簡易檢索 / 詳目顯示

研究生: 魏銘彥
Ming-Yen Wei
論文名稱: 同步磁阻電動機之轉軸角度與速度估測器及高性能控制器的研製
Design and Implementation of High-Performance Controllers Using Rotor Angle and Speed Estimators for Synchronous Reluctance Motors
指導教授: 劉添華
Tian-Hua Liu
口試委員: 廖聰明
Chang-Ming Liaw
林法正
Faa-Jeng Lin
徐國鎧
Kuo-Kai Shyu
楊勝明
Sheng-Ming Yang
丁振聲
Chen-sheng Ting
羅有綱
Yu-Kang Lo
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 176
中文關鍵詞: 同步磁阻電動機轉軸角度估測狀態估測被動式控制器適應性逆控制器數位訊號處理器
外文關鍵詞: synchronous reluctance motor, rotor position estimation, state estimation, passivity-based controller, adaptive inverse controller, digital signal processor
相關次數: 點閱:269下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出同步磁阻電動機驅動系統的轉軸角度估測法則及兩種高性能控制器的設計。首先,提出雙電流斜率的轉軸角度估測法則。經由偵測定子電流,利用系統化的角度估測方法,可以準確地估測同步磁阻電動機的轉軸角度。此估測方法只要配合變頻器的切換狀態,適時量取定子電流的斜率,即可估測轉軸的角度,不受電動機參數的影響。此外,本文提出一種新型的狀態估測器,達成電動機的轉速估測,此估測器不易受高頻雜訊影響,且可達到良好的追蹤能力及穩態特性。

    其次,本文提出被動式控制及適應性逆控制的設計及實現,以改善同步磁阻電動機的控制性能,達到快速的暫態響應、良好的干擾拒斥性及追蹤能力。此兩種控制方法皆可搭配轉軸角/速度估測法則分別應用在同步磁阻動機控速及定位系統上。

    最後,本文使用德州儀器公司所生產的TMS-320F-28335數位訊號處理器,達成所有的轉軸角度及速度估測、電流控制、速度控制及位置控制等計算,故硬體電路甚為簡單。實驗結果說明本文所提方法在控速方面可達到1轉/分至2750轉/分的控速範圍;另一方面,在定位控制方面也能達到相當精準的定位控制功能。


    The dissertation proposes a rotor position estimating method and two high-performance controller design methods for synchronous reluctance motor drive systems. First, a dual current-slope estimating method is proposed here. By detecting the three-phase stator currents and using the proposed systematic estimating method, the rotor position of the synchronous reluctance motor can be precisely estimated. The proposed method detects the current-slope of the stator currents, which is synchronized with the switching states of the inverter, to obtain the estimated rotor position. In addition, the method can remove the high frequency noises and achieve good tracking ability and good steady-state characteristic.

    Next, the passivity-based control and adaptive inverse control are designed and implemented. The proposed control methods can achieve fast transient responses, good load disturbance rejection responses, and good tracking responses. Both control methods can be applied for the sensorless speed control system and sensorless position control system.

    Finally, a TMS-320F-28335 digital signal processor, which was manufactured by Texas Instruments Company, is used to execute the rotor position estimation, rotor speed estimation, current control, speed control, and position control. As a result, the hardware is very simple. Experimental results show that the proposed sensorless drive system can be operated as a precise position control system.

    中文摘要 英文摘要 目錄 圖目錄 表目錄 符號索引 第一章 緒論 1.1 研究動機 1.2 文獻回顧 1.3 目的及貢獻 1.4 論文大綱 第二章 同步磁阻電動機 2.1 簡介 2.2 結構及特性 2.3 數學模式 第三章 閉迴路驅動系統 3.1 簡介 3.2 波寬調變技術 3.3 定轉矩控制區 3.4 弱磁控制區 3.5 四象限控制 第四章 轉軸角/速度估測法則 4.1 簡介 4.2 轉軸角度估測器設計 4.2.1 基本原理 4.2.2 雙電流斜率的轉軸角度估測器設計 4.2.3 延伸型磁通估測的轉軸角度估測器設計 4.3 轉軸速度狀態估測器設計 4.3.1 基本原理 4.3.2 線上自我調整增益的狀態估測器設計 4.4 無轉軸角/速度偵測元件閉迴路系統 4.4.1 閉迴控速系統 4.4.2 閉迴定位系統 第五章 控制器設計 5.1 簡介 5.2 被動式為基礎的控制器設計 5.2.1 基本原理 5.2.2 被動式為基礎的磁通控制器設計 5.2.3 被動式為基礎的速度控制器設計 5.2.4 被動式為基礎的定位控制器設計 5.3 適應性逆控制器設計 5.3.1 基本原理 5.3.2 適應性逆控制器應用於控速系統 5.3.3 適應性逆控制器應用於定位系統 5.3.4 適應性逆向控制閉迴路系統的收斂率分析 第六章 系統研製 6.1 簡介 6.2 硬體電路製作 6.2.1 變頻器與驅動電路 6.2.2 電壓及電流偵測電路 6.2.3 數位訊號處理器 6.3 軟體程式設計 6.3.1 主程式 6.3.2 中斷服務程式 第七章 模擬與實測 7.1 簡介 7.2 電腦模擬 7.3 模擬與實測結果 第八章 結論與未來研究方向 參考文獻 作者簡介

    [1] G. Pellegrino, R. I. Bojoi and P. Gugliemi, “Unified direct-flux vector control for AC motor drives,” IEEE Transactions on Industry Applications, vol. 47, no. 5, pp. 2093-2102, Sep./Oct. 2011.
    [2] C. Mademlis, I. Kioskeridis and N. Margaris, “Optimal efficiency control strategy for interior permanent-magnet synchronous motor drives,” IEEE Transactions on Energy Conversion, vol. 19, no. 4, pp. 715-723, Dec 2004.
    [3] F. F. Bernal and A. G. Cerrada, “Model-based Loss minimization for DC and AC vector-controlled motors including core saturation,” IEEE Transactions on Industry Applications, vol. 36, no. 3, pp. 755-763, May/ June 2000.
    [4] M. G. Jovanovic and R. E. Betz, “Effects of uncompensated vector control on synchronous re1uctance motor performance,” IEEE Transactions on Energy Conversion, vol. 14, no. 3, pp. 532-537, Sep. 1999.
    [5] T. Song, A. Ninomiya, and T. Ishigohka, “Experimental study on induction motor with superconducting secondary conductors,” IEEE Transactions on Applied Superconductivity, vol. 17, no. 2, pp. 1611-1614, June 2007.
    [6] B. Karanayi, M. Fazlur, and C. Grantham, “Online stator and rotor resistance estimation scheme using artificial neural networks for vector controlled speed sensorless induction motor drive,” IEEE Transactions on Industry Electronics, vol. 54, no. 1, pp. 167-176, Feb. 2007.
    [7] W. L. Soong and N. Ertugrul, “Field-weakening performance of interior permanent-magnet motors,” IEEE Transactions on Industry Applications, vol. 38, no. 5, pp. 1251-1258, Sep./Oct. 2002.
    [8] B. H. Bae, S. K. Sul, J. H. Kwon, and J. S. Byeon, “Implementation of sensorless vector control for super-high-speed PMSM of turbo-compressor,” IEEE Transactions on Industry Applications, vol. 39, no. 3, pp. 811-818, May/June 2003.
    [9] A. Consoli, G. Scarcella, and A. Testa, “Industry application of zero speed sensorless control techniques for PM synchronous motors,” IEEE Transactions on Industry Applications, vol. 37, no. 2, pp. 513-521, Mar./Apr. 2001.
    [10] P. Pillay and R. Krishnan, “Modeling of permanent magnet motor drives,” IEEE Transactions on Industry Electronics, vol. 35, no. 4, pp. 537-541, Nov. 1988.
    [11] E. Cerruto, A. Consoli, A. Raciti, and A. Testa, “A robust adaptive controller for PM motor drives in robotic applications,” IEEE Transactions on Power Electronics, vol. 10, no. 1, pp. 62-71, Jan. 1995.
    [12] A. Consoli, G. Scarcella, G. Scelba, A. Testa and D. A. Triolo, “Sensorless rotor position estimation in synchronous reluctance motors exploiting a flux deviation approach,” IEEE Transactions on Industry Applications, vol. 43, no. 5, pp. 1266-1273, Sep./Oct. 2007.
    [13] P. Guglielmi, M. Pastorelli, G. Pellegrino and A. Vagati, “Position-sensorless control of permanent-magnet-assisted synchronous reluctance motor,” IEEE Transactions on Industry Applications, vol. 40, no. 2, pp. 615-622, Mar./Apr. 2004.
    [14] E. Capecchi, P. Guglielmi, M. Pastorelli and A. Vagati, “Position-sensorless control of the transverse-laminated synchronous reluctance motor,” IEEE Transactions on Industry Applications, vol. 37, no. 6, pp. 1768-1776, Nov./Dec. 2001.
    [15] T. H. Liu, M. T. Lin and Y. C. Yang, “Nonlinear control of a synchronous reluctance drive system with reduced switching frequency,” IEE Proceedings Electric Power Application, vol. 153, no. 1, pp. 47-56, Jan. 2006.
    [16] K. K. Shyu and C. K. Lai, “Incremental motion control of Synchronous reluctance motor via multisegment sliding mode control method,” IEEE Transactions on Control System Technology, vol. 10, no. 2, pp. 169-176, Mar. 2002.
    [17] T. H. Liu and M. T. Lin, “A fuzzy sliding-mode controller design for a synchronous reluctance motor drive,” IEEE Transactions on Aerospace and Electronic Systems, vol. 32, no.3, pp. 1065-1076, July 1996.
    [18] K. K. Shyu, C. K. Lai and Y. W. Tsai, “Optimal position control of synchronous reluctance motor via totally invariant variable structure control,” IEE Proceedings Electric Power Application, vol. 147, no. 1, pp. 28-36, Jan. 2000.
    [19] M. T. Lin and T. H. Liu, “Design and implementation of a robust controller for a synchronous reluctance drive,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no.4, pp. 1344-1358, Oct. 2001.
    [20] R. M. Caporal and M. Pacas, “Suppression of saturation effects in a sensorless predictive controlled synchronous reluctance machine based on voltage space phasor injection,” IEEE Transactions on Industry Applications, vol. 58, no. 7, pp. 2809-2817, July 2011.
    [21] R. M. Caporal and M. Pacas, “Encoderless predictive direct torque control for synchronous reluctance machines at very low and zero speed,” IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4408-4416, Dec. 2008.
    [22] R. M. Caporal and M. Pacas, “A predictive torque control for the synchronous reluctance machine taking into account the magnetic cross saturation,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 1161-1167, Apr. 2007.
    [23] H. A. Zarchi, J. Soltani and G. A. Markadeh, “Adaptive input–output feedback-linearization-based torque control of synchronous reluctance motor without mechanical sensor,” IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 375-384, Jan. 2010.
    [24] T. H. Liu and H. H. Hsu, “Adaptive controller design for a synchronous reluctance motor drive system with direct torque control,” IET Proceedings Electric Power Application, vol. 1, no. 5, pp. 815-824, Sep. 2007.
    [25] T. H. Liu, Y. C. Lee and Y. H. Chang, “Adaptive controller design for a linear motor control system,” IEEE Transactions on Aerospace and Electronic Systems, vol. 40, no. 2, pp. 601-616, Apr. 2004.
    [26] B. K. Bose, “Power electronics and motion control-technology status and recent trends,” IEEE Transactions on Industry Applications, vol. 29, no. 5, pp. 902-909, Sep./Oct. 1993.
    [27] L. H. Hoang, “Microprocessors and digital IC's for motion control,” IEEE Transactions on Power Electronics, vol. 16, no. 4, pp. 527-534, Aug. 1994.
    [28] A. Vagati, A. Canova, M. Chiampi, M. Pastorelli and M. Repetto, “Design refinement of synchronous reluctance motors through finite-element analysis,” IEEE Transactions on Industry Applications, vol. 36, no. 4, pp. 1094-1102, July/Aug. 2000.
    [29] M. Sanada, K. Hiramoto, S. Morimoto and Y. Takeda, “Torque ripple improvement for synchronous reluctance motor using an asymmetric flux barrier arrangement,” IEEE Transactions on Industry Applications, vol. 40, no. 4, pp. 1076-1082, July/Aug. 2004.
    [30] M. E. H. Zaim, “High-speed solid rotor synchronous reluctance machine design and optimization,” IEEE Transactions on Magnetics, vol. 45, no. 3, pp. 1796-1799, Mar. 2009.
    [31] J. Kolehmainen, “Synchronous reluctance motor with form blocked rotor,” IEEE Transactions on Energy Conversion, vol. 25, no. 2, pp. 450-456, June 2010.
    [32] C. Mademlis, “Compensation of magnetic saturation in maximum torque to current vector controlled synchronous reluctance motor drives,” IEEE Transactions on Energy Conversion, vol. 18, no. 3, pp. 379-385, Sep. 2003.
    [33] G. Sturtzer, D. Flieller and J. P. Louis, “Mathematical and experimental method to obtain the inverse modeling of nonsinusoidal and saturated synchronous reluctance motors,” IEEE Transactions on Energy Conversion, vol. 18, no. 4, pp. 494-500, Dec. 2003.
    [34] G. Stumberger, B. Stumberger and D. Dolinear “Identification of linear synchronous reluctance motor parameters,” IEEE Transactions on Industry Applications, vol. 40, no. 5, pp. 1317-1324, Sep./Oct. 2004.
    [35] S. Yamamoto, T. Ara and K. Matsuse, “A method to calculate transient characteristics of synchronous reluctance motors considering iron loss and cross-magnetic saturation,” IEEE Transactions on Industry Applications, vol. 43, no. 1, pp. 47-56, Jan./Feb. 2007.
    [36] P. Niazi, H. A. Toliyat and A. Goodarzi, “Robust maximum torque per ampere (MTPA) control of PM-assisted SynRM for traction applications,” IEEE Transactions on Vehicular Technology, vol. 56, no. 4, pp. 1538-1545, July 2007.
    [37] J. B. Im, W. Kim, K. Kim, C. S. Jin, J. H. Choi and J. Lee, “Inductance calculation method of synchronous reluctance motor including iron loss and cross magnetic saturation,” IEEE Transactions on Magnetics, vol. 45, no. 6, pp. 2803-2806, June 2009.
    [38] I. Bolden, M. C. Paicu, G. D. Andreescu and F. Blaabjerg, “Active flux DTFC-SVM sensorless control of IPMSM,” IEEE Transactions on Energy Conversion, vol. 24, no. 2, pp. 314-322, June 2009.
    [39] I. Boldea, M. C. Paicu and G. D. Andreescu, “Active flux concept for motion-sensorless unified AC drives,” IEEE Transactions on Power Electronics, vol. 23, no. 5, pp. 2612-2618, Sep. 2008.
    [40] P. Guglielmi, M. Pastorelli and A. Vagati, “Cross-saturation effects in IPM motors and related impact on sensorless control,” IEEE Transactions on Industry Applications, vol. 42, no. 6, pp. 1516-1522, Nov./Dec. 2006.
    [41] P. Guglielmi, M. Pastorelli and A. Vagati, “Impact of cross-saturation in sensorless control of transverse-laminated synchronous reluctance motors,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2322-2333, Apr. 2006.
    [42] G. Foo and M. F. Rahman, “Sensorless direct torque and flux-controlled IPM synchronous motor drive at very low speed without signal injection,” IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 395-403, Jan. 2010.
    [43] T. Senjyu, T. Shingaki and K. Uezato, “Sensorless vector control of synchronous reluctance motors with disturbance torque observer,” IEEE Transactions on Industrial Electronics, vol. 59, no. 9, pp. 402-407, Apr. 2001.
    [44] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Transactions on Industry Applications, vol. 42, no. 5, pp. 1264-1274, Sep./Oct. 2006.
    [45] H. W. D. Kock, M. J. Kamper and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Transactions on Power Electronics, vol. 24, no. 8, pp. 1905-1913, Aug. 2009.
    [46] T. Matsuo and T. A. Lipo, “Rotor position detection scheme for synchronous reluctance motor based on current measurements,” IEEE Transactions on Industry Applications, vol. 31, no. 4, pp. 860-868, July/Aug. 1995.
    [47] M. T. Lin and T. H. Liu, “Sensorless synchronous reluctance drive with standstill starting,” IEEE Transactions on Aerospace and Electronic Systems, vol. 36, no.4, pp. 1232-1241, Oct. 2000.
    [48] C. G. Chen, T. H. Liu, M. T. Lin and C. A. Tai, “Position control of a sensorless synchronous reluctance motor,” IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 15-25, Feb. 2004.
    [49] J. L. Shi, T. H. Liu and Y. C. Chang, “Position control of an interior permanent-magnet synchronous motor without using a shaft position sensor,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1989-2000, June 2007.
    [50] P. Ciufo and D. Platt, “Sensorless rotor position and speed estimation for a synchronous reluctance motor,” IEE Proceedings Electric Power Application, vol. 150, no. 2, pp. 158-164, Mar. 2003.
    [51] M. A. Vogelsberger, S. Grubic, T. G. Habetler and T. M. Wolbank, “Using PWM-induced transient excitation and advanced signal processing for zero-speed sensorless control of AC machines,” IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 365-374, Jan. 2010.
    [52] C. H. Lin, “Adaptive recurrent fuzzy neural network control for synchronous reluctance motor servo drive,” IEE Proceedings Electric Power Application, vol. 151, no. 6, pp. 711-724, Nov. 2004.
    [53] H. K. Chiang and C. H. Tseng, “Integral variable structure controller with grey prediction for synchronous reluctance motor drive,” IEE Proceedings Electric Power Application, vol. 151, no. 3, pp. 349-358, May 2004.
    [54] H. A. Toliyat, L. Xu and T. A. Lipo, “A five-phase reluctance motor with high specific torque,” IEEE Transactions on Industry Applications, vol. 28, no. 3, pp. 659-667, May/June 1992.
    [55] Y. Inoue, S. Morimoto and M. Sanada, “A novel control scheme for maximum power operation of synchronous reluctance motors including maximum torque per flux control,” IEEE Transactions on Industry Applications, vol. 47, no. 1, pp. 115-121, Jan./Feb.2011.
    [56] J. Ahn, S. B. Lim, K. C. Kim, J. Lee, J. H. Choi, S. Kim and J. P. Hong, “Field weakening control of synchronous reluctance motor for electric power steering,” IET Proceedings Electric Power Application, vol. 1, no. 4, pp. 565-570, July 2007.
    [57] T. Y. Chou, T. H. Liu and T. T. Cheng, “Sensorless micro-permanent magnet synchronous motor control system with a wide adjustable speed range,” IET Proceedings Electric Power Application, vol. 6, no. 2, pp. 67-72, Feb. 2012.
    [58] B. Widrow, and E. Walace, Adaptive inverse control- a signal processing approach. IEEE Press, 2008.
    [59] D. G. Luenberger, Linear and nonlinear programming. Reading Massachusetts: Addison-Wesley, 2008.
    [60] D. P. Bertsekas, Nonlinear programming. Belmont Massachusetts: Athena-Scientific, 1999.
    [61] M. H. Costa, J. C. M. Bernudez, and N. J. Bershad, “Stochastic analysis of the filtered X LMS algorithm in systems with nonlinear secondary paths,” IEEE Transactions on Signal Processing, vol. 50, no. 6, pp. 1327-1342, June 2002.
    [62] A. M. Karshenas, M. W. Dunnigan, and B. W. Williams, “Adaptive inverse control algorithm for shock testing,” IEE Proceedings Control Theory Applications, vol. 147, no. 3, pp. 267-276, May 2000.
    [63] H. Li, C. Du, and Y. Wang, “Optimal reset control for a dual stage actuator system in HDDs,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 3, pp. 480-488, June 2011.
    [64] N. H. Fuengwarodsakul, M. Menne, R. B. Inderka, and R. W. D. Doncker, “High-dynamic four-quadrant switched reluctance drive based on DITC,” IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1232-1242, Sep./Oct. 2005.
    [65] X. D. Xue, K. W. E. Cheng, and S. L. Ho, “Optimization and evaluation of torque-sharing functions for torque ripple minimization in switched reluctance motor drives,” IEEE Transactions on Power Electronics, vol. 24, no. 9, pp. 2076-2090, Sep. 2009.
    [66] Y. Sozer and D. A. Torrey, “Optimal turn-off angle control in the face of automatic turn-on angle control for switched-reluctance motors,” IET Electric Power Applications, vol. 1, no. 3, pp. 395-401, May 2007.
    [67] S. K. Sahoo, S. K. Panda, and J. X. Xu, “Indirect torque control of switched reluctance motors using iterative learning control,” IEEE Transactions on Power Electronics, vol. 20, no. 1, pp. 200-208, Jan. 2005.
    [68] J. P. Park, C. Kalev and H. F. Hofmann, “Control of high-speed solid-rotor synchronous reluctance motor/generator for flywheel-based uninterruptible power supplies,” IEEE Transactions on Industrial Electronics, vol. 55, no. 8, pp. 3038-3046, Aug. 2008.
    [69] P. Niazi and H. A. Toliyat “Online parameter estimation of Permanent-Magnet assisted synchronous reluctance motor,” IEEE Transactions on Industry Applications, vol. 43, no. 2, pp. 609-615, Mar./Apr. 2007.
    [70] 劉昌煥著,交流電機控制-向量控制與直接轉矩控制原理,東華書局,中華民國94年9月。
    [71] G. S. Buja and M. P. Kazmierkowski, “Direct torque control of PWM inverter-fed AC motors - a survey,” IEEE Transactions on Industrial Electronics, vol. 51, no. 4, pp. 744-757, Aug. 2004.
    [72] A. Ghaderi and T. Hanamoto, “Wide-speed-range sensorless vector control of synchronous reluctance motors based on extended programmable cascaded low-pass filters,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2322-2333, June 2011.
    [73] J. L. Chen and T. H. Liu, “Implementation of a predictive controller for a sensorless interior permanent-magnet synchronous motor drive system,” IET Proceedings Electric Power Application, vol. 6, no. 8, pp. 513-525, Sep. 2012.
    [74] T. H. Liu, S. H. Chen and D. F. Chen, “Design and implementation of a matrix converter PMSM drive without a shaft sensor,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no.1, pp. 39-1, Jan. 2003.
    [75] C. T. Chen, Linear System Theory and Design. New York: Oxford Univ. Press, 1999.
    [76] K. Wang, H. Chiasson, and L. M. Tolbert, “A nonlinear least-squares approach for identification of the induction motor parameters,” IEEE Transactions on Automatic Control, vol. 50, no. 10, pp. 1622-1628, Oct. 2005.
    [77] R. Ortega, A. Loria, P. J. Nicklasson, and H. S. Ramirez, Passivity-based control of Euler-Lagrange systems. Springer, London, 1998.
    [78] P. J. Nicklasson, R. Ortega and G. Espinosa-Perez, “Passivity-based control of a class of blondel–park transformable electric machines,” IEEE Transactions on Automatic Control, vol. 42, no. 5, pp. 629-647, May 1997.
    [79] W. J. Wang and J. Y. Chen, “Compositive adaptive position control of induction motors based on passivity theory,” IEEE Transactions on Energy Conversion, vol. 16, no. 2, pp. 180-185, June 2001.
    [80] C. Cecati, “Position control of the induction motor using a passivity-based controller,” IEEE Transactions on Industry Applications, vol. 36, no. 5, pp. 1277-1284, Sep./Oct. 2000.
    [81] C. Cecati and N. Rotondale, “Torque and speed regulation of induction motors using the passivity theory approach,” IEEE Transactions on Industrial Electronics, vol. 46, no. 1, pp. 119-127, Feb. 1999
    [82] L. U. Gokdere and M. A. Simaan, “A passivity-based method for induction motor control,” IEEE Transactions on Industrial Electronics, vol. 44, no. 5, pp. 688-695, Oct. 1999.
    [83] P. J. Nicklasson, R. Ortega and G. Espinosa-Perez, “Passivity based adaptive control for mechanical manipulators using LS-type estimation,” IEEE Transactions on Automatic Control, vol. 35, no. 12, pp. 1363-1365, May 1990.
    [84] P. J. Nicklasson, R. Ortega and G. Espinosa-Perez, “Adaptive control of robot manipulators based on passivity,” IEEE Transactions on Automatic Control, vol. 39, no. 9, pp. 1871-1875, Sep. 1994.
    [85] V. Santibanez, R. Kelly, and M. A. Llama, “Global asymptotic stability of a tracking sectorial fuzzy controller for robot manipulators,” IEEE Transactions on System, Man, and Cybernetics, B, vol. 34, no. 1, pp. 710-718, Feb. 2004.
    [86] W. J. Wang and J. Y. Chen, “Passivity-based sliding mode position control for induction motor drives,” IEEE Transactions on Energy Conversion, vol. 20, no. 2, pp. 316-321, June 2005.
    [87] K. K. Shyu, C. K. Lai and J. Y. Hung, “Totally invariant state feedback controller for position control of synchronous reluctance motor,” IEEE Transactions on Industrial Electronics, vol. 48, no. 3, pp. 615-624, June 2001.
    [88] Spectrum Digital, eZdspTM F28335 Technical Reference, http://www. spectrumdigital.com/, 2007.
    [89] Texas Instruments, TMS320X2833X System Control and Interrupts Reference Guide, http://www.focus.ti.com/, 2007.
    [90] J. C. Basilio, and S. R. Matos, “Design of PI and PID controllers with transient performance specification,” IEEE Transactions on Education, vol. 45, no.4, pp. 364–370, Nov. 2002.

    無法下載圖示 全文公開日期 2014/11/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE