簡易檢索 / 詳目顯示

研究生: 蔡鴻儒
Hung-ru Tsai
論文名稱: 磁通估測法達成無轉軸偵測元件開關式磁阻電動機驅動系統的研製
Design and Implementation of a Sensorless Drive for a Reluctance Motor by Using Flux Estimating Method
指導教授: 劉添華
Tian-hua Liu
口試委員: 葉勝年
Sheng-nian Yeh
徐國鎧
Kuo-kai Shyu
賴炎生
Yen-shin Lai
楊勝明
Shang-ming Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 106
中文關鍵詞: 開關式磁阻電動機轉軸角度估測轉速估測數位控制系統
外文關鍵詞: switched reluctance machine, rotor position estimation, rotor speed estimation, digital control system
相關次數: 點閱:275下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製無轉軸偵測元件之開關式磁阻電動機驅動系統。文中,首先介紹開關式磁阻電動機的基本原理、架構、及數學模式,接著探討無轉軸偵測元件驅動系統。本文使用二種方法估測電動機的轉速及轉軸角度:方法一利用估測電動機激磁線圈的磁通鏈,配合滑動模式觀測器,計算電動機轉速及轉軸角度;方法二使用查表法,即時運算電動機激磁線圈的磁通鏈,配合事先建立的電動機磁通鏈對電流及轉軸角度的關係表,決定激磁相位及估測轉速。

    本文使用Motorola公司的32位元微電腦,以組合語言撰寫的控制程式,執行速度及電流控制,完成閉迴路控制系統,實測結果說明本文所提方法確實可行。


    This thesis is concerned with the development of the sensorless switched reluctance machine drive system. First, the basic principle, structure, and mathematical model of the switched reluctance machine are introduced. Then, two sensorless techniques of the drive system for switched reluctance machines are presented. The first method estimates the flux of the machine by using a sliding-mode observer to obtain the rotor position and speed, with the second method calculates the flux of the machine, and compares it with a look-up table to determine the commutation sequences and the estimated speed.

    Using a 32-bit microprocessor manufactured by Motorola Company, a digital system including the closed-loop speed controller and current controller, is implemented. The experimental results show that the proposed methods are feasible and practical.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 IX 符號說明 X 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 目的 5 1.4 大綱 6 第二章 開關式磁阻電動機 7 2.1 簡介 7 2.2 電動機結構 7 2.3 數學模式 13 2.4 驅動方法 16 第三章 驅動系統 20 3.1 簡介 20 3.2 功率轉換器 21 3.3 轉矩控制 32 3.4 四象限控制 34 第四章 轉軸角度估測 39 4.1 簡介 39 4.2 滑動模式磁通鏈估測法 41 4.2.1 滑動模式估測方法簡介 41 4.2.2 離線式磁通鏈量測方法 42 4.2.3 轉軸角度估測方法 44 4.2.4 啟動方法 51 4.2.5 滑動模式磁通鏈估測閉迴路驅動系統 51 4.3 查表法 52 4.3.1估測方法簡介 52 4.3.2 閉迴路系統介紹 55 4.4 估測法則的分析 56 第五章 系統製作 58 5.1 簡介 58 5.2 硬體電路 59 5.2.1 功率轉換器 59 5.2.2 電壓及電流回授電路 62 5.2.3 微電腦系統及介面電路 65 5.3 軟體程式 67 5.3.1 主程式 67 5.3.2 速度中斷服務程式 69 5.3.3 電流中斷服務程式 72 第六章 實測 74 6.1 簡介 74 6.2 實測結果 75 第七章 結論與建議 98 參考文獻 100 作者簡介 106

    [1] B. K. Bose, “Power electronics and motion control-technology status and recent trends,” IEEE Trans. Ind. Appl., vol. 29, no. 5, pp. 902-909, Sept./Oct. 1993.
    [2] G. C. Verghese and S. R. Sanders, “Observers for flux estimation in induction machines,” IEEE Trans. Ind. Electron., vol. 35, no. 1, pp. 85-94, Feb. 1988.
    [3] P. Pillay and R. Krishnan, “Application Characteristics of permanent magnet synchronous and brushless dc motors for servo drives,” IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 986-996, Sept./Oct. 1991.
    [4] T. J. E. Miller, A. Hutton, C. Cossar, and D. A. Staton, “Design of a synchronous reluctance motor drive,” IEEE Trans. Ind. Appl., vol. 27, no. 4, pp.741-749, July/Aug. 1991.
    [5] A.V. Radun, “Two-channel switched reluctance starter/generator results,” IEEE Trans. Ind, Appl., vol34, no. 5, Sept./Oct. 1998.
    [6] K. M. Rahman, “Advantages of switched reluctance motor applications to EV and HEV: design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, Jan./Feb. 2000.
    [7] N. K. Sheth and K. R. Rajagopal, “Optimum pole arcs for a switched reluctance motor for higher torque with reduced ripple,” IEEE Trans. Magn., vol. 39, no. 5, pp. 3214-3216, Sept. 2003.
    [8] M. F. Momen, "Design and performance analysis of a switched reluctance motor for low duty cycle operation," IEEE Trans. Ind. Appl. vol. 41, no. 6, pp. 1612-1618, Nov./Dec. 2005.
    [9] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, no. 3, pp. 714-722, May/June 2000.
    [10] A. K. Jain, “SRM power converter for operation with high demagnetization voltage,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1224- 1231, Setp./Oct. 2005.
    [11] M. Ehsani, I. Husain, K. R. Ramini, and J. H. Galloway, “Dual-decay converter for switched reluctance motor drives in low-voltage applications,” IEEE Trans. Power Electrons., vol. 8, no. 2, pp. 224-230, Apr. 1993.
    [12] C. Pollock and B. W. Williams, “A unipolar converter for a switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 26, no. 2, pp. 222-228, Mar./Apr. 1990.
    [13] L. G. B. Rolim, W. I. Suemitsu, E. H. Watanabe, and R. Hanitsch, “Development of an improved switched reluctance motor drive using a soft-switching converter,” IEE Proc.-Electr. Power Appl., vol. 146, no. 5, pp. 488-494, Sept. 1999.
    [14] S. Chan and H. R. Bolton, “Performance enhancement of single-phase switched-reluctance motor by DC link voltage boost,” IEE Proc.-Electr. Power Appl., vol. 140, no. 5, pp. 316-322, Sept. 1993.
    [15] G. S. Buja, R. Menis, and M. I. Valla, “Variable structure control of an SRM drive,” IEEE Trans. Ind. Electron., vol. 40 , no. 1, pp. 56-63, Feb. 1993.
    [16] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, Dec. 1997.
    [17] S. Bolognani and M. Zigliotto, “Fuzzy logic control of switched reluctance motor drive,” IEEE Trans. Ind. Appl., vol. 32, no. 5, pp. 1063-1068, Sept./Oct. 1996.
    [18] C. T. Liu, L. F. Chen, J. L. Kuo, Y. N. Chen, Y. J. Lee, and C. T. Leu, “Microcomputer control implementation of transverse flux linear switched reluctance machine with rule-based compensator,” IEEE Trans. Energy Conversion, vol. 11, no. 1, pp. 70-75, Mar. 1996.
    [19] S. K. Panda and P. K. Dash, “Application of nonlinear control to switched reluctance motors: a feedback linearization approach,” IEE Proc.-Electr. Power Appl., vol. 143, no. 5, pp. 371-379, Sept. 1996.
    [20] M. Ilic’-Spong, R. Marino, S. M. Peresada, and D. G. Taylor, “Feedback linearizing control of switched reluctance motors,” IEEE Trans. Automat. Contr., vol. AC-32, no. 5, pp. 371-379, May 1987.
    [21] A. Lumsdaine and J. H. Lang, “State observers for variable-reluctance motors,” IEEE Trans. Ind. Electron., vol. 37, no. 2, pp. 133-142, Apr. 1990.
    [22] S. K. Panda and G. A. J. Amaratunga, “Waveform detection technique for indirect rotor-position sensing of switched-reluctance motor drives part 2: experimental results,” IEE Proc.-Electr. Power Appl., vol. 140, no. 1, pp. 89-96, Jan. 1993.
    [23] I. Husain and M. Ehsani, “Rotor position sensing in switched reluctance motor drives by measuring mutually induced voltages,” IEEE Trans. Ind. Appl., vol. 30, no. 3, pp. 665-672, May/June 1994.
    [24] A. D. Cheok and N. Ertugrul, “High robustness and reliability of fuzzy logic based position estimation for sensorless switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 15, no. 2, pp. 319-334, Mar. 2000.
    [25] N. Ertugrul and A. D. Cheok, “Indirect angle estimation in switched reluctance motor drives using fuzzy logic based motor model,” IEEE Trans. Power Electron., vol.15 , no. 6, pp. 1029-1044, Nov. 2000.
    [26] M. Ehsani and K. R. Ramini, “Direct control strategies based on sensing inductance in switched reluctance motors,” IEEE Trans. Power Electron., vol. 11, no. 1, pp. 74-82, Jan. 1996.
    [27] B. Y. Ma, T. H. Liu, C. G. Chen, and W. S. Feng, “Design and implementation of a sensorless switched reluctance drive system,” IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 4, pp. 1193-1207, Oct. 1998.
    [28] M. S. Islam, “Design and performance analysis of sliding-mode observers for sensorless operation of switched reluctance motors,” IEEE Trans. Control System Technology., vol. 11, no. 3, May 2003.
    [29] D. Panda, “Sensorless control of switched reluctance motor drive with self-measured flux-linkage characteristics,” IEEE PESC, vol. 3. pp. 1569-1574, June 2000.
    [30] T. J. E. Miller, Electronic Control of Switched Reluctance Machines. Newnes: Jordan Hill, 2001.
    [31] M. Ehsani, I. Husain, K. R. Ramini, and J. H. Galloway, “Dual-decay converter for switched reluctance motor drives in low-voltage applications,” IEEE Trans. Power Electron., vol. 8, no. 2, pp. 224-230, Apr. 1993.
    [32] S. Vukosavic, “SRM inverter topologies a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, Nov./Dec. 1991.
    [33] P. J. Lawrenson, J. M. Stephenson, P. T. Blenkinsop, J. Corda, and N. N. Fulton, “Variable-speed switched reluctance motors,” IEE Proc.-Electr. Power Appl., vol. 127, no. 4, pp. 253-265, July 1980.
    [34] A. M. Hava, V. Blasko, and T. A. Lipo, “A modified c-dump converter for variable-reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, Sept./Oct. 1992.
    [35] T. Wakasa, H. J. Guo, and O. Ichinokura, “A simple position sensorless driving system of SRM based on new digital PLL technique,” in Proc. IEEE IECON’02, Sevilla, Spain, pp. 502-507, Nov. 2002.
    [36] M. Ehsani and B. Fahimi, “Elimination of position sensors in switched reluctance motor drives: state of the art and future trends,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 40-47, Feb. 2002.
    [37] W. D. Harris and J. H. Lang, “A simple motion estimator for variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 26, no. 2, pp. 237-243, Mar./Apr. 1990.
    [38] R. S. Chokhawala and S. Sobhani, “Switching voltage transient protection schemes for high-current IGBT modules,” IEEE Trans. Ind. Appl., vol. 33, no. 6, pp. 1601-1610, Nov./Dec. 1997.

    QR CODE