱面(x = 0)之油氣濃度分佈衍化過程 53 5.3.2 噴油嘴置於進氣閥側邊之油氣濃度 53 5.3.2.1 正面對稱面(z = 0)之油氣濃度分佈衍化過程 53 5.3.2.2 側面對稱面(x = 0)之油氣濃度分佈衍化過程 53 5.4 活塞頭設計與噴油時機 54 第六章 多孔式噴嘴的缸內噴油-homogeneous injection 55 6.1 策略 55 6.2 燃油液滴缸內平均SMD變化 55 6.3 平面活塞頭之油氣濃度 56 6.3.1 噴油嘴置於汽缸中央在不同噴油角度之油氣濃度 56 6.3.1.1 正面對稱面(z = 0)之油氣濃度分佈衍化過程 56 6.3.1.2 側面對稱面(x = 0)之油氣濃度分佈衍化過程 56 6.3.2 噴油嘴置於進氣閥側邊在不同噴油角度之油氣濃度 57 6.3.2.1 正面對稱面(z = 0)之油氣濃度分佈衍化過程 57 6.3.2.2 側面對稱面(x = 0)之油氣濃度分佈衍化過程 58 6.4 凹面活塞頭之油氣濃度比較 58 6.4.1 正面對稱面(z = 0)之油氣濃度分佈衍化過程 59 6.4.2 側面對稱面(x = 0)之油氣濃度分佈衍化過程 59 6.5 空間分佈變異值 60 第七章 多孔式噴嘴的缸內噴油-stratified injection 61 7.1策略 61 7.2 平面活塞頭的油氣濃度分佈 61 7.2.1 正面對稱面(z = 0)之油氣濃度分佈衍化過程 61 7.2.2 側面對稱面(x = 0)之油氣濃度分佈衍化過程 61 7.3 凹面活塞頭的油氣濃度分佈 62 7.3.1 #0凹面活塞頭在不同噴油時機之油氣濃度 62 7.3.1.1 正面對稱面(z = 0)之油氣濃度分佈衍化過程 62 7.3.1.2 側面對稱面(x = 0)之油氣濃度分佈衍化過程 62 7.3.2 #1凹面活塞頭在不同噴油時機之油氣濃度 62 7.3.2.1 正面對稱面(z = 0)之油氣濃度分佈衍化過程 62 7.3.2.2 側面對稱面(x = 0)之油氣濃度分佈衍化過程 62 7.3.3 #2凹面活塞頭在不同噴油時機之油氣濃度 63 7.3.3.1 正面對稱面(z = 0)之油氣濃度分佈衍化過程 63 7.3.3.2 側面對稱面(x = 0)之油氣濃度分佈衍化過程 63 7.3.4 #3凹面活塞頭在不同噴油時機之油氣濃度 63 7.3.4.1 正面對稱面(z = 0)之油氣濃度分佈衍化過程 63 7.3.4.2 側面對稱面(x = 0)之油氣濃度分佈衍化過程 64 7.4 活塞頭凹面位置與噴油時機 64 第八章 結論與建議 65 8.1 結論 65 8.1.1 噴油嘴的安裝位置與噴油角度對於缸內油氣濃度與流場 影響 65 8.1.2 火星塞的安裝位置對於缸內油氣濃度影響 66 8.2 建議 66 參考文獻 68

[1]Mayer, H., “Air pollution in cities,” Atmospheric Environment, Vol. 33, October 1999, pp. 4029-4036.
[2]Takagi, Y., “The role of mixture formation in improving fuel economy and reducing emissions of automotive S.I. engines,” FISITA Technical Paper, No. P0109, 1996.
[3]Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, 1988, New York.
[4]Heywood, J. B., “Fluid motion within the cylinder of internal combustion engines-The 1986 freeman scholar lecture,” Journal of Fluids Engineering, Transactions of the ASME, Vol. 109, No. 1, 1987, pp. 3-35.
[5]Han, Z., Reitz, R. D., “Effects of injection timing on air-fuel mixing in a direct-injection spark-ignition engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 848-860, SAE 970625.
[6]Han, Z., Fan, L., and Reitz, R. D., “Multidimensional modeling of spray atomization and air-fuel mixing in a direct-injection spark-ignition engine,” Journa of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 1423-1441, SAE 970884.
[7]Matsumura, E., Tomita, T., Takeda, K., Furuno, S., and Senda, J., “Analysis of visualized fuel flow inside the slit nozzle of direct injection SI gasoline engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 112, 2003, pp. 238-245, SAE 2003-01-0060.
[8]Tanaka, Y., Takano, T., Sami, H., Sakai, K., and Osumi, N., “Analysis on behaviors of swirl nozzle spray and slit nozzle spray in relation to DI gasoline combustion,” Journal of Engine, SAE Transactions-Section 3, Vol. 112, 2003, pp. 218-235, SAE 2003-01-0059.
[9]Papageorgakis, G., Assanid, D. N., “Optimizing gaseous fuel-air mixing in direct injection engines using an RNG based k-ε model,” Journal of Engine, SAE Transactions-Section 3, Vol. 107, 1998, pp. 82-107, SAE 980135.
[10]Tomoda, T., Sasaki, S., Sawada, D., Saito, A., and Sami, H. “Development of direct injection gasoline engine-study of stratified mixture formation,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 759-766, SAE 970539.
[11]Harada, J., Tomita, T., Mizuno, H., Mashiki, Z., and Ito, Y., “Development of direct injection gasoline engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 767-776, SAE 970540.
[12]Ohsuga, M., Shiraishi, T. Nogi, T., Nakayama, Y., and Sukegawa, Y., “Mixture preparation for direct-injection SI engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 794-801, SAE 970542.
[13]Rotondi, R., Bella G.,“Gasoline direct injection spray simulation ,”
International Journal of Thermal Sciences, Vol. 45, 2006, pp. 168-179.
[14]林冠旭, 增強內燃機缸內氣流滾轉運動的方法與診測:計算模擬與PIV實驗量測, 國立台灣科技大學機械工程技術研究所碩士論文, 2006.
[15]劉加陽, 四行程二閥內燃引擎的氣流特性, 國立台灣科技大學機械工程技術研究所碩士論文, 2007.
[16]邱彥凱, 二閥單缸機車引擎的缸內直噴技術發展, 國立台灣科技大學機械工程技術研究所碩士論文, 2008.
[17]林子維, 實驗與計算方法於缸內噴油引擎噴油時機之探討, 國立台灣科技大學機械工程技術研究所碩士論文, 2009.
[18]黃紹軒, 使用計算流體力學方法於缸內噴油引擎之初步設計, 國立台灣科技大學機械工程技術研究所碩士論文, 2009.
[19]盛國彰, 內燃機缸內氣流滾轉運動最佳化技術, 國立台灣科技大學機械工程技術研究所碩士論文, 2010.
[20]Nonaka, Y., Horikawa, A., Nonaka, Y., Hirokawa, M., and Noda, T., “Gas flow simulation and visualization in cylinder of motor-cycle engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 113, 2004, pp. 1710-1714, SAE 2004-32-0004.
[21]Auriemma, M., Caputo, G., Corcione, F. E., and Valentino, G., “Fluid-dynamic analysis of the intake system for a HDDI diesel engine by STAR-CD code and LDA technique,” Journal of Engines, SAE Transactions-Section 3, Vol. 112, 2003, pp. 21-28, SAE 2003-01-0002.
[22]Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Wiley, New York, 1995.
[23]Kurniawan, W. H, Abdullah, S., Shamsudeen, A., “A computational fluid dynamics study of cold-flow analysis for mixture preparation in a motored four-stoke direct injection engine, ” Journal of Applied Science 7, Vol. 19, 2007, pp. 2710-2724.
[24]Stephen R. Turns, An Introduction to Combustion : Concepts and Applications, McGraw-Hill, 2000, pp. 236.
[25]Lake, T. H. and Crump, J. V., “Comparison of direct injection gasoline combustion systems,” Journal of Engines, SAE Transactions-Section 3, Vol. 107, 1998, pp. 246-257, SAE 980154.

無法下載圖示 全文公開日期 2016/06/09 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE