簡易檢索 / 詳目顯示

研究生: 高子俊
Tzu-Chun Kao
論文名稱: 杯型三極波產生器之諧波齒輪設計
Design of Cup-Type Harmonic Drive With Three-Lobe Wave Generator
指導教授: 石伊蓓
Yi-Pei Shih
口試委員: 石伊蓓
Yi-Pei Shih
李維楨
Wei-chen Lee
吳育仁
Yu-Ren Wu
徐冠倫
Kuan-Lun Hs
黃金龍
Chin-Lung Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 79
中文關鍵詞: :諧波齒輪減速機中性線有限元素分析剛輪三波型波產生器齒面修形
外文關鍵詞: Harmonic drive reducer, neutral curve, finite element method, circular spline, three-lobe wave generator, tooth flank modification
相關次數: 點閱:172下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

諧波齒輪減速機具有高傳動精度、高速比以及體積小的優點,半導體業、醫療設備以及機械手臂等領域對於諧波齒輪減速機的需求越來越多,目前市面上的諧波減速機為雙波型波產生器。由於三波型諧波齒輪有更好的傳動穩定性的優點,但是文獻鮮少討論三波型波產生器,因此本論文提出一個杯型之三波型諧波齒輪設計方法。
諧波齒輪主要有三個零件,波產生器、柔輪以及剛輪,理論上,剛輪齒形是根據柔輪齒形及剛輪柔輪間的運動關係求得,其中變形後的柔輪中性線是建立剛輪齒形非常重要的基礎。
本論文基於三波型波產生器建立一套剛輪齒面的數學模型。變形後的中性線位置是利用有限元素分析軟體求得,進一步得到其位置向量。杯型柔輪變形後會產生錐化齒面,導致與剛輪在開口端會有干涉現象,閉口端則是會有間隙產生。我們使用不同軸截面的輪廓建立三維的剛輪齒形,這些輪廓根據有限元素分析軟體得到的不同軸截面中性線求得。最後對剛輪進行齒面修形以此改善齒輪的嚙合性能。


Harmonic drive reducer (HD) has the advantages of high transmission accuracy, high-speed ratio, and small size. The demands for HD are rising in semiconductors, medical devices, and robotic arms. Currently, the wave generator is mostly a two-lobe type in the market. Three-lobe type HD has the advantage of better transmission stability, but the literature rarely discusses this wave generator. As a result, this paper proposes a design method for the cup-type three-lobe HD.
HD comprises three essential components: wave generator (WG), flex spline (FS), and circular spline (CS). Theoretically, the CS tooth profile is derived from the FS’s tooth profile and its movement relative to the CS. The neutral curve of FS after deformation is a fundamental basis for developing the CS tooth profile.
This paper proposes the mathematical model of the CS tooth surface based on the three-lobe wave generator. The neutral curve after deformation is determined from finite element analysis (FEM), and its position vector is then derived. The cup-type FS has a tapering tooth surface after deforming that causes interference near the open end and clearance near the closed end between the CS. Therefore, we use a group of different profiles along the gear axis to rebuild the three-dimensional tooth profile of CS. Those profiles are derived from the different neutral curves on transverse sections according to FEM. Finally, the flank modification of the CS tooth surface is performed to improve the contact performance of the gear pair.

指導教授推薦書 I 學位考試委員會審定書 II 中文摘要 III Abstract IV 謝 誌 V 目 錄 VI 符號定義 IX 圖索引 XII 表索引 XV 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 研究動機 5 1.4 研究目的 6 1.5 論文架構 6 第2章 諧波齒輪齒形數學模式推導 7 2.1 前言 7 2.2 諧波齒輪齒形數學模式 7 2.3 柔輪齒形數學模式推導 8 2.3.1 CTC齒形齒條刀數學模式 8 2.3.2 柔輪齒形數學模式推導 9 2.4 剛輪齒形數學模式推導 11 2.4.1 柔輪中性曲線數學模式 11 2.4.2 剛輪齒形數學模式推導 12 2.5 數值範例 15 2.6 小結 17 第3章 諧波齒輪之有限元素分析模型 18 3.1 前言 18 3.2 建立諧波齒輪二維有限元素分析模型 18 3.2.1 建立二維諧波齒輪模型 18 3.2.2 建立三波型波產生器與柔輪接觸之二維有限元分析模型 20 3.2.3 建立柔輪與剛輪齒形接觸之二維有限元分析模型 21 3.3 諧波齒輪三維有限元素分析模型 23 3.3.1 建立三維諧波齒輪模型 23 3.3.2 建立三波型波產生器擠入柔輪之三維應力分析模型 27 3.3.3 建立柔輪與剛輪接觸之三維應力分析模型 30 3.4 數值範例 31 3.5 小結 33 第4章 三波型諧波齒輪之二維剛輪齒形數學模式 34 4.1 前言 34 4.2 三波型波產生器設計方案 34 4.3 變形後柔輪中性曲線之數學模式 35 4.3.1 變形後柔輪中性曲線之資料點擷取 35 4.3.2 以多項式擬合變形後柔輪的中性曲線 36 4.3.3 柔輪中性曲線擬合誤差 37 4.4 數值範例 38 4.4.1 三波型波產生器擠入柔輪之變形量和應力 38 4.4.2 變形後中性線位置擬合 40 4.4.3 二維剛輪齒形 42 4.4.4 柔輪與剛輪之二維有限元接觸應力分析 43 4.5 小結 45 第5章 三波型諧波齒輪之三維剛輪齒形數學模式 46 5.1 前言 46 5.2 建立三維剛輪齒形方法 46 5.3 變形後柔輪各軸截面之中性線位置 47 5.4 閉口端到開口端截面之剛輪齒形 47 5.5 數值範例 48 5.5.1 柔輪變形後之各軸截面剛輪齒形 48 5.5.2 諧波齒輪之應力分析結果 50 5.6 小結 51 第6章 剛輪具齒面修形之諧波齒輪應力分析 52 6.1 前言 52 6.2 剛輪二次齒面修形 52 6.3 背隙 53 6.4 數值範例 54 剛輪修形之柔輪與剛輪接觸應力結果 54 6.5 小結 58 第7章 結論與建議 59 7.1. 結果與討論 59 7.2. 建議與未來展望 59 參考文獻 61

[1] Harmonic Drive LLC, 2005, "Harmonic Drive reducer for precision control general catalog,".
[2] Musser, C. W., 1959, "Strain wave gearing," U.S. Patent, No.2906143.
[3] Kondo, K., and Takada, J., 1987, "Study on wave gear drives (Kinematics and Geometry of Tooth Engagement)," JSME Int. J., 30(263) 854-860.
[4] Kondo, K., and Takada, J., 1990, "Study on tooth profiles of the harmonic drive," J. Mech. Des., 112(1),131-137.
[5] Ishida, T., Hidaka, T., Zhang, X. Y., Nakane, M., Sasahara, M., and Tanioka, Y., 1993, "Bending stress on flexible spline of strain wave gearing," JSME Int. J., 59(567), pp. 3526-3532.
[6] Ishikawa, S., 1989, "Tooth profile of spline of strain wave gearing," U.S. Patent, No.4823638.
[7] Ishikawa, S., and Kiyosawa, Y., 1995, "Flexing contact type gear drive of non-profile-shifted two-circular-arc composite tooth profile," U.S. Patent, No.5458023.
[8] Kiyosawa, Y., Takizawa, N., Oukura, T., and Yamamoto, Y., 1993, "Cup-type harmonic drive having a short, flexible cup member," U.S. Patent, No.5269202.
[9] Dong, H., Ting, K-L., and Wang, D., 2011, "Kinematic fundamentals of planar harmonic drives, " J. Mech. Des. 133(1), 8 pages.

[10] Litvin, F. L., and Fuentes A., 2004, "Gear geometry and applied theory, " Cambridge University Press, Cambridge, U.K.
[11] Kayabasi, O., and Erzincanli, F., 2007, "Shape optimization of tooth profile of a flexspline for a harmonic drive by finite element modelling," Eng. Mater. Des., 28(2), pp. 441-447.
[12] Chen, X. X., Lin, S. Z., and Xing, J. Z., 2010, "Modeling of flexspline and contact analyses of harmonic drive," Key Eng. Mat., pp. 597-600.
[13] Gao, H., Li, Z., and Deng, Z., 2010, "Sensitivity analysis of cup-shaped flexible gear parameters to its stress based on ANSYS," Chin. J. Mech. Eng., 46(5), pp. 1-7.
[14] Dong, H., Zhu, Z., Zhou, W., and Chen, Z., 2012, "Dynamic simulation of harmonic gear drives considering tooth profiles parameters optimization," J. Comput., 7(6), pp. 1429-1436.
[15] Xiao, Q. J., and Jia, H. G., 2012, "Study on deformation and stress of short ring-flexspline in engagement output harmonic drive," Int. J. Plast., 19(6), pp. 28-34.
[16] Chen, X., Liu, Y., Xing, J., and Xu, W., 2014, "Neutral line stretch of flexspline in harmonic driver," Chin. J. Mech. Eng., 50(21), pp. 189-196.
[17] Sahoo, V., and Maiti, R., 2016, "State of stress in strain wave gear flexspline cup on insertion of drive cam-experiment and analysis," WCE 2016, London, U.K., pp. 966-971.
[18] Yao, Y., Chen, X., and Xing, J., 2020, "Tooth effects on assembling bending stress of flexible tooth rim in harmonic drive," Mech. Mach. Theory, 150, 103871.
[19] Zhu, F., Du, X., Song, C., Zhu, C., Yang, Y., and Liao, D., 2020, "Design and analysis of space conjugate tooth profile of harmonic drive considering deformation of flexspline cup," J. Cent. South Univ., 51, pp. 2471-2479.
[20] Li, Y., Zhang, Y., Zhang, N., and Xu, B., 2021, "Three-dimensional tooth profile design method of harmonic drive considering the deformation difference of the flexspline," Eng. Comput.
[21] Shih, Y. P., Li, Y. J., Lin, Y. C., and Tsao, H. Y., 2022, "A novel cylindrical skiving tool with error-free flank faces for internal circular splines," Mech. Mach. Theory, 170, pp. 104662.
[22] 游正宇,2021,柔輪齒面修形對諧波齒輪強度影響之研究,碩士,國立臺灣科技大學,臺北市。
[23] Johnson, K., L., 1985, "Contact Mechanics," Cambridge University Press, Cambridge, U.K.

無法下載圖示 全文公開日期 2027/09/05 (校內網路)
全文公開日期 2027/09/05 (校外網路)
全文公開日期 2027/09/05 (國家圖書館:臺灣博碩士論文系統)
QR CODE