研究生: |
白炳峻 Ping-chun Pai |
---|---|
論文名稱: |
奈米金粒子、pH感應型聚甲基丙烯酸N,N-二甲氨乙酯高分子刷合成於矽晶片表面之製備與特性 Preparation and Characterization of Poly (2-Dimethylaminoethyl Methacrylate) Brush on the Silicon Surface for pH Responsive Property with Au Nanoparticle |
指導教授: |
陳建光
Jem-kun Chen |
口試委員: |
邱顯堂
Hsien-tang Chiu 蘇清淵 Ching-Iuan Su 張豐志 Feng-chih Chang |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 材料科學與工程系 Department of Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 144 |
中文關鍵詞: | 原子轉移自由基聚合法 、高分子刷 、pH感應 、奈米金粒子 、DNA |
外文關鍵詞: | Atom Transfer Radical Polymerization, Polymer brushes, pH Responsive, Gold Nanoparticles, DNA |
相關次數: | 點閱:1016 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是藉由原子轉移自由基聚合法( atom transfer radical polymerization,ATRP),將聚甲基丙烯酸N,N-二甲氨乙酯 (Poly (2-Dimethylaminoethyl Methacrylate), PDMAEMA)高分子刷接枝於矽晶片表面。
使用化學分析之X射線光電子能譜儀(X-ray photoelectron spectroscopy,XPS),證實表面自組裝起始劑及PDMAEMA高分子成功接枝於矽晶片表面;使用高解析熱電子型場發掃描式電子顯微鏡(high-resolution thermal field emission scanning electron microscopy,HRFE-SEM)與原子力顯微鏡(atomic force microscopy,AFM) 觀看PDMAEMA高分子刷表面形貌與高分子刷粒徑,經不同聚合時間2、4、6、8小時的高分子刷,其粒徑從10nm至25nm。並用表面輪廓儀(nano measurement instrument for surface roughness,Alpha-Step)測量PDMAEMA高分子刷之厚度,其厚度從90.6nm至329.3nm。由接觸角的量測證實在pH=1時PDMAEMA高分子刷呈現延展型態,而在pH=11時PDMAEMA高分子刷呈現捲曲型態。另外在反覆的酸鹼度溶液測試下,PDMAEMA高分子刷具有酸鹼應變可逆行為。
利用PDMAEMA高分子刷之末端基帶有正電荷( R4N+)基團,將奈米金離子吸附於分子鏈上,再還原成奈米金粒子。根據證實甲苯的合成方式比去離子水的合成方式吸附奈米金粒子更多,此外,將合成於甲苯的奈米金粒子晶片浸泡於不同pH值,奈米金粒子呈現的型態也有所不同,並具有奈米金粒子型態回復的特性。藉由固體表面界面電位分析儀(Delsa nano solid interface surface zeta potential measurement system)測量其PDMAEMA與奈米金粒子表面電位,其電位-10.36至-19.98 mV。另外,測試PDMAEMA高分子刷的能力,將鯡魚精子DNA(Herring sperm DNA) 10μg/μl 分子以物理吸附方式附著於高分子刷上。經實驗證實,PDMAEMA高分子刷在pH=7溶液中會抓取DNA分子,而pH=3溶液則會釋放出DNA分子。由結果得知, PDMAEMA高分子刷可作為一種新的特定DNA的萃取方式。
運用微影技術在矽晶圓製備出線寬比為1:2(400nm:800nm)的圖案化的光阻層,利用圖型化光阻之矽晶圓進行起始劑自組裝後,並用丙酮清洗光阻層,即可合成圖案化高分子刷。藉由圖案化高分子刷可進一步應用在生物微機電和半導體製程上。
Poly (2-Dimethylaminoethyl Methacrylate) (PDMAEMA) polymer brushes were grafted on the silicon surface by using atom transfer radical polymerization (ATRP). The silicon surface was treated by oxygen plasma, causing the sueface to become chemically modified (hydroxyl groups). 3-aminopropyltriethoxy silane (APTES) was used to react with the hydroxyl group on the surface, α-Bromoisobutyl bromide reacted with NH2 group of APTES to form halogen groups on chain ends to be the initiator of atom transfer radical reaction. Sequentially, PDMAEMA brushes were grafted on the silicon surface.
Electron Spectroscopy for X-ray photoelectron spectroscopy (XPS) was utilized to verity the surface element of initiator and PDMAEMA polymer brushes for each stage. We observed coil-like structure with 10nm, 13nm, 19nm and 25nm of diameters for PDMAEMA brushes after grafting for 2, 4, 6 and 8 h by atomic force microscopy (AFM) and high-resolution thermal field emission scanning electron microscopy (HRFE-SEM). Approximately linear increase in thickness of the grafted PDMAEMA layer from 90.6 to 329.3 nm was observed on the surface upon increasing the polymerization time to 8 h. Furthermore, the patterned PDMAEMA brushes with width of 400 nm were fabricated by using lithography on the silicon wafer. The patterns of PDMAEMA brushes matched perfectly with the patterns from lithography, indicating that the patterned PDMAEMA could be fabricated by using a very-large-scale integration (VLSI) system to approach commercial application.
Contact angles on the PDMAEMA layer increased to 61.5°at PH=1, but decreased to 72.5°at PH=11, indicating a PH responsive property on the surface. At a PH of 1, the tethered PDMAEMA stretched its polymer chains to increase the hydrogen bonding between water and polymer to create a hydrophilic surface. Upon increasing PH to 11, the tethered PDMAEMA collapsed due to disappearance of positive charges, increasing hydrogen bonding among polymer to create a hydrophobic surface. The PH responsive behavior of PDMAEMA polymer brushes repeated three cycles to verity the property. Moreover, PDMAEMA layer was used to be a extractor on the surface through the PH responsive property. The positive charge on the PDMAEMA attracted a herring sperm DNA with 10μg/μl at PH = 7, a DNA capture process. Upon increasing PH to 3, the positive charge groups disappeared, causing the release of the DNA. The results suggests that The results suggest that tethered PDMAEMA brushes could be a extractor to miniaturize cartridges of sample preparation for rapid disease diagnosis through fluid device to approach the lab-on-a-chip (LOC).
The positive charge (R4N+) groups on the side chain of PDMAEMA brush were used to synthesize gold nanoparticles on the surface in water and toluene. The sizes of Au particles, synthesized in water and toluene, were 8 and 25nm, respectively. The Au particles on the PDMAEMA side chains reduced surface zeta potential from -10.36 to -16.98 mV, indicateing the Au particles carried negative charges which is induced by R4N+ groups.
1.Jurgen Ruhe., Matthias Ballauff. , Markus Biesalski., Peter Dziezok.
, Franziska Grohn., Diethelm Johannsmann., Nikolay Houbenov., Norbert Hugenberg., Rupert Konradi., Sergiy Minko., Michail Motornov., Roland R. Netz., Manfred Schmidt., Christian Seidel., Manfred Stamm., Tim Stephan., Denys Usov., Haining Zhang.,Polyelectrolyte Brushes. Adv Polym Sci . 2004, 165:79–150.
2.B. Zhao, W.J. Brittain., Polymer brushes: surface-immobilized
macromolecules. Prog. Polym. Sci. 2000, 25, 677–710.
3.S. T. MILNER., Polymer Brushes. Science. 251:905-914.
4.Jeffrey Pyun., Krzyszt of Matyjaszewski. Synthesis of Nano-
Composite Organic/Inorganic Hybrid Materials Using Controlled/
“Living” Radical Polymerization. Chem. Mater. 2001, 13, 3436-3448.
5.John A. Howarter., Jeffrey P. Youngblood., Optimization of Silica
Silanization by 3-Aminopropyltriethoxysilane. Langmuir 2006, 22, 11142-11147.
6.A. Simon, T. Cohen-Bouhacina, M. C. Port’e, J. P. Aim’e, C.
Baquey. Study of Two Grafting Methods for Obtaining a 3-Aminopropyltriethoxysilane Monolayer on Silica Surface. J Colloid Interf Sci. 2002, 251, 278–283.
7.Krzyszt of Matyjaszewski, Jianhui Xia. Atom Transfer Radical
Polymerization. Chem. Rev. 2001, 101, 2921-2990.
8.J. Xue, L. Chen, H. L. Wang, Z. B. Zhang, X. L. Zhu, E. T. Kang,
K.G.Neoh. Stimuli-Responsive Multifunctional Membranes of Controllable Morphology from Poly(vinylidenefluoride)-graft-Poly
[2-(N,N-dimthylamino) ethyl methacrylate] Prepared via Atom Transfer Radical Polymerization. Langmuir 2008, 24, 14151-14158.
9.Xiaofeng Sui, Jinying Yuan, Mi Zhou, Jun Zhang, Haijun Yang,
Weizhong Yuan, Yen Wei, and Caiyuan Pan. Synthesis of Cellulose- graft-Poly(N,N-dimethylamino-2-ethyl methacrylate) Copolymers via Homogeneous ATRP and Their Aggregates in Aqueous Media. Biomacromolecules 2008, 9, 2615–2620.
10.S. Sanjuan, P. Perrin, N. Pantoustier, Y. Tran. Synthesis and
Swelling Behavior of pH-Responsive Polybase Brushes. Langmuir 2007, 23, 5769-5778.
11.Sarah Sanjuan, Yvette Tran. Stimuli-Responsive Interfaces Using
Random Polyampholyte Brushes. Macromolecules 2008, 41, 8721-872.
12.Dongxiang Li, Qiang He, Yang Yang, Helmuth Moohwald, Junbai
Li. Two-Stage pH Response of Poly(4-vinylpyridine) Grafted Gold Nanoparticles. Macromolecules 2008, 41, 7254-7256.
13.P. van de Wetering, N. J. Zuidam, M. J. van Steenbergen, O. A. G. J.
van der Houwen, W. J. M. Underberg, W. E. Hennink. A Mechanistic Study of the Hydrolytic Stability of Poly(2-(dimethylamino)ethyl methacrylate). Macromolecules 1998, 31, 8063-8068.
14.Byeong Su Kim, Haifeng Gao, Avni A. Argun, Krzyszt of Matyjaszewski, Paula T. Hammond. All-Star Polymer Multilayers as pH-Responsive Nanofilms. Macromolecules 2009, 42, 368-375.
15.Dongxiang Li, Qiang He, Yue Cui, Junbai Li. Fabrication of pH-Responsive Nanocomposites of Gold Nanoparticles/ Poly(4-vinylpyridine) . Chem. Mater. 2007, 19, 412-417.
16.Josefina Lindqvist, Daniel Nystrom, Emma ostmark, Per Antoni, Anna Carlmark, Mats Johansson, Anders Hult, Eva Malmstrom. Intelligent Dual-Responsive Cellulose Surfaces via Surface-Initiated ATRP. Biomacromolecules 2008, 9, 2139-2145.
17.S. Dai, P. Ravi, C. H. Tan, K. C. Tam. Self-Assembly Behavior of a Stimuli-Responsive Water-Soluble [60] Fullerene-Containing Polymer. Langmuir 2004, 20, 8569-8575.
18.Sarah Sanjuan, Yvette Tran. Synthesis of Random Polyampholyte Brushes by Atom Transfer Radical Polymerization. J Polym Sci pol chem 2008,46,4305-4319.
19.Felix A. Plamper, Markus Ruppel, Alexander Schmalz, Oleg Borisov, Matthias Ballauff, Axel H. E. Muller. Tuning the Thermoresponsive Properties of Weak Polyelectrolytes: Aqueous Solutions of Star- Shaped and Linear Poly(N,N-dimethylaminoethy Methacrylate). Macromolecules 2007, 40, 8361-8366.
20.Smrati Gupta, Mukesh Agrawal, Petra Uhlmann, Frank Simon, Manfred Stamm. Poly(N-isopropyl acrylamide)-Gold Nanoassem- -blies on Macroscopic Surfaces: Fabrication, Characterization, and Application. Chem. Mater. 2010, 22, 504–509.
21.Kaiqiang Chen, Dehai Liang, Jia Tian, Linqi Shi, and Hanying Zhao.In-Situ Polymerization at the Interfaces of Micelles: A “Grafting From” Method to Prepare Micelles with Mixed Coronal Chains. J. Phys. Chem. B 2008, 112, 12612–12617.
22.Mingming Zhang, Li Liu, Chenglin Wu, Guoqi Fu, Hanying Zhao,Binglin He. Synthesis, characterization and application of well- defined environmentally responsive polymer brushes on the surface of colloid particles. Polymer 2007, 48, 1989-1997.
23.Iryna Tokareva, Sergiy Minko, Janos H. Fendler, Eliza Hutter. Nanosensors Based on Responsive Polymer Brushes and Gold Nanoparticle Enhanced Transmission Surface Plasmon Resonance Spectroscopy. J. Am. Chem. Soc. 2004, 126, 15950-15951.
24.G. Neri, A.M. Visco, S. Galvagno, A. Donatob, M. Panzalorto. Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization. Thermochimica Acta 1999, 329,39-46.
25.Gokcen Birlik Demirel,Samet Coşkun, Meryem Kalkan, Tuncer caykara. Preparation of a Novel Polymer-Modified Si Surface for DNA Immobilization. Macromol. Biosci. 2009, 9, 472–479.
26.Linglu Yang, Shuo Bai, Dunshen Zhu, Zhaohui Yang, Maofeng Zhang, Zhifeng Zhang,Erqiang Chen, and Weixiao Cao. Superhydrophobic Patterned Film Fabricated from DNA Assembly and Ag Deposition. J. Phys. Chem. C 2007, 111, 431-434.
27.Song Lin, Fusheng Du, Yang Wang, Shouping Ji, Dehai Liang, Lei Yu, Zichen Li. An Acid-Labile Block Copolymer of PDMAEMA and PEG as Potential Carrier for Intelligent Gene Delivery Systems. Biomacromolecules 2008, 9, 109–115.
28.Sabine Pirotton, Caroline Muller, Nadege Pantoustier, Francois Botteman, Sebastien Collinet, Christian Grandfils, Guy Dandrifosse, Philippe Degee, Philippe Dubois, Martine Raes. Enhancement of Transfection Efficiency Through Rapid and Noncovalent Post- PEGylation of Poly(Dimethylaminoethyl Methacrylate)/DNA Complexes. Pharm.Res. 2004, 21,1471-1479.
29. Peng Zhang, Wenguang Liu. ZnO QD@PMAA-co-PDMAEMA nonviral vector for plasmid DNA delivery and bioimaging. Biomaterials 2010,31, 3087–3094.
30. Rong Dong, Sitaraman Krishnan, Barbara A. Baird, Manfred Lindau, Christopher K. Ober. Patterned Biofunctional Poly- -(acrylic acid) Brushes on Silicon Surfaces. Biomacromolecules 2007, 8, 3082-3092.
31.Rahul R. Shah, David Merreceyes, Marc Husemann, Ian Rees,
Nicholas L. Abbott, Craig J. Hawker, James L. Hedrick. Using Atom Transfer Radical Polymerization To Amplify Monolayers of Initiators Patterned by Microcontact Printing into Polymer Brushes for Pattern Transfer. Macromolecules 2000, 33, 597-605.
32. F. J. Xu, Y. Song, Z. P. Cheng, X. L. Zhu, C. X. Zhu, E. T. Kang, K. G. Neoh. Controlled Micropatterning of a Si(100) Surface by Combined Nitroxide-Mediated and Atom Transfer Radical Polymerizations. Macromolecules 2005, 38, 6254-6258.
33.Feng Zhou, Lei Jiang, Weimin Liu, Qunji Xue. Fabrication of Chemically Tethered Binary Polymer-Brush Pattern through Two- -Step Surface-Initiated Atomic-Transfer Radical Polymerization. Macromol. Rapid Commun. 2004, 25, 1979–1983.
34.A. Genua, J. A. Aldunćın, J. A. Pomposo, H. Grande, N. Kehagias, V. Reboud, C. Sotomayor, I. Mondragon, D. Mecerreyes. Functional patterns obtained by nanoimprinting lithography and subsequent growth of polymer brushes. Nanotechnology 2007, 18, 215301.
35.Marc Husemann, Michael Morrison, Didier Benoit, Jane Frommer, C. Mathew Mate, William D. Hinsberg, James L. Hedrick, Craig J. Hawker. Manipulation of Surface Properties by Patterning of Covalently Bound Polymer Brushes. J. Am. Chem. Soc. 2000, 122, 1844-1845.
36.Amalvy, J. I.Wanless, E. J. Li, Y.; Michailidou, V. Armes, S. P. Langmuir 2004, 20, 8992–8999.
37.Olga Schepelina, Ilya Zharov. Poly(2-(dimethylamino)ethyl methacrylate)-Modified Nanoporous Colloidal Films with pH and Ion Response. Langmuir 2008, 24, 14188-14194.
38.Verbaan F.J, Oussoren C, van Dam IM, et al. The fate of poly(2-dimethylaminoethyl)methacrylate-based polyplexes after
intravenous administration. Int J Pharm 2001, 214, 99–101.
39.F. J. Verbaan,C. Oussoren,C. J. Snel,D. J. A. Crommelin,W. E. Hennink,G. Storm.Steric stabilization of poly(2-(dimethylamino)- -ethylmethacrylate)based polyplexes mediates prolonged circul- -ation and tumor targeting in mice. J Gene Med 2004, 6, 64–75.
40.Jong-Yuh Cherng, Petra van de Wetering, Herre Talsma, Daan J.A. crommelin, Win E. Hennink. Effect of Size and Serum Proteins on Transfection Efficiency of Poly((2-dimethylamino)ethyl Methacry -late)-Plasmid Nanoparticles. Pharm.Res 1996,13,1038-1042.
41.Severine Munier, Isabelle Messai, Thierry Delair, Bernard Verrier, Yasemin Ataman-onal. Cationic PLA nanoparticles for DNA delivery: Comparison of three surface polycations for DNA binding, protectionand transfectio operties. Colloid Surface B 2005,43,163–173.
42.W. H. Yu, E. T. Kang, K. G. Neoh. Controlled Grafting of Well- Defined Polymers on Hydrogen-Terminated Silicon Substrates
by Surface-Initiated Atom Transfer Radical Polymerization. J. Phys. Chem. B 2003, 107, 10198-10205.
43.Qian Yang, Jing Tian, Meng-Xin Hu, and Zhi-Kang Xu. Construction of a Comb-like Glycosylated Membrane Surface by a Combination of UV-Induced Graft Polymerization and Surface-Initiated ATRP. Langmuir 2007, 23, 6684-6690.
44.Chang Xu, Tao Wu, Charles Michael Drain, James D. Batteas, Michael J. Fasolka, Kathryn L. Beers. Effect of Block Length on Solvent Response of lock Copolymer Brushes: Combinatorial Study with Block Copolymer Brush Gradients. Macromolecules 2006, 39, 3359-3364.
45.Felix A. Plamper, Alexander Schmalz, Evis Penott-Chang, Markus Drechsler, Arben Jusufi, Matthias Ballauff, Axel H. E. Mller. Synthesis and Characterization of Star-Shaped Poly(N,N- dimethy
-laminoethyl methacrylate) and Its Quaternized Ammonium Salts. Macromolecules 2007, 40, 5689-5697.
46.Alexander S. J Phys 1977,28,977.
47.de Gennes PG. J Phys 1976,37,1445.
48.de Gennes PG . Macromolecules 1980,13,1069.
49.Kopf A, Baschnagel J, Wittmer J, Binder K. Macromolecules 1996,29,1433.
50.Zajac R, Chakrabati A. Phys Rev 1995,52,6536.
51.Ejaz M, Tsujii Y, Fukuda T. Polymer 2001, 42,6811.
52.Biesalski M, R he J. Macromolecules 1999, 32,2309
53.Biesalski M, R he J Langmuir 2000,16,1943.
54.Delamarche, E., Michel, B., Kang, H., Gerber, C.Thermal Stability of Self-Assemble Monolayers.Langmuir 1994,10,4103-4108.
55.Deepthi Gopireddy,Scott M. Husson. Room Temperature Growth of Surface-Confined Poly(acrylamide) fromSelf-Assembled Monolayers Using AtomTransfer Radical Polymerization. Macromolecules 2002, 35, 4218-4221.