簡易檢索 / 詳目顯示

研究生: 唐育尉
Yu-wei Tang
論文名稱: 即時回授系統架構於磁振造影之技術與應用
A Framework of Real-time Feedback System in MRI: Technique and Applications
指導教授: 黃騰毅
Teng-yi Huang
口試委員: 林益如
Yi-ru Lin
鍾孝文
Hsiao-wen Chung
吳銘庭
Ming-ting Wu
吳明龍
Ming-long Wu
王俊杰
Jiun-jie Wang
吳文超
Wen-chau Wu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 75
中文關鍵詞: 磁振造影即時回授系統最佳化z梯度法平面回訊造影平衡穩態自由旋進
外文關鍵詞: real-time feedback system, z-shimmed EPI, bSSFP
相關次數: 點閱:212下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在磁振造影中,某些特定的參數如反轉時間或是無線脈衝的頻率校準必須在進行臨床掃描前先確定。因此在一般臨床使用上,會有提供一組預掃描序列讓使用者由該影像群中選定最好的掃描參數。但是,這樣的預掃描序列會降低整體掃描流程的流暢性,這是因為使用者必須中斷掃描來手動的選擇最佳參數後才繼續接下來的掃描。在本論文中,我們提出了一套即時回授系統,該系統能夠自動且快速地最佳化所需要的參數。我們也將此系統應用在兩個不同的研究上:一個為使用z梯度修正感磁性假影的補償梯度之最佳化;另一個則為穩態自由旋進序列於心臟造影之無線脈衝頻率校準以修正黑帶假影。第一個應用中,最佳化的掃描序列和臨床使用於功能性磁振造影序列為相同之平面回訊造影序列。透過這套即時回授系統,影像會同步的傳送到電腦中進行z補償梯度最佳化的運算,並且造影儀會根據最新的z補償梯度來成像。在此研究中,我們能夠在20次的最佳化疊代內,同時決定了正的與負的z補償梯度,而往後要做的功能性磁振造影序列也會根據所覺得得這正負z補償梯度來交替成像。第二個應用,我們針對無線脈衝頻率校準提出一個新的預掃描脈衝序列,稱為頻帶轉移小角度平衡穩態自由旋進序列。使用這個新的預掃描脈衝序列可以透過電腦自動運算得到最佳的無線脈衝頻率,進而取代以往手動且主觀的選擇方式。之後,再經由這套即時回授系統,我們將頻帶頻率校準序列和常用的平衡穩態自由旋進動態心臟造影序列合併,並且能夠在一次閉氣的時間內完成。頻率校準一但完成,其最佳頻率值就會即時回授到造影儀,其後的動態心臟造影就會根據該頻率值進行掃描以得到無假影干擾之影像。根據統計的分析,經過頻率校準之影像的確有顯著的假影修正(P<.01)。結論上,我們提出了一套快速且完全自動化的即時回授系統,並且可根據情形調整預掃描序列與臨床使用之掃描序列,使其成為一套完整的預校準模組並解決需要參數最佳化之問題。


In MRI, some specific scan parameters such as inversion time or RF frequency offset have to be determined before applying clinical protocols. In general, the MR operators or doctors would utilize the developed scouting protocol and then select the proper imaging parameter according to the set of images manually. However, the additional scouting scan would diminish the fluency of clinical routine. In this thesis, we proposed a framework of real-time feedback system that could automatically and rapidly optimize the desired parameter. Two types of applications have been accomplished based on this real-time feedback system. The first application was to implement the optimization of compensative gradient moment for z-shim method in gradient-echo echo-planar-imaging (GE-EPI). In this type, the pre-scan and target sequences were identical. After about 20 iterations for evaluating optimal negative and positive z-shim gradient moments, the following z-shimmed GE-EPI for functional MRI (fMRI) study would contain images alternatively according to the inherited values. The second application is the calibration of RF frequency to suppress the dark banding artifact.in steady-state free precession (bSSFP) cardiac imaging at 3.0 T. The real-time feedback system combined two sequences: transition-band low flip-angle bSSFP (bSSSFP-L) for frequency calibration and conventional cine bSSFP. The optimal frequency obtained by real-time feedback calibration significantly reduced dark-band artifacts in cine bSSFP images (P < .01). The period of calibration and conventional protocol could be implemented within one breadth-hold. In conclusion, the proposed real-time feedback system is rapid and fully automatic and can thus serve as a pre-adjustment module in various MR researches which are in need of parameter calibration.

中文摘要 Abstract 致謝 Contents Index of symbols List of figures and tables Chapter 1 Introduction Reference Chapter 2 Real-time Z-shim optimization 2.1 Background 2.2 Materials and Methods 2.2.1 Real-time feedback system for z-shim optimization 2.2.2 Signal and image processing 2.2.3 Protection of real-time feedback loop with a ZM log file 2.2.4 Interleaved z-shim evaluation 2.2.5 In-vivo experiment 2.3 Result Reference Chapter 3 Real-time SSFP frequency calibration for CMR 3.1 Background 3.2 Materials and Methods 3.2.1 Low-flip angle transition-band bSSFP sequence 3.2.2 In-vivo imaging experiment: bSSFP-L sweep scan 3.2.3 Image processing: automatic ROI selection and calculating optimal ∆f 3.2.4 Quantitative assessment of dark-band artifact 3.2.5 Real-time feedback system: automatic ∆f calibration and conventional bSSFP imaging 3.2.6 Real-time feedback system: in vivo experiment 3.2.7 Statistical analysis 3.3 Result Reference Chapter 4 Discussion and Conclusion 4.1 Real-time optimization of Z-shim gradient 4.2 Real-time frequency calibration for bSSFP 4.3 Conclusion Reference

Constable, R. T. (1995). "Functional MR imaging using gradient-echo echo-planar imaging in the presence of large static field inhomogeneities." J Magn Reson Imaging 5(6): 746-752.
Constable, R. T., et al. (1999). "Composite image formation in z-shimmed functional MR imaging." Magn Reson Med 42(1): 110-117.
Cordes, D., et al. (2000). "Compensation of susceptibility-induced signal loss in echo-planar imaging for functional applications." Magn Reson Imaging 18(9): 1055-1068.
Deichmann, R., et al. (2002). "Compensation of susceptibility-induced BOLD sensitivity losses in echo-planar fMRI imaging." Neuroimage 15(1): 120-135.
Frahm, J., et al. (1988). "Direct FLASH MR imaging of magnetic field inhomogeneities by gradient compensation." Magn Reson Med 6(4): 474-480.
Gu, H., et al. (2002). "Single-shot interleaved z-shim EPI with optimized compensation for signal losses due to susceptibility-induced field inhomogeneity at 3 T." Neuroimage 17(3): 1358-1364.
Henry, P. G., et al. (1999). "Field-frequency locked in vivo proton MRS on a whole-body spectrometer." Magn Reson Med 42(4): 636-642.
Jezzard, P., et al. (1999). "Sources of distortion in functional MRI data." Human Brain Mapping 8(2-3): 80-85.
Mansfield, P. (1977). "Multi-planar image formation using NMR spin echoes." Journal of Physics C: Solid State Physics 10.
Marshall, H., et al. (2009). "An efficient automated z-shim based method to correct through-slice signal loss in EPI at 3T." MAGMA 22(3): 187-200.
McConnell, M. V., et al. (1997). "Prospective adaptive navigator correction for breath-hold MR coronary angiography." Magn Reson Med 37(1): 148-152.
Miller, K. L., et al. (2006). "High-resolution FMRI at 1.5T using balanced SSFP." Magn Reson Med 55(1): 161-170.
Nayak, K. S., et al. (2003). "Triggered real-time MRI and cardiac applications." Magn Reson Med 49(1): 188-192.
Ordidge, R. J., et al. (1994). "Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 Tesla." Magn Reson Med 32(3): 335-341.
Pfeuffer, J., et al. (2002). "Correction of physiologically induced global off-resonance effects in dynamic echo-planar and spiral functional imaging." Magn Reson Med 47(2): 344-353.
Riederer, S. J., et al. (1988). "MR fluoroscopy: technical feasibility." Magn Reson Med 8(1): 1-15.
Santos, J. M., et al. (2004). "Flexible real-time magnetic resonance imaging framework." Conf Proc IEEE Eng Med Biol Soc 2: 1048-1051.
Schar, M., et al. (2004). "Cardiac SSFP imaging at 3 Tesla." Magn Reson Med 51(4): 799-806.
Scheffler, K., et al. (2001). "Detection of BOLD changes by means of a frequency-sensitive trueFISP technique: preliminary results." NMR in Biomedicine 14(7-8): 490-496.
Song, A. W. (2001). "Single-shot EPI with signal recovery from the susceptibility-induced losses." Magn Reson Med 46(2): 407-411.
Wu, M. L., et al. (2007). "Frequency stabilization using infinite impulse response filtering for SSFP fMRI at 3T." Magn Reson Med 57(2): 369-379.
Xie, J., et al. (2010). "Real-time adaptive sequential design for optimal acquisition of arterial spin labeling MRI data." Magn Reson Med 64(1): 203-210.
Yang, P. C., et al. (2004). "Dynamic real-time architecture in magnetic resonance coronary angiography--a prospective clinical trial." J Cardiovasc Magn Reson 6(4): 885-894.
Zaitsev, M., et al. (2006). "Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system." Neuroimage 31(3): 1038-1050.

Bellgowan, P. S., et al. (2006). "Improved BOLD detection in the medial temporal region using parallel imaging and voxel volume reduction." Neuroimage 29(4): 1244-1251.
Chen, N., et al. (1999). "Removal of intravoxel dephasing artifact in gradient-echo images using a field-map based RF refocusing technique." Magn Reson Med 42(4): 807-812.
Frahm, J., et al. (1993). "Functional MRI of human brain activation at high spatial resolution." Magn Reson Med 29(1): 139-144.
Griswold, M. A., et al. (2002). "Generalized autocalibrating partially parallel acquisitions (GRAPPA)." Magn Reson Med 47(6): 1202-1210.
Hsu, J. J., et al. (2005). "Mitigation of susceptibility-induced signal loss in neuroimaging using localized shim coils." Magn Reson Med 53(2): 243-248.
Lipschutz, B., et al. (2001). "Assessing study-specific regional variations in fMRI signal." Neuroimage 13(2): 392-398.
Mansfield, P. (1977). "Multi-planar image formation using NMR spin echoes." Journal of Physics C: Solid State Physics 10.
Ogawa, S., et al. (1990). "Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields." Magn Reson Med 14(1): 68-78.
Ojemann, J. G., et al. (1997). "Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts." Neuroimage 6(3): 156-167.
Schmidt, C. F., et al. (2005). "Comparison of fMRI activation as measured with gradient- and spin-echo EPI during visual perception." Neuroimage 26(3): 852-859.
Stenger, V. A., et al. (2000). "Three-dimensional tailored RF pulses for the reduction of susceptibility artifacts in T(*)(2)-weighted functional MRI." Magn Reson Med 44(4): 525-531.
van der Kouwe, A. J., et al. (2005). "On-line automatic slice positioning for brain MR imaging." Neuroimage 27(1): 222-230.
Wilson, J. L., et al. (2003). "Protocol to determine the optimal intraoral passive shim for minimisation of susceptibility artifact in human inferior frontal cortex." Neuroimage 19(4): 1802-1811.
Wong, E. C., et al. (2004). "Shimming of the Inferior Frontal Cortex using an External Local Shim Coil." Proceedings of the 12th Annual Meeting of ISMRM (11, Kyoto, Japan, 520).

Atalay, M. K., et al. (2001). "Cardiac susceptibility artifacts arising from the heart-lung interface." Magn Reson Med 45(2): 341-345.
Deshpande, V. S., et al. (2003). "Artifact reduction in true-FISP imaging of the coronary arteries by adjusting imaging frequency." Magn Reson Med 49(5): 803-809.
Finn, J. P., et al. (2006). "Cardiac MR imaging: state of the technology." Radiology 241(2): 338-354.
Griswold, M. A., et al. (2002). "Generalized autocalibrating partially parallel acquisitions (GRAPPA)." Magn Reson Med 47(6): 1202-1210.
Ibrahim, T., et al. (2010). "Acute myocardial infarction: serial cardiac MR imaging shows a decrease in delayed enhancement of the myocardium during the 1st week after reperfusion." Radiology 254(1): 88-97.
Jahnke, C., et al. (2006). "Accelerated 4D dobutamine stress MR imaging with k-t BLAST: feasibility and diagnostic performance." Radiology 241(3): 718-728.
Katoh, M., et al. (2005). "Spin-labeling coronary MR angiography with steady-state free precession and radial k-space sampling: initial results in healthy volunteers." Radiology 236(3): 1047-1052.
Makowski, M. R., et al. (2011). "Congenital heart disease: cardiovascular MR imaging by using an intravascular blood pool contrast agent." Radiology 260(3): 680-688.
Miller, K. L., et al. (2006). "High-resolution FMRI at 1.5T using balanced SSFP." Magn Reson Med 55(1): 161-170.
Nock, R., et al. (2006). "On weighting clustering." IEEE Trans Pattern Anal Mach Intell 28(8): 1223-1235.
Oppelt, A., et al. (1986). "FISP - A new fast MRI sequence." Electromedica 54: 15-18.
Paliwal, V., et al. (2004). "SSFP-based MR thermometry." Magn Reson Med 52(4): 704-708.
Quan, H., et al. (1996). "Assessing reproducibility by the within-subject coefficient of variation with random effects models." Biometrics 52(4): 1195-1203.
Schar, M., et al. (2004). "Cardiac SSFP imaging at 3 Tesla." Magn Reson Med 51(4): 799-806.
Wansapura, J., et al. (2006). "Frequency scouting for cardiac imaging with SSFP at 3 Tesla." Pediatric Radiology 36(10): 1082-1085.
Wieben, O., et al. (2008). "Cardiac MRI of ischemic heart disease at 3 T: potential and challenges." Eur J Radiol 65(1): 15-28.
Wu, M. L., et al. (2007). "Frequency stabilization using infinite impulse response filtering for SSFP fMRI at 3T." Magn Reson Med 57(2): 369-379.
Atalay, M. K., et al. (2001). "Cardiac susceptibility artifacts arising from the heart-lung interface." Magn Reson Med 45(2): 341-345.
Deshpande, V. S., et al. (2003). "Artifact reduction in true-FISP imaging of the coronary arteries by adjusting imaging frequency." Magn Reson Med 49(5): 803-809.
Finn, J. P., et al. (2006). "Cardiac MR imaging: state of the technology." Radiology 241(2): 338-354.
Griswold, M. A., et al. (2002). "Generalized autocalibrating partially parallel acquisitions (GRAPPA)." Magn Reson Med 47(6): 1202-1210.
Ibrahim, T., et al. (2010). "Acute myocardial infarction: serial cardiac MR imaging shows a decrease in delayed enhancement of the myocardium during the 1st week after reperfusion." Radiology 254(1): 88-97.
Jahnke, C., et al. (2006). "Accelerated 4D dobutamine stress MR imaging with k-t BLAST: feasibility and diagnostic performance." Radiology 241(3): 718-728.
Katoh, M., et al. (2005). "Spin-labeling coronary MR angiography with steady-state free precession and radial k-space sampling: initial results in healthy volunteers." Radiology 236(3): 1047-1052.
Makowski, M. R., et al. (2011). "Congenital heart disease: cardiovascular MR imaging by using an intravascular blood pool contrast agent." Radiology 260(3): 680-688.
Miller, K. L., et al. (2006). "High-resolution FMRI at 1.5T using balanced SSFP." Magn Reson Med 55(1): 161-170.
Nock, R., et al. (2006). "On weighting clustering." IEEE Trans Pattern Anal Mach Intell 28(8): 1223-1235.
Oppelt, A., et al. (1986). "FISP - A new fast MRI sequence." Electromedica 54: 15-18.
Paliwal, V., et al. (2004). "SSFP-based MR thermometry." Magn Reson Med 52(4): 704-708.
Quan, H., et al. (1996). "Assessing reproducibility by the within-subject coefficient of variation with random effects models." Biometrics 52(4): 1195-1203.
Schar, M., et al. (2004). "Cardiac SSFP imaging at 3 Tesla." Magn Reson Med 51(4): 799-806.
Wansapura, J., et al. (2006). "Frequency scouting for cardiac imaging with SSFP at 3 Tesla." Pediatric Radiology 36(10): 1082-1085.
Wieben, O., et al. (2008). "Cardiac MRI of ischemic heart disease at 3 T: potential and challenges." Eur J Radiol 65(1): 15-28.
Wu, M. L., et al. (2007). "Frequency stabilization using infinite impulse response filtering for SSFP fMRI at 3T." Magn Reson Med 57(2): 369-379.

QR CODE