簡易檢索 / 詳目顯示

研究生: 張博涵
Po-Han Chang
論文名稱: 埋入型永磁式同步電動機及驅動器研製
Development of Interior Permanent Magnet Synchronous Motors and Drivers
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 林法正
Faa-Jeng Lin
林長華
Chang-Hua Lin
顏吉永
Chi-yung Yen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 118
中文關鍵詞: 埋入型三相永磁式同步電動機每安培最大轉矩
外文關鍵詞: Interior Permanent Magnet Synchronous Motors, Maximum Torque Per Ampere
相關次數: 點閱:235下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文旨在設計埋入型永磁式同步電動機,定子槽數為36槽,轉子為4極。轉子的磁鐵為埋入型,磁鐵結構為V字及一字混合型,具有凸極效應,調整d軸電流為負值以提高電磁轉矩,提升電動機運轉效率。在設計方面,轉子採用三段組合,每段錯置3.5度機械角,改善反電動勢諧波含量及轉矩漣波。
本文藉由轉子旋轉座標系統將abc軸轉換成qd軸模式,將三相電流轉換為qd軸電流,並用轉速閉迴路控制及qd軸電流閉迴路控制。文中採用Matlab/Simulink 模擬軟體分析埋入型永磁式同步電動機直軸電流為零及每安培最大轉矩(MTPA)之轉速電流閉迴路控制之差異,驗證本文控制策略可行性。
JMAG-Designer 磁路分析軟體用來分析永磁式同步電動機之參數:Lq=80μH及Ld=49μH。永磁式同步電動機在轉速為2500rpm 時之反電動勢為9.95 V 和磁通鏈19(mV/rad/s)。永磁式同步電動機之實測參數:Lq=66.35μH及Ld=40μH,永磁式同步電動機在轉速為2500rpm之反電動勢為8.4V和磁通16(mV/rad/s)。Lq與Ld不等值,以此驗證此永磁式同步電動機具有凸極效應。本文控制器採用數位訊號處理器(TMS320F28075)為控制核心,並透過C語言撰寫永磁式同步電動機的”d 軸電流為零”及MTPA”之轉速電流閉迴路控制策略。實測上,埋入型三相永磁式同步電動機在轉速為2500rpm 及電磁轉矩為5.2N-m時,d軸電流為0之轉速電流閉迴路控制時,電動機的運轉效率為82%。在MTPA之轉速電流閉迴路控制時,電動機的運轉效率為85%。由實驗結果得知,MTPA控制的運轉效率較佳。


The paper aims to design Interior Permanent Magnet Synchronous Motors (IPMSM). IPMSM consists of stator and rotor, which is 36-slot and 4-pole respectively. The magnets of the rotor are embedded type and structure of magnets is V-II mixed type. The embedded type contributes to the salient pole effect. Thus, controlling the d-axis current is less than zero can increase the electromagnetic torque and efficiency of the machine. In order to reduce the torque ripple and total harmonic distortion of back EMF, the rotor of the IPMSM is designed as three-step-skew. When the skew angle is designed at 3.5 degree , it results in the lowest THD of back EMF.
To utilize speed closed-loop and q-axis and d-axis current closed-loop control, three-axes was transferred into quadrature-axis and direct-axis by adopting Park's transformation method. Matlab/Simulink is performed to simulate the proposed IPMSM system and verify the feasibility of FOC and MTPA control strategy respectively.
JMAG software is performed to analyze the parameters of IPMSM, the q-axis inductance is 80μH and d-axis inductance is 49μH. When the speed of the IPMSM reaches at 2500 rpm, the back EMF is 9.95 V and the flux linkeage is 19(mV/rad/s). Regarding the experimental results, the q-axis inductance is 66.35μH and d-axis inductance is 40μH. When the speed of the IPMSM reaches at 2500 rpm, the back EMF is 8.4 V and the flux linkeage is 16(mV/rad/s). Both results show that q-axis inductance is not equivalent to d-axis inductance.Thus, it proves salient pole effect of IPMSM. A digital signal processor TMS320F28075 serves as core of control in the entire system. The closed-loop control strategy of speed and current of the IPMSM is written in C language. The speed and the load is set at 2500 rpm and 5.2 N-m respectively. The efficiency of the IPMSM using FOC strategy is 82%. The efficiency of the IPMSM using MTPA strategy is 85%. The experimental results show that MTPA control strategy is better than FOC control strategy.

摘要 I Abstract II 誌謝 III 目錄 IV 圖表索引 VIII 符號索引 XIV 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻探討 2 1-2-1 三相永磁式同步電動機設計 2 1-2-2 三相永磁式同步電機驅動器方面 3 1-3 系統架構及本文特色 4 1-4 本文大綱 6 第二章 埋入型永磁式同步電動機設計與分析 7 2-1 前言 7 2-2 永磁式同步電動機的材料及尺寸 7 2-3 永磁式同步電動機的定子繞組接線 8 2-3-1 每槽電工角度分布 8 2-3-2 轉子結構設計 10 2-4 三相永磁式同步電動機分析結果 13 2-4-1 三相永磁式同步電動機無載時之磁路分析 15 2-4-2 三相永磁同步馬達無載時的反電動勢分析 17 2-4-3 三相永磁式同步電動機的電磁轉矩分析 20 2-5 三相永磁式同步電動機之參數量測 24 2-5-1 三相永磁式同步電動機之每相等效電阻量測 26 2-5-2 三相永磁式同步電動機之等效至定子側之轉子磁通鏈量測 27 2-5-3 三相永磁式同步電動機之交軸及直軸電感量測 29 2-6 三相永磁式同步電動機的轉子磁極角的校正 30 2-6-1 三相永磁式同步電動機轉子角位置偵測裝置 30 2-6-2 三相永磁式同步電動機轉子角位置回授校正 31 2-7 結語 32 第三章 永磁式同步電動機模式 33 3-1 前言 33 3-2 永磁式同步電動機模式 33 A. 永磁式同步電動機之abc軸數學模式 33 B. 三相永磁式同步電動機之qd0軸數學模式 35 3-3 結語 37 第四章 永磁式同步電動機驅動系統 38 4-1 前言 38 4-2 轉速閉迴路控制策略 38 4-3 直軸電流為零之控制策略 39 4-4 每安培最大轉矩控制 42 4-4-1 每安培最大轉矩控制的qd軸電流分配 43 4-5 永磁式同步電動機驅動器模擬 47 4-5-1 d軸電流命令為零之控制策略模擬 48 4-5-2 每安培最大轉矩(MTPA)控制策略模擬 51 4-6 結語 55 第五章 實體製作與實測 56 5-1 前言 56 5-2 硬體電路架構 57 5-2-1 數位訊號處理器之介面電路 57 5-2-2 永磁式同步電動機側之電流回授電路 59 5-2-3 永磁式同步電動機側之電壓回授電路 60 5-2-4 轉速及角位置回授電路 61 5-3 軟體程式規劃 62 5-3-1 數位訊號處理器(DSP)程式流程規劃 62 5-3-2 d軸電流為零控制軟體流程規劃 64 5-3-3 每安培的最大轉矩控制軟體流程規劃 66 5-4 實測結果 68 5-4-1 d軸電流為零之實測 68 5-4-2 每安培的最大轉矩之實測 70 5-4-3 整體系統之功率潮流 73 5-4-4 結語 76 第六章 結論與建議 77 6-1 結論 77 6-2 建議 78 參考文獻 79 附錄A 三相感應電機及驅動器 85 A-1 三相感應電機之幾何尺寸 85 A-2 三相感應電機之定子繞組接線 87 A-3 三相感應電機之磁路特性分析 88 A-4 三相感應電機之轉矩電流閉迴路控制模擬結果 90 A-4-1 三相感應電機之參數及控制策略 90 A-4-2 三相感應電機之轉矩電流閉迴路控制模擬結果 91 A-5 感應電機之轉矩電流閉迴路控制實測 92

[1] 蕭鈞毓,“六相及雙三相繞組永磁式同步電動機之分析及設計”,國立臺灣科技大學電機工程系,民國96年。
[2] Y. Dai, L. Song and S. Cui, "Development of PMSM Drives for Hybrid Electric Car Applications", IEEE Transactions on Magnetics, vol. 43, no. 1, pp. 434-437, 2007.
[3] M. A. Rahman, "IPM Motor Drives for Hybrid Electric Vehicles", Proceedings of the 2007 International Aegean conference on Electrical Machines and Power Electronics, pp. 109-115, 2007.
[4] Y. Chen, J. Song, J. Zhang and Q. Huang, "Design and Analysis of Six-phase Fault-Tolerant PMSM for Electric Vehicle," 2016 Prognostics and System Health Management Conference (PHM-Chengdu), pp. 1-6, 2016.
[5] 許凱,“具弱磁控制之雙組三相永磁式同步電動機驅動器研製”,國立臺灣科技大學電機工程系,民國110年。
[6] 劉呈軒,“應用於電動機車之永磁式同步電動機控制策略研究”,國立臺灣大學電機資訊學院電機工程學系,民國109年。
[7] H. Yang, "A Novel Delta-Type Hybrid-Magnetic-Circuit Variable Flux Memory Machine for Electrified Vehicle Applications," in IEEE Transactions on Transportation Electrification, pp. 1-4, 2022.
[8] J. H. Woo, J. K. Lee, J. Choi, H. Kim and J. Lee, "Design of V-type IPMSM for a Military Vehicle Which Takes Consideration of the Output Characteristic on the High Speed," 2016 19th International Conference on Electrical Machines and Systems (ICEMS), pp. 1-4, 2016.
[9] K. Yamauchi, M. Sanada, S. Morimoto and Y. Inoue, "Design IPMSM Structures for Enlarging High-Efficiency Operation Area Using Automatic Design System with New Algorithm," 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), pp. 23-28, 2020.
[10] L. Fang, J. Jung, J. Hong and J. Lee, "Study on High-Efficiency Performance in Interior Permanent-Magnet Synchronous Motor with Double-Layer PM Design," in IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 4393-4396, 2008.
[11] M. Zhiyong, Y. Hu and C. Can, "Reduction of Iron Loss in a V-Shaped IPM Machine for Traction Applications," 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), pp. 1-6, 2019.
[12] S. Han, W. L. Soong, T. M. Jahns, M. K. Güven and M. S. Illindala, "Reducing Harmonic Eddy-Current Losses in the Stator Teeth of Interior Permanent Magnet Synchronous Machines During Flux Weakening," in IEEE Transactions on Energy Conversion, vol. 25, no. 2, pp. 441-449, 2010.
[13] S. Xue and V. Acharya, "Topology Optimization Empowers the Design of Interior Permanent Magnet (IPM) Motors," 2020 IEEE Transportation Electrification Conference & Expo (ITEC), pp. 1-5, 2020.
[14] S. Y. Oh, "Design of IPMSM Rotor Shape for Magnet Eddy-Current Loss Reduction," in IEEE Transactions on Magnetics, vol. 50, no. 2, pp. 841-844, 2014.
[15] S. Zhu, Y. Hu, C. Liu and K. Wang, "Iron Loss and Efficiency Analysis of Interior PM Machines for Electric Vehicle Applications," in IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 114-124, 2018.
[16] T. Husain and S. T. Lee, "Design Considerations for Magnet Configurations in IPM Rotor for High Speed Traction Applications," 2019 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 6062-6069, 2019.
[17] W. Ren, Q. Xu, Q. Li and L. Zhou, "Reduction of Cogging Torque and Torque Ripple in Interior PM Machines with Asymmetrical V-Type Rotor Design," in IEEE Transactions on Magnetics, vol. 52, no. 7, pp. 1-5, 2016.
[18] J. Lee and B. Kwon, "Optimal Rotor Shape Design of a Concentrated Flux IPM-Type Motor for Improving Efficiency and Operation Range," in IEEE Transactions on Magnetics, vol. 49, no. 5, pp. 2205-2208, 2013.
[19] A. Wang, H. Li, W. Lu and H. Zhao, "Influence of Skewed and Segmented Magnet Rotor on IPM Machine Performance and Ripple Torque for Electric Traction," 2009 IEEE International Electric Machines and Drives Conference, pp. 305-310, 2009.
[20] E. Sulaiman, G. M. Romalan and N. A. Halim, "Skewing and Notching Configurations for Torque Pulsation Minimization in Spoke-type Interior Permanent Magnet Motors," 2016 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC), pp. 202-207, 2016.
[21] F. Papini and M. Osama, "Electromagnetic Design of an Interior Permanent Magnet Motor for Vehicle Traction," 2018 XIII International Conference on Electrical Machines (ICEM), pp. 205-211, 2018.
[22] N. Bianchi and S. Bolognani, "Design Techniques for Reducing the Cogging Torque in Surface-mounted PM Motors," in IEEE Transactions on Industry Applications, vol. 38, no. 5, pp. 1259-1265, 2002.
[23] N. Bianchi and S. Bolognani, "Design Techniques for Reducing the Cogging Torque in Surface-mounted PM Motors," Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129), pp. 179-185 vol.1, doi: 10.1109/IAS.2000.881063, 2000.
[24] W. Zhao, T. A. Lipo and B. I. Kwon, "Torque Pulsation Minimization in Spoke-type Interior Permanent Magnet Motors with Skewing and Sinusoidal Permanent Magnet Configurations," in IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1-4, Art no. 8110804, doi: 10.1109/TMAG.2015.2442977, 2015.
[25] X. Ge, Z. Q. Zhu, G. Kemp, D. Moule and C. Williams, "Optimal Step-Skew Methods for Cogging Torque Reduction Accounting for Three-Dimensional Effect of Interior Permanent Magnet Machines," in IEEE Transactions on Energy Conversion, vol. 32, no. 1, pp. 222-232, doi: 10.1109/TEC.2016.2620476, 2017.
[26] X. Wang, N. Liu and R. Na, "Simulation of PMSM Field-oriented Control Based on SVPWM," 2009 IEEE Vehicle Power and Propulsion Conference, pp. 1465-1469, 2009.
[27] X. Zhang, X. Xie and R. Yao, "Field Oriented Control for Permanent Magnet Synchronous Motor Based on DSP Experimental Platform," The 27th Chinese Control and Decision Conference (2015 CCDC), pp. 1870-1875, 2015.
[28] A. Pouramin, M. Farshadnia, R. Dutta and M. F. Rahman, "Tradeoffs in High-speed Performance Characteristics in Optimization of Saliency Ratio and Efficiency for Designing FSCW IPM Machines," 2017 20th International Conference on Electrical Machines and Systems (ICEMS), pp. 1-5, 2017.
[29] 劉育涵,“雙三相永磁輔助型同步磁阻電動機驅動系統之設計”,國立臺灣科技大學電機工程系,民國107年。
[30] 許凱,“具弱磁控制之雙組三相永磁式同步電動機驅動器研製”,國立臺灣科技大學電機工程系,民國110年。
[31] C. Pan and S. Sue, "A linear Maximum Torque Per Ampere Control for IPMSM Drives Over Full-speed Range," in IEEE Transactions on Energy Conversion, vol. 20, no. 2, pp. 359-366, June 2005.
[32] G. Su, L. Tang and Z. Wu, "Extended Constant-torque and Constant-power Speed Range Control of Permanent Magnet Machine Using a Current Source Inverter," 2009 IEEE Vehicle Power and Propulsion Conference, pp. 109-115, 2009.
[33] H. Gashtil, V. Pickert, D. Atkinson, D. Giaouris and M. Dahidah, "Comparative Evaluation of Field Oriented Control and Direct Torque Control Methodologies in Field Weakening Regions for Interior Permanent Magnet Machines," 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), pp. 1-6, 2019.
[34] Li Chen, R. Davis, S. Stella, T. Tesch and A. Fischer-Antze, "Improved Control Techniques for IPM Motor Drives on Vehicle Application," Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344),vol.3, pp. 2051-2056, 2002.
[35] Liu Qinghua, A. M. Khambadkone, A. Tripathi and M. A. Jabbar, "Torque control of IPMSM Drives Using Direct Flux Control for Wide Speed Operation," IEEE International Electric Machines and Drives Conference, 2003. IEMDC'03, pp. 188-193 vol.1, 2003.
[36] P. Niazi, H. A. Toliyat and A. Goodarzi, "Robust Maximum Torque per Ampere (MTPA) Control of PM-Assisted SynRM for Traction Applications," in IEEE Transactions on Vehicular Technology, vol. 56, no. 4, pp. 1538-1545, 2007.
[37] S. Amornwongpeeti, O. Kiselychnyk, J. Wang, C. Antaloae, M. Soumelidis and N. Shah, "A Combined MTPA and Maximum Efficiency Control Strategy for IPMSM Motor Drive Systems," 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), pp. 1-6, 2016.
[38] S. Ekanayake, R. Dutta, M. F. Rahman, D. Xiao and J. Fletcher, "Operation Along the Maximum Torque Per Voltage Trajectory in a Direct Torque and Flux Controlled Interior Permanent Magnet Synchronous Motor," 8th IET International Conference on Power Electronics, Machines and Drives (PEMD 2016), pp. 1-6, 2016.
[39] S. Halder, S. P. Srivastava and P. Agarwal, "Flux Weakening Control Algorithm with MTPA Control of PMSM Drive," 2014 IEEE 6th India International Conference on Power Electronics (IICPE), pp. 1-5, 2014.
[40] S. Morimoto, M. Sanada and Y. Takeda, "Wide-speed Operation of Interior Permanent Magnet Synchronous Motors with High-Performance Current Regulator," in IEEE Transactions on Industry Applications, vol. 30, no. 4, pp. 920-926, 1994.
[41] T. M. Jahns, "Flux-Weakening Regime Operation of an Interior Permanent-Magnet Synchronous Motor Drive," in IEEE Transactions on Industry Applications, vol. IA-23, no. 4, pp. 681-689, 1987.
[42] Y. Tian and T. A. Lipo, "Deep Flux-Weakening Operation for a Surface-Mounted Permanent-Magnet Synchronous Motor Based on an Automated Working Path for the d-axis Current with Floating Conversion Point," 2021 IEEE 4th International Conference on Electronics Technology (ICET), pp. 554-561, 2021.
[43] Z. Li, D. O’Donnell, W. Li, P. Song, A. Balamurali and N. C. Kar, "A Comprehensive Review of State-of-the-Art Maximum Torque per Ampere Strategies for Permanent Magnet Synchronous Motors," 2020 10th International Electric Drives Production Conference (EDPC), pp. 1-8, 2020.
[44] 黃仲欽,“電機機械控制講義”,國立臺灣科技大學電機工程系,民國110年。

無法下載圖示 全文公開日期 2032/07/13 (校內網路)
全文公開日期 2032/07/13 (校外網路)
全文公開日期 2027/07/13 (國家圖書館:臺灣博碩士論文系統)
QR CODE