簡易檢索 / 詳目顯示

研究生: 許成禮
Hade - Saputra Haslim
論文名稱: 無轉軸偵測元件同步磁阻電動機驅動系統的預測型控制器研製
Design and Implementation of a Predictive Controller for a Sensorless Synchronous Reluctance Motor Drive System
指導教授: 劉添華
Tian-Hua Liu
口試委員: 李永勳
Yuang-Shung Lee
楊勝明
Sheng-Ming Yang
楊士進
Shih-Chin Yang
楊宗銘
Chung-Ming Young
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 110
中文關鍵詞: 同步磁阻電動機無轉軸偵測元件控制高頻注入法預測控制器
外文關鍵詞: Synchronous reluctance motor, sensorless control, high frequency injection method, predictive controller.
相關次數: 點閱:371下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出高頻靜止座標注入法無轉軸偵測元件同步磁阻電動機驅動系統的預測型速度控器研製。一個25伏,1仟赫茲的高頻電壓信號被注入於α-軸。然後,經由測量α-β軸的高頻電流,電動機的轉軸角度能被估測。此控制系統由一個數位信號處理器,TMS320F28335配合硬體電路達成。為了驗證所提系統的性能,許多實驗結果在文中呈現。實驗結果,驗證理論分析,並說明所提系統具有良好的暫態響應,加載響應及追蹤響應。由於它使用的方法相當簡單,此無轉軸同步磁阻驅動系統能被應用在工業產品。


    This thesis proposed an implementation of a predictive speed controller for a sensorless synchronous reluctance motor drive system using high frequency injection method in stationary reference frame. A 25V, 1kHz high frequency signal is injected into the α-axis voltage. Then, by measuring the α-β axis high frequency currents, the rotor position of the SynRM can be estimated. The proposed control system is realized by a digital signal processor, TMS320F28335, and some hardware circuits. To verify the performance of the proposed system, several experimental results are shown. The experimental results can validate the theoretical analysis and show that the proposed drive system has good transient responses, load disturbance responses, and tracking performance. The proposed sensorless synchronous reluctance motor drive system can be applied for industry applications due to its simplicity.

    ABSTRACT iii 中文摘要 iv DEDICATION v ACKNOWLEDGEMENT vi NOMENCLATURE vii TABLE OF CONTENTS x LIST OF FIGURES xiii LIST OF TABLES xv CHAPTER I INTRODUCTION 1 1.1 Background 1 1.2 Literature Review 2 1.3 Outline of the Thesis 4 CHAPTER II SYNCHRONOUS RELUCTANCE MOTOR 6 2.1. Introduction 6 2.2. Mathematical Model 10 2.3. High Frequency Model 15 2.3.1 The High Frequency Model in d-q axis frame 15 2.3.2 The High Frequency Model in α-β axis 16 CHAPTER III ROTOR POSITION ESTIMATION 18 3.1. Introduction 18 3.2. Sensorless Method using High Frequency Injection 21 3.2.1 Basic Principle 21 3.2.2 Rotor Position Estimation in d-q frame 22 3.2.3 Proposed Rotor Estimation Method 24 CHAPTER IV CONTROLLER DESIGN 35 4.1. Introduction 35 4.2. Current Control 36 4.3. Predictive Speed Controller 38 CHAPTER V IMPLEMENTATION 46 5.1. Introduction 46 5.2. Hardware 47 5.2.1 Three-phase Inverter 47 5.2.2 Current Sensing Circuit 49 5.2.3 Voltage Sensing Circuit 50 5.2.4 Reshaping Circuit of the Encoder 52 5.2.5 Interface Circuit 53 5.3. Digital Signal Processor 54 5.4. Software Program Flowchart 56 5.4.1 Main Program 57 5.4.2 Interrupt Programs 58 CHAPTER VI EXPERIMENTAL RESULTS 64 6.1. Introduction 64 6.2. Experimental Results 66 CHAPTER VII CONCLUSIONS 88 7.1 Conclusions 88 7.2 Future Research 88 REFERENCES 90 AUTHOR BIOGRAPHY 94

    [1] P. Waide and C. U. Brunner, “Energy-efficiency policy opportunities for electric motor-driven systems,” International Energy Agency, Paris, 2011.
    [2] A. T. Almeida, F. J. T. E. Ferreira, and G. Baoming, “Beyond induction motors-technology trends to move up efficiency,” IEEE Trans. Ind. Applicat., vol. 50, no. 3, pp. 2103-2114, May/June 2014.
    [3] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Trans. Ind. Applicat., vol. 42, no. 5, pp. 1264-1274, Sep./Oct. 2006.
    [4] M. Y. Wei and T. H. Liu, “Design and implementation of an online tuning adaptive controller for synchronous reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3644-3657, Sep. 2013.
    [5] P. Guglielmi, M. Pastorelli, and A. Vagati, “Impact of cross-saturation in sensorless control of transverse-laminated synchronous reluctance motor,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 429-439, Apr. 2006.
    [6] M. Pacas, "Sensorless drives in industrial applications-advanced control schemes", IEEE Trans. Ind. Electron. Mag., pp. 16-23, June 2011.
    [7] A. Ghaderi and T. Hanamoto, “Wide-speed-range sensorless vector control of synchronous reluctance motor based on extended programmable cascaded low-pass filters", IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2322-2333, June 2011.
    [8] M. Y. Wei and T. H. Liu, “A high-performance sensorless position control system of a synchronous reluctance motor using dual current-slope estimating technique,” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3411-3426, Sep. 2012.
    [9] H. W. D. Kock, M. J. Kamper, and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913, Aug. 2009.
    [10] D. Raca, P. Garcia, D. D. Reigosa, F. Briz, and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machines at zero and very low speeds", IEEE Trans. Ind. Applicat., vol. 46, no. 1, pp. 167-178, Jan./Feb. 2010.
    [11] J. M. Liu and Z. Q. Zhu, “Sensorless control strategy by square-waveform high-frequency pulsating signal injection into stationary reference frame", IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 2, no. 2, pp. 171-180, June 2014.
    [12] C. H. Choi and J. ‘K. Seok, “Compensation of zero-current clamping effects in high-frequency-signal-injection-based sensorless PM motor drives", IEEE Trans. Ind. Applicat., vol. 43, no. 5, pp. 1258-1265, Sep./Oct. 2007.
    [13] J. M. Liu and Z. Q. Zhu, “Novel sensorless control strategy with injection of high-frequency pulsating carrier signal into stationary reference frame", IEEE Trans. Ind. Applicat., vol. 50, no. 4, pp. 2574-2583, July/Aug. 2014.
    [14] S. C. Agarlita, I. Boldea, and F. Blaabjerg, “High-frequency-injection-assisted “Active-Flux”-based sensorless vector control of reluctance synchronous motors with experiments from zero speed", IEEE Trans. Ind. Applicat., vol. 48, no. 6, pp. 1931-1939, Nov./Dec. 2012.
    [15] T. Tuovinen and M. Hinkkanen, “Adaptive full-order observer with high-frequency signal injection for synchronous reluctance motor drives", IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 2, no. 2, pp. 181-189, June 2014.
    [16] P. Cortes, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and J. Rodriguez, “Predictive control in power electronics and drives", IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4312-4324, Dec. 2008.
    [17] S. Bolognani, L. Peretti, and M. Zigliotto, “Design and implementation of model predictive control for electrical motor drives", IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1925-1936, June 2009.
    [18] S. Thomsen, N. Hoffmann, and F. W. Fuchs, “PI control, PI-based state space control, and model-based predictive control for drive systems with elastically coupled loads-a comparative study", IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3647-3657, Aug. 2011.
    [19] H. Liu and S. Li, “Speed control for PMSM servo system using predictive functional contorl and extended state observer", IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1171-1183, Feb. 2012.
    [20] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems", IEEE Trans. Power Electron., vol. 28, no. 2, pp. 1007-1015, Feb. 2013.
    [21] E. Fuentes, D. Kalise, J. Rodriguez, and R. M. Kennel, “Cascade-free predictive speed control for electrical drives", IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2176-2184, May 2014.
    [22] J. L. Chen and T. H. Liu, “Implementation of a predictive controller for a sensorless interior-permanent-magnet synchronous motor drive system,” IET Electr. Power Appl., vol. 6, no. 8, pp. 513-525, 2012.
    [23] D. A. Staton, T. J. E. Miller, and S. E. Wood, “Maximising the saliency ratio of the synchronous reluctance motor,” Proc. IEE, vol. 140, no. 4, pp. 249-259, July 1993.
    [24] E. S. Obe, “Calculation of inductances and torque of an axially laminated synchronous reluctance motor", IET Electr. Power Appl., vol. 4, no. 9, pp. 783-792, 2010.
    [25] E. Capecchi, P. Guglielmi, M. Pastorelli, and A. Vagati, “Position-sensorless control of the transverse-laminated synchronous reluctance motor”. IEEE Trans. Ind. Applicat., vol. 37, no. 6, pp. 1768-1776, Nov./Dec. 2001.
    [26] M. T. Lin and T. H. Liu, “Sensorless synchronous reluctance drive with standstill starting,” IEEE Trans. Aerosp. Electron. Syst., vol. 36, no.4, pp. 1232-1241, Oct. 2000.
    [27] C. G. Chen, T. H. Liu, M. T. Lin, and C. A. Tai, “Position control of a sensorless synchronous reluctance motor,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 15-25, Feb. 2004.
    [28] T. Senjyu, T. Shingaki, and K. Uezato, “Sensorless vector control of synchronous reluctance motors with disturbance torque observer,” IEEE Trans. Ind. Electron., vol. 48, no. 2, pp. 402-407, Apr. 2001.
    [29] T. Tuovinen, M. Hinkkanen, and J. Luomi, “Analysis and design of a position observer with resistance adaptation for synchronous reluctance motor drives,” IEEE Trans. Ind. Applicat., vol. 49, no. 1, pp. 66-73, Jan./Feb. 2013.
    [30] A. Consoli, G. Scarcella, G. Scelba, A. Testa, and D. A. Triolo, “Sensorless rotor position estimation in synchronous reluctance motors exploiting a flux deviation approach,” IEEE Trans. Ind. Applicat., vol. 43, no. 5, pp. 1266-1273, Sep./Oct. 2007.
    [31] J. L. Chen and T. H. Liu, “An IPMSM position control system using high frequency injection sensorless technique,” IEEE IES-2012, 2012, pp. 3676-3681.
    [32] M. Mohseni and S. M. Islam, “A new vector-based hysteresis current control scheme for three-phase PWM voltage-source inverters,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2299-2309, Aug. 2010.
    [33] B. Zigmund, A. A. Terlizzi, X. del Toro Garcia, R. Pavlanin, and L. Salvatore, “Experimental evaluation of PI tuning techniques for field oriented control of permanent magnet synchronous motors,” Advances in Electrical and Electronic Engineering, vol. 5, iss.1, pp. 114-119.
    [34] R. Soeterboek, Predictive control a unified approach, Prentice Hall, New York, 1992.
    [35] J. M. Maciejowski, Predictive Control with Constraints, Prentice Hall, New York, 2002.
    [36] Mitsubishi Electric, PS21265-P/AP Datasheet, 2005.
    [37] Spectrum Digital, eZdspTM F28335 Technical Reference, 2007.
    [38] Texas Instruments, TMS320X2833X System Control and Interrupts Reference Guide, 2007.

    無法下載圖示 全文公開日期 2018/01/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE