簡易檢索 / 詳目顯示

研究生: 李家慶
CHIA-CHING LEE
論文名稱: 鹼金屬對7056 玻璃結構與彈性之效應
Studies of effects of alkali metals on structural change and elastic behaviours of 7056 glass
指導教授: 洪伯達
Po-Da Hong
口試委員: 唐震宸
Jenn-Chen Tang
雷添壽
Tien-Shou Lei
曾亮
Liang Tseng
王朝正
Chao-Cheng Wang
林舜天
Shun-Tien Lin
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 108
中文關鍵詞: 玻璃彈性性質拉曼光譜布里安光譜
外文關鍵詞: Glasses Elastic properties
相關次數: 點閱:155下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用拉曼(Raman)光譜及布里安(Brillouin)光譜來探討鹼金屬離子(Li、Na、K)含量對7056焊接用玻璃,探討體積模數(bulk modulus,K)、剪力模數(shear modulus,G)、楊氏模數(Yang’s modulus,E)的效應。從本研究可發現:當鹼金屬離子含量增多時,其玻璃之陰離子結構也隨之改變,但陰離子結構卻未與玻璃之彈性模數有一定的關係,這是因為影響彈性模數除了陰離子的幾何形狀外,尚有離子電場強度及密度等之因素。是故,吾人可以發現,Li、Na、K三者的含量變化對7056玻璃所造成的陰離子結構分佈趨勢雷同,但因離子電場強度及陽離子尺寸(cation size)之因素,造成不同的Q species 的含量比。對Li2O系列,因Li+的電場強度對彈性模數的效應強大,故含量增加時,其彈性模數也跟著變大。對Na2O系列,在Na+含量≧15.4%,因密度增幅有限且Q4、Q3大量分解成低聚合度的Q2、Q1、Q0 ,故Na+含量≧15.4%,彈性模數並無甚大的改變。對K2O系列,在K+含量≧15.4%,密度增幅不僅比Na2O系列來的更小且低聚合度的陰離子結構更多,再加上K+的離子電場強度差,故造成彈性性質再度轉而降低。


This research uses Raman spectroscopy and Brillouin scattering to investigate the influence of amount of alkali metals contributing to 7056 glass, which is used as flux, and the effect on bulk modulus (K), shear modulus (G) and Young’s modulus (E). This research shows that when the amount of alkali metal ions increase, the anionic structure of the glass changes but has no fixed relationship with elastic moduli due to that the factors affecting elastic moduli involve the strength of electric field and density other than the shape of anions. Thus we found the change in amount of Li, Na and K has the trend as the distribution of anionic structures, yet the strength of electric field and size of cations result different fractions of Q species. For Li2O series, since the strength of electric field of Li+ has a strong effect on elastic moduli, elastic moduli increase with the amount of Li+. For Na2O series, when the amount of Na+≧15.4%, the limited increase in density and the decomposition of Q4 and Q3 into low polymerized Q2, Q1 and Q0 in a large scale, hence there is no significant change on elastic moduli when Na+≧15.4%. For K2O series, when the amount of K+≧15.4%, the increase in density is even smaller than which happened on Na2O series and the low polymerised anionic structure is more in amount, associating with the disadvantage on the strength of electric field lf K+, elastic moduli turn to decrease.

Category Chinese Abstract…..……………………………………………………………… …..I English Abstract……………...…………………………………………………… ….II Acknowledgements………………………...………………………………………...III Category…………………………………………………………………………...…IV Figure Index………………………………………………...………………………..VI Table Index…………………………………………………………….……………XII Abbreviations……………………………………………………………………....XIV Chapter 1: Background…………...……………………………………………………1 Chapter 2: Experiment………………………………………………………………...9 2.1 Fabrication of glasses……….………………………………………………..9 2.2 Analysis of properties……………………………………………………….14 2.2.1 Density………………………………………………………………14 2.2.2 Glass transition temperature (Tg)……………………………………14 2.2.3 X-ray Diffraction…………………………………………………….15 2.3 Analysis of vibration modes………………………………………………25 2.3.1 Raman spectroscopy…………………………………………………25 2.3.2 Brillouin spectroscopy……………………………………………….25 2.3.2.1 Preparation of the specimen………………………………….25 V 2.3.2.2 Brillouin scattering…………………………………………...26 2.3.2.3 Calculation of elasticity………………………………………27 Chapter 3: Mechanism of Raman and Brillouin spectroscopy……………………….31 3.1 Brillouin spectroscopy………………………………………………………31 3.2 Raman spectroscopy ………………………………………………………..39 3.2.1 Raman active modes…………………………………………………41 Chapter 4: Results and Discussion…………………………………………………46 4.1 Raman spectra of glasses of all alkali metal series.………………………..46 4.2 Fraction calculation of Q species…………………………………………62 4.3 Anionic structures in Raman spectra………………………………………70 4.4 Effects of anionic structures on elastic moduli…………………………….76 4.5 XRD Analysis……………………..………………………………………...93 Chapter 5: Conclusion....……………………………………………………………103 References..…………………………………………………………………………105 VI Figure Index Fig. 1.1 Schematic diagram of anionic structural units………………………………..7 Fig. 1.2 Anionic structural units of silicate melts or glasses under normal pressure, including SiO2 (Q4), NBO/Si = 0; Si2O5 2- (Q3), NBO/Si = 1; Si2O6 4- (Q2), NBO/Si = 2; Si2O7 6- (Q1), NBO/Si = 3; SiO4 4- (Q0), NBO/Si = 4 ………………….……………….8 Fig. 2.1 (a) DSC trace of LiG0 where mole fraction concentration is 0% with Tg at 580oC and firing temperature of 1450 oC…………………………………………….16 Fig. 2.1 (b) DSC trace of LiG1 where mole fraction concentration is 5.7% with Tg at 510oC and firing temperature of 1100 oC. …………………………………………...16 Fig. 2.1 (c) DSC trace of LiG2 where mole fraction concentration is 10.8% with Tg at 510oC and firing temperature of 1150 oC. …………………………………………...17 Fig. 2.1 (d) DSC trace of LiG3 where mole fraction concentration is 15.4% with Tg at 500oC and firing temperature of 1000 oC. …………………………………………...17 Fig. 2.1 (e) DSC trace of LiG4 where mole fraction concentration is 19.5% with Tg at 495oC and firing temperature of 1000 oC. …………………………………………...18 Fig. 2.1 (f) DSC trace of LiG5 where mole fraction concentration is 23.3% with Tg at 485oC and firing temperature of 950 oC. …………………………………………….18 Fig. 2.2 (a) DSC trace of NG0 where mole fraction concentration is 0% with Tg at 550oC and firing temperature of 1400 oC. …………………………………………...19 VII Fig. 2.2 (b) DSC trace of NG1 where mole fraction concentration is 5.7% with Tg at 535oC and firing temperature of 1350 oC. …………………………………………...19 Fig. 2.2 (c) DSC trace of NG2 where mole fraction concentration is 10.8% with Tg at 510oC and firing temperature of 1100 oC. …………………………………………...20 Fig. 2.2 (d) DSC trace of NG3 where mole fraction concentration is 15.4% with Tg at 505oC and firing temperature of 1080 oC. …………………………………………...20 Fig. 2.2 (e) DSC trace of NG4 where mole fraction concentration is 19.5% with Tg at 500oC and firing temperature of 1060 oC. …………………………………………...21 Fig. 2.2 (f) DSC trace of NG5 where mole fraction concentration is 23.3% with Tg at 490oC and firing temperature of 1030 oC. …………………………………………...21 Fig. 2.3 (a) DSC trace of KG0 where mole fraction concentration is 0% with Tg at 610oC and firing temperature of 1650 oC. …………………………………………..22 Fig. 2.3 (b) DSC trace of KG1 where mole fraction concentration is 5.7% with Tg at 510oC and firing temperature of 1100 oC. . ………………………………………….22 Fig. 2.3 (c) DSC trace of KG2 where mole fraction concentration is 10.8% with Tg at 515oC and firing temperature of 1150 oC. . ………………………………………….23 Fig. 2.3 (d) DSC trace of KG3 where mole fraction concentration is 15.4% with Tg at 510oC and firing temperature of 1100 oC. . ………………………………………….23 Fig. 2.3 (e) DSC trace of KG4 where mole fraction concentration is 19.5% with Tg at VIII 510oC and firing temperature of 1100 oC. . ………………………………………….24 Fig. 2.3 (f) DSC trace of KG5 where mole fraction concentration is 23.3% with Tg at 500oC and firing temperature of 1050 oC. . ………………………………………….24 Fig. 3.1 Brillouin spectrometer………………………………………………………34 Fig. 3.2 Schematic diagram of Brillouin scattering…………………………………..35 Fig. 3.3 Typical Brillouin spectra (sample G1 with 45o incidence angle) where T is the transverse wave and L is the longitudinal wave. The central peak is Rayleigh ray while the double peaks on both ends are the ghosts created from the difference between free spectral range (FSR) of two Fabry-Perot etalons………………………36 Fig 3.4 Elasto-optical scattering mechanism…………………………………………37 Fig. 3.5 Ripple mechanism illustrating the formula of VSAW = λo Δƒ /(2 sin θ )……...38 Fig. 3.6 Schematic diagram of Raman spectroscopy………………………………...44 Fig. 3.7 Three different forms of scattering: Rayleigh scattering, strokes Raman scattering and anti-strokes Raman scattering………………………………………...45 Fig. 4.1 (a) Raman spectra of LiG0…………………………………………………..50 Fig. 4.1 (b) Raman spectra of LiG1. …………………………………………………50 Fig. 4.1 (c) Raman spectra of LiG2. …………………………………………………51 Fig. 4.1 (d) Raman spectra of LiG3. …………………………………………………51 Fig. 4.1 (e) Raman spectra of LiG4. …………………………………………………52 IX Fig. 4.1 (f) Raman spectra of LiG5. …………………………………………………52 Fig. 4.2 Raman spectra of Li2O series. ………………………………………………53 Fig. 4.3 (a) Raman spectra of NG0. …………………………………………………54 Fig. 4.3 (b) Raman spectra of NG1. …………………………………………………54 Fig. 4.3 (c) Raman spectra of NG2. …………………………………………………55 Fig. 4.3 (d) Raman spectra of NG3. …………………………………………………55 Fig. 4.3 (e) Raman spectra of NG4. …………………………………………………56 Fig. 4.3 (f) Raman spectra of NG5. ………………………………………………….56 Fig. 4.4 Raman spectra of Na2O series……………………………………………….57 Fig. 4.5 (a) Raman spectra of KG0. …………………………………………………58 Fig. 4.5 (b) Raman spectra of KG1…………………………………………………..58 Fig. 4.5 (c) Raman spectra of KG2. …………………………………………………59 Fig. 4.5 (d) Raman spectra of KG3. …………………………………………………59 Fig. 4.5 (e) Raman spectra of KG4. …………………………………………………60 Fig. 4.5 (f) Raman spectra of KG5. ………………………………………………….60 Fig. 4.6 Raman spectra of K2O series. ………………………………………………61 Fig 4.7 Change of fraction of Q species from LiG0~LiG5, including Q0, Q1, Q2, Q3 and Q4………………………………………………………………………………...67 Fig 4.8 Change of fraction of Q species from NG0~NG5, including Q0, Q1, Q2, Q3 and X Q4………………………………………………………………………………..........68 Fig 4.9 Change of fraction of Q species from KG0~KG5, including Q0, Q1, Q2, Q3 and Q4. ………………………………………………………………………………........69 Fig. 4.10 Brillouin spectra of LiG0~LiG5 at 22oC. where L and T represent the signals caused by interaction between photons and longitudinal and transverse phonons respectively. R stands for Rayleigh scattering………………………………………..83 Fig. 4.11 Brillouin spectra of NG0~NG5 at 22oC. where L and T represent the signals caused by interaction between photons and longitudinal and transverse phonons respectively. R stands for Rayleigh scattering. ………………………………………84 Fig. 4.12 Brillouin spectra of K0~KG5 at 22oC. where L and T represent the signals caused by interaction between photons and longitudinal and transverse phonons respectively. R stands for Rayleigh scattering. ………………………………………85 Fig. 4.13 Change of elastic moduli from LiG0~LiG5 where E, K and G represent Young’s modulus, bulk modulus and shear modulus respectively…………………...89 Fig. 4.14 Change of elastic moduli from NG0~NG5 where E, K and G represent Young’s modulus, bulk modulus and shear modulus respectively…………………...90 Fig. 4.15 Change of elastic moduli from KG0~KG5 where E, K and G represent Young’s modulus, bulk modulus and shear modulus respectively…………………...91 Fig. 4.16 Change of Poisson’s ratio in relationship with G/K………………………..92 XI Fig. 4.17 (a) XRD spectra of LiG0 over a 10o~50o 2θ range at 1o/min………………94 Fig. 4.17 (b) XRD spectra of LiG1 over a 10o~50o 2θ range at 1o/min……………...94 Fig. 4.17 (c) XRD spectra of LiG2 over a 10o~50o 2θ range at 1o/min………………95 Fig. 4.17 (d) XRD spectra of LiG3 over a 10o~50o 2θ range at 1o/min……………...95 Fig. 4.17 (e) XRD spectra of LiG4 over a 10o~50o 2θ range at 1o/min………………96 Fig. 4.17 (f) XRD spectra of LiG5 over a 10o~50o 2θ range at 1o/min………………96 Fig. 4.17 (a) XRD spectra of NG0 over a 10o~50o 2θ range at 1o/min………………97 Fig. 4.17 (b) XRD spectra of NG1 over a 10o~50o 2θ range at 1o/min………………97 Fig. 4.17 (c) XRD spectra of NG2 over a 10o~50o 2θ range at 1o/min………………98 Fig. 4.17 (d) XRD spectra of NG3 over a 10o~50o 2θ range at 1o/min………………98 Fig. 4.17 (e) XRD spectra of NG4 over a 10o~50o 2θ range at 1o/min………………99 Fig. 4.17 (f) XRD spectra of NG5 over a 10o~50o 2θ range at 1o/min……………….99 Fig. 4.17 (a) XRD spectra of KG0 over a 10o~50o 2θ range at 1o/min……………..100 Fig. 4.17 (b) XRD spectra of KG1 over a 10o~50o 2θ range at 1o/min……………..100 Fig. 4.17 (c) XRD spectra of KG2 over a 10o~50o 2θ range at 1o/min……………..101 Fig. 4.17 (d) XRD spectra of KG3 over a 10o~50o 2θ range at 1o/min……………..101 Fig. 4.17 (e) XRD spectra of KG4 over a 10o~50o 2θ range at 1o/min……………..102 Fig. 4.17 (f) XRD spectra of KG5 over a 10o~50o 2θ range at 1o/min……………...102 XII Table Index Table 2.1 Mole %, density, firing temperature and annealing temperature of Li2O series where LiG0 = 0%, LiG1 = 5.7%, LiG2 = 10.8%, LiG3 = 15.4%, LiG4 = 19.5% and LiG5 = 23.3% in mole fraction concentration…………………………………...11 Table 2.2 Mole %, density, firing temperature and annealing temperature of Na2O series where NG0 = 0%, NG1 = 5.7%, NG2 = 10.8%, NG3 = 15.4%, NG4 = 19.5% and NG5 = 23.3% in mole fraction concentration…………………………………...12 Table 2.3 Mole %, density, firing temperature and annealing temperature of K2O series where KG0 = 0%, KG1 = 5.7%, KG2 = 10.8%, KG3 = 15.4%, KG4 = 19.5% and KG5 = 23.3% in mole fraction concentration…………………………………...13 Table 2.4 Comparison of three vibrational spectroscopy: Infrarad (IR), Raman and Brillouin spectroscopy………………………………………………………………..30 Table 4.1 Frequencies and assignments of Raman bands of LiG0∼LiG5…………..47 Table 4.2 Frequencies and assignments of Raman bands of NG0∼NG5…………...48 Table 4.3 Frequencies and assignments of Raman bands of KG0∼KG5…………...49 Table 4.4 Percentage Fraction of Q species of Li2O Series…………………………..64 Table 4.5 Percentage Fraction of Q species of Na2O Series…………………………65 Table 4.6 Percentage Fraction of Q species of K2O series…………………………...66 Table 4.7 Elastic moduli of LiG0~LiG5……………………………………………...86 XIII Table 4.8 Elastic moduli of NG0~NG5..……………………………………………..87 Table 4.9 Elastic moduli of KG0~KG5………………………………………………88 XIV Abbreviations ai coefficient of regularized cross-section area Ai area of Raman signal peaks CN coordinate number C11 compressibility C44 shear modulus DSC differential scanning calorimetry E Young’s modulus FSR free spectral range F function of speed of longitudinal and transverse waves G shear modulus K bulk modulus IR infrared L scattered light after the reaction of incident light and longitudinal phonon NBO non-bridging oxygen NMR nuclear magnetic resonance Qn Q species, n=0, 1, 2, 3, 4 Q4 SiO2, silica, tectosilicate Q3 Si2O5 2-, phyllosilicate Q2 Si2O6 4-, metasilicate Q1 Si2O7 6-, disilicate Q0 SiO4 4-, orthosilicate M+ alkali metal ions M2+ alkaline earth metal ions R Rayleigh ray XV ri radius of cations z/r2 electric field of cations (z=electric charge, r=radius of ions) T scattered light after the reaction of incident light and transverse phonon Tg glass transition temperature Vs speed of longitudinal and transverse waves VL speed of longitudinal wave VT speed of transverse wave W mass of samples in air W0 mass of annealed samples in air XRD X-ray diffractiometry Xi mole percentage of cations zi electric charge of cations ρ sample density ρl propanol density ρm medium (materials waiting for measurement) density △ω Brillouin shift (GHz) λ wavelength of incident light ν Poisson’s ratio

Bansal N.P., Doremus R.H. Handbook of Glass Properties, Academic, San Diego CA,
1986.
Brown G.E., Gibbs G.V., Ribbe P.H. The nature and variation in length of the Si-O
and Al-O bonds in framework silicates. Amer. Mineral. 54 (1969) 1044-1061.
Bykov V.N., Osipov A.A., Anfilogov V.N. Structural study of rubidium and caesium
silicate glasses by Raman spectroscopy, Phys. Chem. Glasses 41 (2000) 10.
Calas G., Cormier L., Galoisy L., Jollivet P. Structure-property relationships in
multi-component oxide glasses, Compte Rendu Chim. 5, (2002) 831.
Chern, T.S., Tsaia, H.L. Wetting and sealing of interface between 7056 Glass and
Kovar alloy. Mater. Chem. Phys. 104, 2-3 (2007)
Domine F., Piriou B. Raman spectroscopic study of the SiO2-Al2O3-K2O vitreous
system: Distribution of silicon and second neighbors. Amer. Mineral. 71 (1986)
38-50.
Duffy J.A. Relationship between cationic charge, coordination number, and
polarizability in oxidic materials. J. Phys. Chem. B108 (2004) 14137-14141.
Dwivedi B.P., Khanna B.N. Cation dependence of Raman scattering in alkali borate
glasses. J. Phys. Chem. Solids 56 (1995) 39-49.
Ellison A.J.G., Hess P.C. Raman study of potassium silicate glasses containing Rb+,
Sr2+, Y3+ and Zr4+: implications for cation solution mechanisms in multicomponent
silicate liquids. Geochim Cosmochim. Acta, (1877-1887) 58.
Furukawa T., Fox K.E., White W.B. Raman spectroscopic investigation of the
structure of silicate glasses. III. Raman intensities and structural units in sodium
silicate glasses. J. Chem. Phys. 15 (1981) 3226-3237.
Gibbs G.V., Meagher E.P., Newton M.D., Swanson D.K. A comparison of
experimental and theoretical bond length and angle variations for minerals and
106
inorganic solids, and molecules. Structure and Bonding in Crystals (editors M.
O’Keefe and A. Navrotsky) (1981) Vol. 2, Chap. 9, Academic Press.
Greaves G.N., Fontaine A., Lagarde P., Raoux D., Gurman S.J. The local structure of
silicate glasses, Nature 293 (1981) 611.
Karlsson K.H., Fro‥berg K. Structural units in silicate glasses, Chem. Geol. 62 (1987)
1.
Kawazoe H., Kokumai H., Kanazawa T. Coordination of Mg2+ in oxide glasses
determined by x-Ray emission spectroscopy, J. Phys. Chem. Solids 42, (1981) 579.
Kroeker S., Stebbins J.F. Magnesium coordination environments in glasses and
minerals: New insight from high field magnesium-25 MAS NMR, Am. Mineral. 85
(2000) 1459.
Lee C.C., Tsai H.L., Tsuei J.G., Hong P.D. Effects of Na+ Amount on Elastic
Properties and Structure of 7056 Glass, Arab. J. Sci. Eng. 37 (2012) 1305-1312.
Lin C.C., Chen S.F, Liu L.G., Lee C.C. Size effects of modifying cations on the
structure and elastic properties of Na2O-MO-SiO2 glasses (M=Mg, Ca, Sr, Ba). Mater.
Chem. Phys. 123 (2010) 569-580.
Lin C.C., Chen S.F., Liu L.-g., Li C.-C. Anionic structure and elasticity of
Na2O-MgO-SiO2 glasses, J. Non-Cryst. Solids 353 (2007) 413.
literature cited therin.
Lin C.C., Liu L.G. Composition dependence of elasticity in aluminosilicate glasses,
Pys. Chem. Minerals 33 (2006) 332.
Lin C.C., Shen P., Chang H.M., Yang Y.J. Composition dependent structure and
elasticity of lithium silicate glasses: Effect of ZrO2 additive and the combination of
alkali silicate glasses, J. Eur. Ceram. Soc. 26 (2006) 3613
Maekawa H., Maekawa T., Kawamura K., Yokokawa T.J. The structural groups of
alkali silicate glasses determined from Si MAS-NMR Non-Cryst. Solids 127 (1991)
53.
107
Matson D.W., Sharma S.K., Philpotts J.A. The structure of high-silica alkali-silicate
glasses. A Raman spectroscopic investigation, J. Non-Cryst. Solids 58 (1983) 323.
McMillan P. A Raman spectroscopic study of glasses in the system CaO-MgO-SiO2,
Amer. Mineral. 69 (1984) 645.
McMillan P., Piriou B., Navrotsky A. A Raman spectroscopic study of glasses along
the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium
aluminate. Geochim. Cosmochim. Acta 46 (1982) 2021-2037.
McMillan P.F., Wolf G.M. Vibrational spectroscopy of silicate liquids. Structure
Dynamics and Properties of Silicate Melts, (1995) chap. 8 pp. 247-315.
Mutti, Bottani et al., in Advances in Acoustic Microscopy. A. Briggs, ed., I, 249 1995
Myson B.O. Physics and chemistry of silicate glasses and melts. Eur. J. Mineral. 15
(2003) 781-802.
Myson B.O., Virgo D., Kushiro I. The structural role of aluminum in silicate melts – a
Raman spectroscopic study at 1 atmosphere. Am. Mineral. 66, (1981) 678-701.
Myson B.O., Virgo D., Seifert F.A. Relationships between properties and structure of
aluminosilicate melts. Amer. Mineral. 70 (1985) 834-847.
Navrotsky A., Hon R., Weill D.F., Henry D.J. Thermochemistry of glasses and liquids
in the systems CaMgSi2O6-CaAl2SiO6-NaAlSi3O8, SiO2-CaAl2Si2O8-NaAlSi3O8, and
SiO2-Al2O3-CaO-Na2O. Geochim. Cosmochim. Acta 44 (1980) 1409-1433.
Navrotsky A., Peraudeau P., McMillan P., Coutoures J.P. A thermochemical study of
glasses and crystals along the joins cilica-calcium aluminate and silica-sodium
aluminate. Geochim. Cosmochim. Acta 46 (1982) 2039-2049.
Navrotsky A., Zimmermann H.D., Herwig R.L. Thermochemical study of glasses in
the system CaMgSi2O6-CaAl2SiO6. Geochim. Cosmochim. Acta 47 (1983)
1535-1539.
Ray B.N., Navrotsky A. Thermochemistry of charge-coupled substitution in silicate
glasses: The system Mn+1/n AlO2-SiO2 (M = Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Pb). J.
108
Amer. Ceram. Soc. 89 (1984) 606-610.
Saddeek, Y. B., Gaafar, M. S.; Bashier S.A. Structural influence of PbO by means of
FTIR and acoustics on calcium alumino-borosilicate glass system. J. Non-Cryst.
Solids 356, 1089-1095 (2010)
Schilling F.R., Hauser M., Sinogeikin S.V., Bass J.D. Compositional dependence of
elastic properties and density of glasses in the system anorthite-diopside-forsterite ,
Contrib., Mineral. Petrol. 141 (2001) 297.
Schreiber H.D., Kochanowski B.K., Schreiber C.W., Morgan A.B., Coolbaugh M.T.,
Dunlap T.G. Compositional dependence of redox equilibria in sodium silicate glasses,
J. Non-Cryst. Solids 177 (1994) 340.
Seifert F.A., Myson B.O., Virgo D. Three-dimensional network melt structure in the
systems SiO2-NaAlO2, SiO2-CaAl2O4 and SiO2-MgAl2O4. Amer. Mineral. 67 (1982)
696-711.
Taylor M., Brown G.E. Structure of mineral glasses. I. The feldspar glasses
NaAlSi3O8, KalSi3O8, CaAl2Si2O8. Teochim. Cosmochim. Acta 43 (1979) 61-77.
Vaills Y., Luspin Y., Hauret G., Cote B. Elastic properties of sodium magnesium
silica and sodium calcium silica glasses by Brillouin scattering, Solid State Commun.
87, (1993) 1097.
Virgo D., Myson B.O., Kushiro I. Anionic constitution of silicate melts quenched at 1
atm from Raman spectroscopy: Implications for the structure of igneous melts.
Science 208 (1980) 1371-1373.

無法下載圖示 全文公開日期 2018/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE