簡易檢索 / 詳目顯示

研究生: 陳毅
Yi - Chen
論文名稱: 矩陣轉換器為基礎的無轉軸偵測元件內藏式永磁同步電動機驅動系統的研製
Design and Implementation of a Matrix-Converter Based Sensorless Interior Permanent Magnet Synchronous Motor Drive System
指導教授: 劉添華
Tian-Hua Liu
口試委員: 許源浴
Yuan-Yih Hsu
廖聰明
Chang-Ming Liaw
林法正
Faa-Jeng Lin
徐國鎧
Kuo-Kai Shyu
楊勝明
Sheng-Ming Yang
劉益華
Yi-Hua Liu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 179
中文關鍵詞: 矩陣轉換器內藏式永磁同步電動機轉軸角度估測適應性控制器最大轉矩/安培控制效率控制
外文關鍵詞: matrix converter, IPMSM, rotor position estimation, adaptive controller, maximum torque/ampere control, efficiency control
相關次數: 點閱:306下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出矩陣轉換器為基礎的內藏式永磁同步電動機驅動系統,探討轉軸角度估測方法、適應性速度控制器配合最大轉矩/安培控制、及提升效率控制。
文中首先利用矩陣轉換器雙向開關元件切換的PWM電壓,所產生的電流變化量,進行轉軸角度的估測,不須額外注入高頻的電壓或電流信號,可以提升整體電壓利用率,並適當地補償虛擬直流鏈電壓脈動產生的漣波,以便提高電動機的轉軸角度估測值的精確度。其次,探討適應性速度控制器配合模糊邏輯搜尋法的最大轉矩/安培控制,達到快速的暫態響應,良好的加載響應,及滿意的追蹤響應。接著,提出提升效率的控制方法,以增加矩陣轉換器的整體驅動系統效率。
本文使用數位信號處理器TMS320LF2407A作為控制核心,實現轉軸角度估測及控制法則。實驗結果與理論分析相當吻合,說明本文所提方法的正確性及可行性。


The dissertation proposes a matrix-converter based sensorless interior permanent magnet synchronous motor (IPMSM) drive system. The research includes rotor position estimation method, adaptive speed controller with maximum torque/ampere control, and increasing efficiency control. First, the current deviation, which is caused by the switching-state of the matrix converter, is used to estimate the rotor position. The proposed method does not need to inject the high frequency voltage or current signal, can increase the voltage utilization of the drive system. By suitably compensating the voltage ripple of the virtual dc-link voltage, the accuracy of the estimated rotor position can be improved. Next, a speed-loop adaptive controller and a fuzzy-logic-search algorithm are used to achieve the maximum torque/ampere control. By using this method, the drive system can achieve fast transient responses, good load responses, and satisfactory tracking responses. After that, an improved efficiency control is proposed to increase the total efficiency of the whole matrix converter drive system.
A digital signal processor, TMS320LF2407A, is used as a control center to implement the rotor position estimation and control algorithms. Experimental results can validate the theoretical analysis to show the correctness and feasibility of the proposed methods.

摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 XII 符號索引 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 目的與貢獻 8 1.4 大綱 12 第二章 矩陣轉換器 13 2.1 簡介 13 2.2 主電路 15 2.3 切換方法 16 2.3.1 直接轉換 17 2.3.2 間接轉換 17 2.4 換相策略與緩衝電路 24 第三章 內藏式永磁同步電動機 26 3.1 簡介 26 3.2 結構與特性 26 3.3 數學模式 29 3.4 永磁同步電動機的驅動方法 36 第四章 轉軸角度估測方法 38 4.1 簡介 38 4.2 高頻脈波寬度調變轉軸角度估測 41 4.2.1 基本原理 41 4.2.2 角度估測誤差的補償 48 4.3轉軸估測器設計 52 4.3.1 高頻激勵電壓信號設計 52 4.3.2 高頻諧波電流信號擷取 52 4.3.3 高頻電流同步信號處理 54 4.4速度估測器設計 55 第五章 驅動系統的控制方法 57 5.1 簡介 57 5.2 參考模型適應性速度控制器 58 5.2.1 簡介 58 5.2.2 速度控制器的設計 58 5.3 最大轉矩/安培控制 64 5.3.1 基本原理 64 5.3.2高頻信號注入最大轉矩/安培控制概述 67 5.3.3高頻信號注入最大轉矩/安培控制的設計 68 5.3.4 電流超前角控制方法 73 5.4 提高效率控制 78 第六章 系統研製 82 6.1 簡介 82 6.2 硬體電路設計 86 6.2.1 矩陣轉換器主電路 86 6.2.2 驅動電路 88 6.2.3 偵測電路 90 6.2.3.1 電壓零點偵測電路 90 6.2.3.2 電流偵測電路 91 6.2.3.3 類比/數位轉換器電路 92 6.2.3.4 緩衝級電路 93 6.2.4 數位信號處理器 94 6.2.5 高複雜可程式化邏輯換相電路 96 6.3 軟體程式設計 97 6.3.1 主程式 98 6.3.2 中斷服務程式 99 6.3.3 CPLD程式設計 103 第七章 實測結果 105 7.1 簡介 105 7.2 實測結果 107 第八章 結論 141 參考文獻 143

[1] K. Lu, P. O. Rasmussen, S. J. Watkins, and F. Blaabjerg, “A new low-cost hybrid switched reluctance motor for adjustable-speed pump applications,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 314-321, Jan./Feb. 2011.
[2] C. S. Jin, D. S. Jung, K. C. Kim, Y. D. Chun, H. W. Lee, and J. Lee, ”A study on improvement magnetic torque characteristics of IPMSM for direct drive washing machine,” IEEE Trans. Magn., vol. 45, no. 6, pp. 2811-2814, June 2009.
[3] J. D. Santiago, H. Bernhoff, B. Ekergard, S. Eriksson, S. Ferhatovic, R. Waters, and M. Leijon, “Electrical motor drivelines in commercial all-electric vehicles: a review,” IEEE Trans. Veh. Tech., vol. 61, no. 2, pp. 475-484, Feb. 2012.
[4] I. Boldea, “Control issues in adjustable speed drives,” IEEE Ind. Electron. Mag., pp. 32-50, Nov./Dec. 2010.
[5] J. Wang, D. Howe, and Z. Lin, “Design optimization of short-stroke single-phase tubular permanent-magnet motor for refrigeration applications,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 327-334, Jan. 2010.
[6] F. Rodriguez and A. Emadi, “A novel digital control technique for brushless DC motor drives,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2365-2373, Oct. 2007.
[7] J. F. Fuchsloch, W. R. Finley, and R. W. Walter, “The next generation motor,” IEEE Ind. Appl. Mag., vol. 14, no. 1, pp. 37-43, Jan./Feb. 2008.
[8] I. Husain, “Minimization of torque ripple in SRM drives,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 28-39, Feb. 2002.
[9] T. Song, A. Ninomiya, and T. Ishigohka, “Experimental study on induction motor with superconducting secondary conductors,” IEEE Trans. Appl. Supercond., vol. 17, no. 2, pp. 1611-1614, June 2007.
[10] B. Karanayi, M. Fazlur, and C. Grantham, “Online stator and rotor resistance estimation scheme using artificial neural networks for vector controlled speed sensorless induction motor drive,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 167-176, Feb. 2007.
[11] H. J. Kim, D. H. Kim, C. S. Koh, and P. S. Shin, “Application of polar anisotropic NdFeB ring-type permanent magnet to brushless DC motor,” IEEE Trans. Magn., vol. 43, no. 6, pp. 2522-2524, June 2007.
[12] M. J. Melfi, S. D. Rogers, S. Evon, and B. Martin, “Permanent-magnet motors for energy savings in industrial applications” IEEE Trans. Ind. Appl., vol. 44, no. 5, pp. 1360-1366, Sep./Oct. 2008.
[13] A. Kumar and V. T. Ranganathan, “Hybrid LCI VSI power circuit- a universal high-power converter solution for wound field synchronous motor drives,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4057-4068, Sep. 2011.
[14] T. D. Nguyen, K. J. Tesng, S. Zhang, and H. T. Nguyen, “A novel axial flux permanent-magnet machine for flywheel energy storage system design and analysis,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 3784-3794, Sep. 2011.
[15] P. W. Wheeler, J. Rodriguez, J. C. Clare, L. Empringham, and A. Weinstein “Matrix converter: a technology review,” IEEE Trans. Ind. Electron., vol. 49, no. 2, pp. 276-288, Apr. 2002.
[16] P. Wheeler, J. Clare, L. Empringham, M. Apap, and M. Bland “Matrix converters,” IET Power Eng. J., vol. 16, no. 6, pp. 273-282, Dec. 2002.
[17] J. W. Kolar, T. Friedli, J. Rodriguez, and P. W. Wheeler, “Review of three phase PWM AC-AC converter topologies,” IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 4988-5006, Nov. 2011.
[18] M. Y. Lee, P. Wheeler, and C. Klumpner, “Space-vector modulated multilevel matrix converter,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3385-3394, Oct. 2010.
[19] T. H. Liu, S. H. Chen, and D. F. Chen, “Design and implementation of a matrix converter PMSM drive without a shaft sensor,” IEEE Trans. Aerosp. Electron., vol. 39, no. 1, pp. 228-243, Jan. 2003.
[20] P. P. Acarnley and J. F. Watson, “Review of position-sensorless operation of brushless permanent-magnet machine,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 352-362, Apr. 2006.
[21] Z. Xu and M. F. Rahman, “Direct torque and flux regulation of an IPM synchronous motor drive using variable structure control approach,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2487-2498, Nov. 2007.
[22] J. Holtz, “Acquisition of position error and magnet polarity for sensorless control of PM synchronous machines,” IEEE Trans. Ind. Appl., vol. 44, no. 4, pp. 1172-1180, July/Aug. 2008.
[23] A. V. Sant, K. R. Rajagopal, and N. K. Sheth, “Permanent magnet synchronous motor drive using hybrid PI speed controller with inherent and noninherent switching functions,” IEEE Trans. Magn., vol. 47, no. 10, pp. 4088-4091, Oct. 2011.
[24] E. B. Kosmatopoulos, “Adaptive control design based on adaptive optimization principles,” IEEE Trans. Autom. Control, vol. 53, no. 11, pp. 2680-2685, Dec. 2008.
[25] L. Guo and L. Parsa, “Model reference adaptive control of five-phase IPM motors based on neural network,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1500-1508, Mar. 2012.
[26] S. E. Lyshevski, Control Systems Theory with Engineering Applications, Springer, 2001.
[27] J. L. Shi, T. H. Liu, and S. H. Yang, “Nonlinear-controller design for an interior-permanent-magnet synchronous motor including field-weakening operation,” IET Electr. Power Appl., vol. 1, no. 1, pp. 119-126, Jan. 2007.
[28] P. Cortes, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and J. R.odriguez, “Predictive control in power electronics and drives,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4312-4324, Dec. 2008.
[29] L. Gyugi and B. Pelly, Static Power Frequency Changers: Theory, Performance and Application, Wiley, 1976.
[30] J. W. Kolar, T. Friedli, F. Krismer, and S. D. Round, “The essence of three-phase AC/AC converter systems,” IEEE EPE PEMC-2008, pp. 27-42, 2008.
[31] C. Klumpner and F. Blaabjerg, “Two stage direct power converters: An alternative to the matrix converter,” IEE Seminar on Matrix Converters, pp. 1-9, Apr. 2003.
[32] J. Oyama, X. Xia, T. Higuchi, and E. Yamada, “Displacement angle control of matrix converter,” IEEE PESC-1997, pp. 1033-1039, June 1997.
[33] A. Alesina and M. Venturini, “Solid state power conversion: a fourier analysis approach to generalized transformer synthesis,” IEEE Trans. Circuits. Syst., vol. 28, no. 4, pp. 319-330, Apr. 1981.
[34] A. Zuckerberger, D. Weinstock, and A. Alexandrovitz, “Simulation of three-phase loaded matrix converter,” IEE Proce. Electr. Power Appl., vol. 143, no. 4, pp. 294-300, July 1996.
[35] S. Bouchiker, G. A. Capolino, and M. Poloujadoff, “Vector control of a permanent-magnet synchronous motor using AC-AC matrix converter” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1089-1099, Nov. 1998.
[36] A. Alesina and M. G. B. Venturini, “Analysis and Design of optimum-amplitude nine-switch direct AC-AC converters,” IEEE Trans. Power Electron., vol. 4, no. 1, pp. 101-112, Jan. 1989.
[37] D. G. Holmes and T. A. Lipo, “Implementation of a controlled rectifier using AC-AC matrix converter theory,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 240-250, Jan. 1992.
[38] D. Casadei, G. Grandi, G. Serra, and A. Tani, “Space vector control of matrix converters with unity input power factor and sinusoidal input/output waveforms,” IET Power Electr. And Appl., vol. 7, pp. 170-175, Sep. 1993.
[39] M. Kazerani and B. T. Ooi, “Feasibility of both vector control and displacement factor correction by voltage source type AC-AC matrix converter,” IEEE Trans. Ind. Electron., vol. 42, no. 5, pp. 524-530, Oct. 1995.
[40] M. Milanovic and B. Dobaj, “Unity input displacement factor correction principle for direct AC to AC matrix converters based on modulation strategy,” IEEE Trans. Circuits. Syst., part I, vol. 47, no. 2, pp. 221-230, Feb. 2000.
[41] L. Huber, D. Borojevic, and N. Burany, “ Analysis design and implementation of the space-vector modulator for forced-commutated cycloconvertors,” IET Electr. Power Appl., vol. 139, no. 2, pp. 103-113, Mar. 1992.
[42] P. W. Wheeler, J. C. Clare, L. Empringham, M. Bland, and K. G. Kerris “Matrix converters,” IEEE Ind. Appl. Mag., vol. 10, no. 1, pp. 59-65, Jan./Feb. 2004.
[43] J. Hobraiche, J. P. Vilain, P. Macret, and N. Patin “A new PWM strategy to reduce the inverter input current ripples,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 172-180, Jan. 2009.
[44] S. Kim, Y. D. Yoon, and S. K. Sul “Pulsewidth modulation method of matrix converter for reducing output current ripple,” IEEE Trans. Power Electron., vol. 25, no. 10, pp. 2620-2629, Oct. 2010.
[45] C. Klumpner and F. Blaabjerg, “Modulation method for a multiple drive system based on a two-stage direct power conversion topology with reduced input current ripple,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 922-929, July 2005.
[46] D. Casadei, G. Serra, A. Tani, and L. Zarri, “A space vector modulation strategy for matrix converters minimizing the RMS value of the load current ripple.” IEEE IECON-2006, pp. 2757-2762, 2006.
[47] D. F. Chen and T. H. Liu, “Implementation of a novel matrix converter PMSM drive,” IEEE Trans. Aerosp. Electron., vol. 37, no. 3, pp. 863-875, July 2001.
[48] C. Xia, J. Zhao, Y. Yan, and T. Shi, “A novel direct torque control of matrix converter-fed PMSM drives using duty cycle control for torque ripple reduction,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2700-2713, June 2014.
[49] M. Pacas, “Sensorless drives in industrial applications,” IEEE Ind. Electron. Mag., vol. 5, no. 2, pp. 16-23, June 2011.
[50] G. Foo, S. Sayeef, and M. F. Rahman, “Low-speed and standstill operation of a sensorless direct torque and flux controlled IPM synchronous motor drive,” IEEE Trans. Energy Conv., vol. 25, no. 1, pp. 25-33, Mar. 2010.
[51] Z. Xu and M. F. Rahman, “An adaptive sliding stator flux observer for a direct-toque-controlled IPM synchronous motor drive,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2398-2406, Oct. 2007.
[52] I. Boldea, M. C. Paicu, G. D. Andreescu, and F. Blaaberg, “Active flux DTFC-SVM sensorless control of IPMSM,” IEEE Trans. Energy Conv., vol. 24, no. 2, pp. 314-322, June 2009.
[53] F. Genduso, R. Miceli, C. Rando, and G. R. Galluzzo, “Back EMF sensorless-control algorithm for high-dynamic performance PMSM,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2092-2100, June 2010.
[54] C. Wang and L. Xu, “A novel approach for sensorless control of PM machine down to zero speed without signal injection or special PWM technique,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1601-1607, Nov. 2004.
[55] Q. Gao, G. M. Asher, M. Sumner, and L. Empringham, “Position estimation of matrix-converter-fed AC PM machine from zero to high speed using pwm excitation,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2030-2038, June 2009.
[56] M. J. Corley and R. D. Lorenz, “Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp.784-789, July/Aug. 1998.
[57] A. Arias, C. A. Silva, G. M. Asher, J. C. Clare, and P. W. Wheeler, “Use of a matrix converter to enhance the sensorless control of a surface-mount permanent-magnet AC motor at zero and low frequency,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 440-449, Apr. 2006.
[58] B. K. Bose, Modern Power Electronics and AC Drives, Prentice Hall PTR, New Jersey, 2002.
[59] J. L. Shi, T. H. Liu, and Y. C. Chang, “Adaptive controller design for a sensorless IPMSM drive system with a maximum torque control,” IET Electr. Power Appl., vol. 153, no. 6, pp. 823-833, Nov. 2006.
[60] M. N. Uddin and M. M. I. Chy, “A novel fuzzy-logic-controller-based torque and flux controls of IPM synchronous motor,” IEEE Trans. Ind. Appl., vol. 46, no. 3, pp. 1220-1229, May/ June 2010.
[61] H. Z. Jin and J. M. Lee, “An RMRAC current regulator for permanent-magnet synchronous motor based on statistical model interpretation,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 169-177, Jan. 2009.
[62] J. W. Jung, V. Q. Leu, T. D. Do, E. K. Kim, and H. H. Choi, “Adaptive PID speed control design for permanent magnet synchronous motor drives,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 900-908, Feb. 2015.
[63] M. N. Uddin, T. S. Radwan, and M. Azizur Rahman, “Performance of interior permanent magnet motor drive over wide speed range,” IEEE Trans. Energy Conv., vol. 17, no. 1, pp. 79-84, Mar. 2002.
[64] T. Sun, J. Wang, and X. Chen, “Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 5036-5045, Sep. 2015.
[65] C. Mademlis and N. Margaris, “Loss minimization in vector- controlled interior permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Electron., vol. 49, no. 6, pp. 1344-1347, Dec. 2002.
[66] C. Cavallaro, A. O. D. Tommaso, R. Miceli, A. Raciti, G. R. Galluzzo, and M. Trapanese, “Efficiency enhancement of permanent-magnet synchronous motor drives by online loss minimization approaches,” IEEE Trans. Ind. Electron., vol. 52, no. 4, pp. 1153-1160, Aug. 2005.
[67] M. N. Uddin and J. Khastoo, “Fuzzy logic-based efficiency optimization and high dynamic performance of IPMSM drive system in both transient and steady-state conditions,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 4251-4259, Nov./Dec. 2014.
[68] D. Casadei, G. Serra, and A. Tani, “The use of matrix converters in direct torque control of induction machine,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1057-1064, Dec. 2001.
[69] C. L. Neft and C. D. Schauder, “Theory and design of a 30-hp matrix converter,” IEEE Trans. Ind. Appl., vol. 28, no. 3, pp. 546-551, May/June 1992.
[70] P. Snary, B. Bhangu, C. M. Bingham, D. A. Stone, and N. Schofield, “Matix converters for sensorless control of PMSMs and other auxiliaries on deep-sea ROVs,” IEEE IECON-2005, pp. 382-392, 2005.
[71] F. Briz and M. W. Degner, “Rotor position estimation,” IEEE Ind. Electron. Mag., pp. 24-36, June 2011.
[72] D. Raca, P. Garcia, D. D. Reigosa, F. Briz, and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machine at zero and very low speeds,” IEEE Trans. Ind. Appl., vol. 46 no. 1, pp. 167-178, Jan./Feb. 2010.
[73] J. H. Jang, J. I. Ha, M. Ohta, K. Ide, and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, Nov./Dec. 2004.
[74] S. Kim, J. I. Ha, and S. K. Sul, “PWM switching frequency signal injection sensorless method in IPMSM,” IEEE Trans. Ind. Appl., vol. 48, no. 5, pp. 1576-1587, Sep./Oct. 2012.
[75] J. L. Chen, S. K. Tseng, and T. H. Liu, “Implementation of high-performance sensorless interior permanent-magnet synchronous motor control systems using a high-frequency injection technique,” IET Electr. Power Appl., vol. 6, no. 8, pp. 533-544, Sep. 2012.
[76] S. Kim, Y. D. Yoon, S. K. Sul, and K. Ide “Maximum torque per ampere (MTPA) control of an IPM machine based on signal injection considering inductance saturation,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 488-497, Jan. 2013.
[77] M. N. Uddin and R. S. Rebeiro, “Online efficiency optimization of a fuzzy-logic-controller-based IPMSM drive,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 1043-1050, Mar./Apr. 2011.
[78] A. Consoli, G. Scelba, G. Scarcella, and M. Cacciato, “An effective energy-saving scalar control for industrial IPMSM drives,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3658-3669, Sep. 2013.
[79] N. Urasaki, T. Senjyu, and K. Uezato “Investigation of influences of various losses on electromagnetic torque for surface-mounted permanent magnet synchronous motors,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 131-139, Jan. 2003.
[80] T. Y. Chou and T. H. Liu, “Implementation of a motion control system using micro-permanent magnet synchronous motors,” IET Electr. Power Appl., vol. 6, no. 6, pp. 362-374, July 2012.
[81] Y. H. Chang, C. C. Wu, and T. H. Liu, “Design and implementation of an H∞ controller for a micropermanent-magnet synchronous motor position control system,” IET Electr. Power Appl., vol. 2, no. 1, pp. 8-18, Jan. 2008.
[82] R. J. Wai and M. C. Lee, “Intelligent optimal control of single-link flexible robot arm,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 201-220, Feb. 2004.
[83] F. F. M. El-Sousy, “Intelligent optimal recurrent wavelet elman neural network control system for permanent-magnet synchronous motor servo drive,” IEEE Trans. Ind. Inform., vol. 9, no. 4, pp. 1986-2003, Nov. 2013.
[84] L. Empringham, P. W. Wheeler, and J. C. Clare, “Matrix converter bi-directional switch commutation using intelligent gate drives,” IEE PEVSD-1998, pp. 626-631, Sep. 1998.
[85] L. Empringham, J. W. Kolar, J. Rodriguez, P. W. Wheeler, and J. C. Clare, “Technological issues and industrial application of matrix converters: a review,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4260-4271, Oct. 2013.
[86] M. Tewolde, and S. P. Das, ”A novel control of bi-directional switches in matrix converter,” IEEE Trans. Power Electron., vol. 15, no. 2, pp. 1-6, Dec. 2006.
[87] S. L. Arecalo and MSc, Matrix converter for frequency changing power supply applications, Jan. 2008.
[88] D. Csadei, G. Serra and A. Tani, “Reduction of the input current harmonic content in matrix converters under input/output unbalance,” IEEE Trans. Ind. Electron., vol. 45, no. 3, pp. 401-411, June 1998.
[89] L. Huber and D. Borojevic, “Space vector modulated three-phase to three-phase matrix converter with input power factor correction,” IEEE Trans. Ind. Appl., vol. 31, no. 6, pp.1234-1245, Nov./Dec. 1995.
[90] P. W. Wheeler, J. C. Clare, and L. Empringham, “A MCT based matrix converter with minimized commutation times and enhanced waveform quality,” IET PEMD-2002, pp. 206-210, 2002.
[91] P. W. Wheeler, J. C. Clare, and L. Empringham, “Minimization of matrix converter commutation times,” European Power Electron. J., vol. 13, no. 1, pp. 12-19, Mar. 2003.
[92] P. Nielsen, F. Blabjerg, and J. K. Pedersen, “New protection issue of a matrix converter: design considerations for adjustable-speed drives,” IEEE Trans. Ind. Appl., vol. 35, no. 5, pp. 1150-1161, Sep./Oct. 1999.
[93] K. Mino, Y. Okuma, and K. Kuroki, “Direct-linked-type frequency changer based on DC-clamped bilateral switching circuit topology,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1309-1317, Nov./Dec. 1998.
[94] W. Li, A. Li, and H. Wang, “Anisotropic fracture behavior of sintered rare-earth permanent magnets,” IEEE Trans. Magn., vol. 41, no. 8, pp. 2339-2554, June 2007.
[95] M. J. Melfi, S. D. Rogers S. Evon, and B. Martin, “Permanent-magnet motor for energy saving in industrial application,” IEEE Trans. Ind. Appl., vol. 44, no. 5, pp. 1360-1366, Sep./Oct. 2008.
[96] M. S. Islam, R. Islam, and T. Sebastian, “Experimental verification of design techniques of permanent-magnet synchronous motors for low-torque-ripple applications,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 88-95, Nov./Dec. 2008.
[97] G. Pellegrino, A. A. Vagati, P. Gugliemi, and B. Boazzo, “Performance comparison between surface-mounted and interior PM motor drives for electric vehicle application,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 803-811, Jan. 2010.
[98] A. Consoli, G. Scarcella, G. Scelba, and A. Testa, “Steady-state and transient operation of IPMSMs under maximum-torque-per-ampere control,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 121-129, Jan./Feb. 2010.
[99] S. M. Sue and C. T. Pan, “Voltage-constraint-tracking-based field-weakening control of IPM synchronous motor drives,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 340-347, Jan. 2008.
[100] P. C. Krause, Analysis of electric machinery, New York: McGraw-Hill, 1986.
[101] Y. Li, Z. Q. Zhu, D. Howe, C. M. Bingham, and D. A. Stone, “Improved rotor-position estimation by signal injection in brushless AC motor, accounting for cross-coupling magnetic saturation,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1843-1850, Sep. 2009.
[102] C. K. Lin, T. H. Liu, and C. H. Lo, “Sensorless interior permanent magnet synchronous motor drive system with a wide adjustable speed range,” IET Electr. Power Appl., vol. 3, no. 2, pp. 133-146, Mar. 2009.
[103] M. Hasegawa and K. Matsui, “Position sensorless control for interior permanent magnet synchronous motor using adaptive flux observer with inductance identification,” IET Electr. Power Appl., vol. 3, no. 3, pp. 209-217, May 2009.
[104] G. Foo and M. F. Rahman, “Sensorless vector control of interior permanent magnet synchronous motor drives at very low speed without signal injection,” IET Electr. Power Appl., vol. 4, no. 3, pp. 131-139, Mar. 2010.
[105] Z. Chen, M. Tomita, S. Doki, and S. Okuma, “An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Electron., vol. 50, no. 2, pp. 288-294, Apr. 2003.
[106] M. Hinkkanen, T. Tuovinen, L. Harnefors, and J. Luomi, “A combined position and stator-resistance observer for salient PMSM drives design and stability analysis,” IEEE Trans. Power Electron., vol. 27, no. 2, pp.601-609, Feb. 2012.
[107] H. Kim, J. Son, and J. Lee, “A high-speed sliding-mode observer for the sensorless speed control of a PMSM,” IEEE Trans. Ind. Electron., vol.58, no.9, pp. 4069-4077, Sep. 2011.
[108] D. Raca, P. Garcia, D. D. Reigosa, F. Briz, and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machine at zero and very low speeds,” IEEE Trans. Ind. Appl., vol. 46 no. 1, pp. 167-178, Jan./Feb. 2010.
[109] J. Hu, J. Liu, and L. Xu, “Eddy current effects on rotor position estimation and magnetic pole identification of PMSM at zero and low speeds,” IEEE Trans. Power Electron., vol. 23 , no. 5, pp. 2565-2575, Sep. 2008.
[110] J. H. Jang, J. I. Ha, M. Ohta, K. Ide, and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, Nov./Dec. 2004.
[111] C. H. Choi and J. K. Sul, “Pulsating signal injection-based axis switching sensorless control of surface-mounted permanent-magnet motors for minimal zero-current clamping effect,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1741-1850, Nov./Dec. 2008.
[112] L. M. Gong and Z. Q. Zhu, “A novel method for compensating inverter nonlinearity effects in carrier signal injection-based sensorless control from positive-sequence carrier current distortion,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1283-1292, May/June 2011.
[113] D. Xiao, and M. F. Rahman, “Sensorless direct torque and flux controlled IPM synchronous machine fed by matrix converter over a wide speed range,” IEEE Trans. Ind. Inform., vol. 9, no. 4, pp. 1855-1867, Nov. 2013.
[114] S. K. Tseng, T. H. Liu, and J. L. Chen, “Implementation of a sensorless interior permanent magnet synchronous drive based on current deviations of pulse-width modulation switching,” IET Electr. Power Appl., vol. 9, no. 2, pp. 95-106, Feb. 2015.
[115] B. C. Kuo and F. Golnaraghi, Automatic Control Systems, Wiley, 2009.
[116] K. H. Kim, “Model reference adaptive control-based adaptive current control scheme of a PM synchronous motor with an improved servo performance,” IET Electr. Power Appl., vol. 3, no. 1, pp. 8-18, Jan. 2009.
[117] M. Preindl and E. Schaltz, “Load torque compensator for model predictive direct current control in high power PMSM drive systems,” IEEE ISIE-2010, pp. 1347-1352, July 2010.
[118] P. Ioannou and B. Fidan, Adaptive Control Tutorial, Society for Industrial and Applied Mathematics, Philadelphia, 2006.
[119] K. J. Astrom and B. Wittenmark, Adaptive Control, Addison-Wesley, New York, 1995.
[120] J. Zhou and Y. Wang, “Adaptive backstepping speed controller design for a permanent magnet synchronous motor,” IET Electr. Power Appl., vol. 149, no. 2, pp. 165-172, Mar. 2002.
[121] M. A. Rahman, D. M. Vilathgamuwa, M. N. Uddin, and K. J. Tseng, “Nonlinear control of interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 408-416, Mar./Apr. 2003.
[122] Y. A. B. I. Mohamed and T. K. Lee, “Adaptive self-tuning MTPA vector controller for IPMSM drive system,” IEEE Trans. Energy Conv., vol. 21, no. 3, pp. 636-644, Sep. 2006.
[123] I. S. Shaw, Fuzzy Control of Industrial Systems- Theory and Applications, Spring Science, 1998.
[124] H. W. Lewis, The Foundations of Fuzzy Control, Spring Science, 1997.
[125] http://www.gaw.ru/htmal.cgi/txt/ic/Semikron/igbt/semitop/SK60GM123.htm
[126] Spectrum Digital, TMS320LF2407A Evaluation Module Technical Reference, 2000.
[127] Texas Instruments, TMS320LF/LC240x DSP Controllers System and Peripherals Reference Guide, 2000.
[128] Texas Instruments, TMS320F240x Analog to Digital Converter, 2000.
[129] Texas Instruments, TMS320C1x/C2xx/C5x Assembly Language Tools User’s Guide, 1995.
[130] Spectrum Digital, TMS320C2xx/C24x Code Composer User’s Guide, 2000.

無法下載圖示 全文公開日期 2018/07/07 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE