簡易檢索 / 詳目顯示

研究生: 徐慶琪
Ching-Chi Hsu
論文名稱: 骨螺絲之結構設計與生物力學分析
Structural Designs and Biomechanical Analyses of the Orthopaedic Screws
指導教授: 趙振綱
Ching-Kong Chao
林晉
Jinn Lin
口試委員: 黃榮芳
none
劉見賢
none
王兆麟
none
朱銘祥
none
單秋成
none
張冠諒
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 201
中文關鍵詞: 生物力學測試有限元素法脛骨螺絲椎弓足骨螺絲疲勞咬合強度
外文關鍵詞: Biomechanical test, Finite element analysis, Tibial screw, Pedicle screw, Fatigue, Holding power
相關次數: 點閱:312下載:131
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎖定式骨髓內釘與脊椎內固定器已分別廣泛地用於治療脛骨骨幹骨折與脊椎椎骨的病變,臨床使用上發現骨螺絲是植入物中最容易發生破壞的元件,當骨螺絲發生失效時往往會造成骨折固定失敗、無法癒合與延遲癒合,而骨螺絲的臨床失效模式主要有破斷與鬆脫兩種,本論文的目的為針對脛骨螺絲與椎弓足骨螺絲之骨咬合強度與彎曲強度性能作分析,以生物力學實驗進行實際測試,並建立三維有限元素分析模型以模擬生物力學實驗的結果。
    在脛骨螺絲之生物力學分析中,以骨咬合強度實驗、降伏強度實驗與疲勞強度實驗測試其骨咬合強度與彎曲強度性能,建立三維非線性有限元素分析模型來模擬生物力學實驗,針對脛骨螺絲之設計參數以田口品質工程法進行參數化分析,並使用遺傳演算法配合骨螺絲幾何限制條件求得最佳的脛骨螺絲設計。由結果得知生物力學實驗之結果與有限元素模擬之結果有高的相關性(>0.90),在參數化分析中,外徑、節距與螺牙傾角是決定骨咬合強度的重要設計參數,而內徑與根部弧角半徑是決定彎曲強度的重要設計參數,較大的根部弧角半徑設計與鈦合金材質的脛骨螺絲可顯著的提昇其疲勞強度,在最佳化設計中,遺傳演算法可求得脛骨螺絲同時具有較佳的骨咬合強度與彎曲強度之最佳化設計,骨螺絲幾何限制條件可避免不合理的脛骨螺絲設計,市售的脛骨螺絲可依據最佳化之結果獲得設計上的改善。
    在椎弓足骨螺絲之生物力學分析中,以拉出強度實驗、扭轉強度實驗、降伏強度實驗與疲勞強度實驗測試其骨咬合強度與彎曲強度性能,建立三維非線性有限元素分析模型來模擬生物力學實驗,改變椎弓足骨螺絲之設計參數,探討其對骨咬合強度與彎曲強度性能的影響。由結果得知生物力學實驗之結果與有限元素模擬之結果有高的相關性(>0.85),考慮骨骼擠壓效應時可增加椎弓足骨螺絲之骨咬合強度性能,椎弓足骨螺絲之錐度長度越長或在近端螺牙處具有較大的內徑時會有較佳的彎曲強度性能,椎弓足骨螺絲之內徑是決定骨咬合強度性能的重要設計參數,而錐度則是決定彎曲強度性能的重要設計參數,圓錐型椎弓足骨螺絲可同時具有高的骨咬合強度與彎曲強度性能。
    本論文之研究成果可提供給醫學領域的骨科醫師於臨床應用的選擇依據,並給予工程領域的設計人員於研發新型植入物的設計依據與方法。


    Interlocking nail and internal spinal fixator have been extensively used to treat tibial shaft fracture and spinal diseases respectively. In clinical application, tibial locking screws and spinal pedicle screws are the weakest part of the implants. Screw failure may cause loss of fracture fixation, non-union, and delayed union. Screw fracture and screw loosening are two main clinical failure modes. The purpose of this dissertation was to evaluate bone holding power and bending strength of tibial locking screws and spinal pedicle screws by biomechanical tests and three-dimensional finite element analyses.
    In biomechanical analyses of tibial locking screws, bone holding power and bending strength were assessed by bone holding power tests, yielding tests, and fatigue tests. Three-dimensional finite element models were established to simulate the results of biomechanical tests. The parametric study was done by Taguchi robust design method. In addition, the optimum design of tibial locking screws was obtained by using genetic algorithm and geometric constraints. The analytical results of tibial locking screw models were closely related to those of biomechanical tests with high correlation coefficient (>0.90). In the parametric study, outer diameter, pitch, and half angle were the main factors for bone holding power and inner diameter and root radius were the important factors for bending strength. Titanium tibial locking screw with larger root radius could significantly increase its fatigue strength. In optimum study, tibial locking screw with higher bone holding power and bending strength could be found by genetic algorithm and the unreasonable designs could be eliminated by geometric constraints. The design of commercial tibial locking screws could be improved according to the results of the optimum analysis.
    In biomechanical analyses of spinal pedicle screws, bone holding power and bending strength were evaluated by pullout tests, stripping tests, yielding tests, and fatigue tests. Three-dimensional finite element models were established to simulate the results of biomechanical tests. Bone holding power and bending strength of pedicle screws were discussed by changing their geometry and dimension. The analytical results of spinal pedicle screw models were closely related to those of biomechanical tests with high correlation coefficient (>0.85). The bone compaction effect could enhance bone holding power of pedicle screws. Pedicle screws with longer conical length and larger inner diameter at the hub had higher bending strength. In the parametric study, inner diameter was the main factor for bone holding power and conical angle was the important factor for bending strength. Conical pedicle screw could produce higher bone holding power and bending strength simultaneously.
    The results of this dissertation could help surgeons in selecting suitable devices for their patients and assist design engineers in developing new orthopeadic implants.

    中文摘要……………………………………………………………I 英文摘要……………………………………………………………II 誌 謝………………………………………………………………III 目 錄………………………………………………………………IV 符號索引……………………………………………………………IX 圖表索引……………………………………………………………XII 第一章 緒論…………………………………………………………1 1.1 研究背景、動機與目的…………………………………………1 1.2 脛骨與脊椎之解剖學構造………………………………………6 1.2.1 脛骨之解剖學構造……………………………………………6 1.2.2 脊椎之解剖學構造……………………………………………7 1.3 文獻回顧…………………………………………………………11 1.3.1 脛骨螺絲之文獻回顧…………………………………………11 1.3.2 椎弓足骨螺絲之文獻回顧……………………………………13 1.4 本文架構…………………………………………………………17 第二章 脛骨螺絲之骨咬合強度分析………………………………19 2.1 生物力學實驗……………………………………………………19 2.1.1 人造假骨之簡介………………………………………………19 2.1.2 材料實驗測試機………………………………………………20 2.1.3 骨咬合強度測試………………………………………………20 2.1.4 骨咬合強度之理論計算………………………………………21 2.1.5 結果……………………………………………………………22 2.2 有限元素模擬……………………………………………………27 2.2.1 有限元素法……………………………………………………27 2.2.2 脛骨螺絲幾何輸入檔之建立…………………………………29 2.2.3 骨咬合強度模型………………………………………………30 2.2.4 收斂性分析、可應用性分析與相關性分析…………………31 2.2.5 結果……………………………………………………………32 2.3 田口參數化分析…………………………………………………41 2.3.1 田口品質工程法………………………………………………41 2.3.2 骨咬合強度之參數化分析……………………………………44 2.3.3 結果……………………………………………………………45 2.4 討論………………………………………………………………52 第三章 脛骨螺絲之彎曲強度分析…………………………………55 3.1 生物力學實驗……………………………………………………55 3.1.1 高分子聚乙烯之簡介…………………………………………55 3.1.2 降伏強度測試…………………………………………………55 3.1.3 疲勞強度測試…………………………………………………56 3.1.4 彎曲強度之理論計算…………………………………………57 3.1.5 結果……………………………………………………………57 3.2 有限元素模擬……………………………………………………64 3.2.1 彎曲強度模型…………………………………………………64 3.2.2 收斂性分析與相關性分析……………………………………65 3.2.3 結果……………………………………………………………65 3.3 田口參數化分析…………………………………………………71 3.3.1 彎曲強度之參數化分析………………………………………71 3.3.2 結果……………………………………………………………71 3.4 鈦合金與不銹鋼骨螺絲之疲勞測試與有限元素模擬…………78 3.4.1 疲勞強度測試與有限元素模擬………………………………78 3.4.2 結果……………………………………………………………80 3.5 討論………………………………………………………………84 第四章 脛骨螺絲之設計最佳化……………………………………87 4.1 骨螺絲幾何限制條件……………………………………………87 4.2 脛骨螺絲之目標函數……………………………………………90 4.3 遺傳演算法………………………………………………………93 4.4 脛骨螺絲之最佳化結果…………………………………………97 4.5 討論………………………………………………………………100 第五章 椎弓足骨螺絲之骨咬合強度分析…………………………103 5.1 生物力學實驗……………………………………………………103 5.1.1 人造假骨之簡介………………………………………………103 5.1.2 拉出強度測試…………………………………………………104 5.1.3 扭轉強度測試…………………………………………………105 5.1.4 結果……………………………………………………………105 5.2 有限元素模擬……………………………………………………113 5.2.1 椎弓足骨螺絲幾何輸入檔之建立……………………………113 5.2.2 骨咬合強度模型………………………………………………113 5.2.3 收斂性分析與相關性分析……………………………………115 5.2.4 結果……………………………………………………………115 5.3 椎弓足骨螺絲之拉出強度參數化分析…………………………124 5.3.1 拉出強度測試…………………………………………………124 5.3.2 有限元素模擬…………………………………………………125 5.3.3 結果……………………………………………………………125 5.4 討論………………………………………………………………133 第六章 椎弓足骨螺絲之彎曲強度分析……………………………136 6.1 生物力學實驗……………………………………………………136 6.1.1 降伏強度測試…………………………………………………136 6.1.2 疲勞強度測試…………………………………………………137 6.1.3 結果……………………………………………………………137 6.2 有限元素模擬……………………………………………………146 6.2.1 彎曲強度模型…………………………………………………146 6.2.2 收斂性分析與相關性分析……………………………………146 6.2.3 結果……………………………………………………………147 6.3 討論………………………………………………………………155 第七章 結論與未來展望……………………………………………158 7.1 結論………………………………………………………………158 7.2 未來展望…………………………………………………………159 參考文獻 ……………………………………………………………161 附錄一 脛骨螺絲幾何輸入檔………………………………………170 附錄二 椎弓足骨螺絲幾何輸入檔…………………………………183 附錄三 股骨鎖定內釘治療之生物力學測試與有限元素模擬……190 作者簡介 ……………………………………………………………199

    [1] Fan, C.Y., Chiang, C.C., Chuang, T.Y., Chiu, F.Y. and Chen, T.H., "Interlocking Nails for Displaced Metaphyseal Fractures of the Distal Tibia," Injury, Vol.36, pp.669-674(2005).
    [2] Pallister, I. and Lorwerth, A., "Indirect Reduction Using a Simple Quadrilateral Frame in the Application of Distal Tibial LCP-Technical Tips," Injury, Vol.36, pp.1138-1142(2005).
    [3] Simpson, D. and Keating, J.F., "Outcome of Tibial Plateau Fractures Managed with Calcium Phosphate Cement," Injury, Vol.35, pp.913-918(2004).
    [4] Lin, J., Shen, P.W. and Hou, S.M., "Complications of Locked Nailing in Humeral Shaft Fractures," J Trauma, Vol.54, No.3, pp.530-535(2003).
    [5] Ruiz, A.L., Kealey, W.D.C. and McCoy, G.F., "Implant Failure in Tibial Nailing," Injury, Vol.31, pp.359-362(2000).
    [6] Ferrara, L.A., Secor, J.L., Jin, B.H., Wakefield, A., Inceoglu, S. and Benzel, E.C., "A Biomechanical Comparison of Facet Screw Fixation and Pedicle Screw Fixation: Effects of Short-Term and Long-Term Repetitive Cycling," Spine, Vol.28, No.12, pp.1226-1234(2003).
    [7] Pihlajamaki, H., Myllynen, P. and Bostman, O., "Complications of Transpedicular Lumbosacral Fixation for Non-Traumatic Disorders," J Bone Joint Surg (Br), Vol.79, No.2, pp.183-189(1997).
    [8] Netter, F.H., "Atlas of Human Anatomy, 2nd ed.," ICON Learning Systems, (2002).
    [9] Alho, A., Ekeland, A., Stromsoe, K., Folleras, G. and Thoresen, B.O., "Locked Intramedullary Nailing for Displaced Tibial Shaft Fractures," J Bone Joint Surg, Vol.72B, pp.805-809(1990).
    [10] Brumback, R.J., "The Rationales of Interlocking Nailing of the Femur, Tibia, and Humerus: An Overview," Clin Orthop, Vol.324, pp.292-320(1996).
    [11] Greitbauer, M., Heinz, T., Gaebler, C., Stoik, W. and Vecsei, V., "Unreamed Nailing of Tibial Fractures with the Solid Tibial Nail," Clin Orthop, Vol.350, pp.105-114(1998).
    [12] Whittle, A.P., Wester, W. and Russell, T.A., "Fatigue Failure in Small Diameter Tibial Nails," Clin Orthop, Vol.315, pp.119-128(1995).
    [13] Wu, C.C. and Shih, C.H., "Biomechanical Analysis of the Mechanism of Interlocking Nail Failure," Arch Orthop Trauma Surg, Vol.111, pp.268-272(1992).
    [14] Bucholz, R.W., Ross, D.S.E. and Lawrence, K.L., "Fatigue Fracture of the Interlocking Nail in the Treatment of Fractures of the Distal Part of the Femoral Shaft," J Bone Joint Surg, Vol.69A, pp.1391-1399(1987).
    [15] Court-Brown, C.M., Will, E., Christie, J. and McQueen, M.M., "Reamed or Unreamed Nailing for Closed Tibial Fractures," J Bone Joint Surg, Vol.78B, pp.580-583(1996).
    [16] Hutson, J.J., Zych, G.A., Cole, J.D., Johnson, K.D., Ostermann, P., Milne, E.L. and Latta, L., "Mechanical Failures of Intramedullary Nails Applied without Reaming," Clin Orthop, Vol.315, pp.129-137(1995).
    [17] Keating, J.F., O'Brien, P.J., Blachut, P.A., Meek, R.N. and Broekhuyse, H.M., "Locking Intramedullary Nailing with and without Reaming for Open Fractures of the Tibial Shaft," J Bone Joint Surg, Vol.79A, pp.334-341(1997).
    [18] Whittle, A.P., Russel, T.A., Taylor, J.C. and Lavelle, D.G., "Treatment of Open Fractures of the Tibial Shaft with the Use of Interlocking Nailing without Reaming," J Bone Joint Surg, Vol.74A, pp.1162-1171(1992).
    [19] Evans, M., Spencer, M., Wang, Q., White, S.H. and Cunningham, J.L., "Design and Testing of External Fixator Bone Screws," J Biomed Eng, Vol.12, pp.457-462(1990).
    [20] Lin, J., Lin, S.J., Chiang, H. and Hou, S.M., "Bending Strength and Holding Power of Tibial Locking Screws," Clin Orthop, Vol.385, pp.199-206(2001).
    [21] Krag, M.H., "Biomechanics of Thoracolumbar Spinal Fixation," Spine, Vol.16(Suppl.3), pp.S84-S99(1991).
    [22] Chen, P.Q., Lin, S.J., Wu, S.S. and So, H., "Mechanical Performance of the New Posterior Spinal Implant: Effect of Materials, Connecting Plate, and Pedicle Screw Design," Spine, Vol.28, pp.881-886(2003).
    [23] Dick, J.C. and Bourgeault, C.A., "Notch Sensitivity of Titanium Alloy, Commercially Pure Titanium, and Stainless Steel Spinal Implants," Spine, Vol.26, pp.1668-1672(2001).
    [24] Pienkowski, D., Stephens, G.C., Doers, T.M. and Hamilton, D.M., "Multicycle Mechanical Performance of Titanium and Stainless Steel Transpedicular Spine Implants," Spine, Vol.23, pp.782-788(1998).
    [25] Serhan, H., Slivka, M., Albert, T. and Kwak, S.D., "Is Galvanic Corrosion Between Titanium Alloy and Stainless Steel Spinal Implants a Clinical Concern?," Spine J, Vol.4, pp.379-387(2004).
    [26] Stambough, J.L., Genaidy, A.M., Huston, R.L., Serhan, H. and Sabri, E.H., "Biomechanical Assessment of Titanium and Stainless Steel Posterior Spinal Constructs: Effects of Absolute/Relative Loading and Frequency on Fatigue Life and Determonation of Failure Modes," J Spinal Disord Tech, Vol.10, pp.473-481(1997).
    [27] Leggon, R., Lindsey, R.W., Doherty, B.J., Alexander, J. and Noble, P., "The Holding Strength of Cannulated Screws Compared with Solid Core Screws in Cortical and Cancellous Bone," J Orthop Trauma, Vol.7, No.5, pp.450-457(1993).
    [28] Willett, K., Hearn, T.C. and Cuncins, A.V., "Biomechanical Testing of a New Design for Schanz Pedicle Screws," J Orthop Trauma, Vol.7, No.4, pp.375-380(1993).
    [29] Krag, M.H., Beynnon, B.D., Pope, M.H., Frymoyer, J.W., Haugh, L.D. and Weaver, D.L., "An Internal Fixation for Posterior Application to Short Segments of the Thoracic, Lumbar, or Lumbosacral Spine: Design and Testing," Clin Orthop, Vol.203, pp.75-98(1986).
    [30] Kwok, A.W.L., Finkelstein, J.A., Woodside, T., Hearn, T.C. and Hu, R.W., "Insertional Torque and Pull-Out Strengths of Conical and Cylindrical Pedicle Screws in Cadaveric Bone," Spine, Vol.21, No.21, pp.2429-2434(1996).
    [31] Okuyama, K., Sato, K., Abe, E., Inaba, H., Shimada, Y. and Murai, H., "Stability of Transpedicle Screwing for the Osteoporotic Spine," Spine, Vol.18, No.15, pp.2240-2245(1993).
    [32] DeCoseter, T.A., Heetderks, D.B., Downey, D.J., Ferries, J.S. and Jones, W., "Optimizing Bone Screw Pullout Force," J Orthop Trauma, Vol.4, No.2, pp.169-174(1990).
    [33] Chapman, J.R., Harrington, R.M., Lee, K.M., Anderson, P.A., Tenser, A.F. and Kowalski, D., "Factors Affecting the Pullout Strength of Cancellous Bone Screws," J Biomech Eng, Vol.118, pp.391-398(1996).
    [34] Halsey, D., Fleming, B., Pope, M.H., Krag, M. and Kristiansen, T., "External Fixator Pin Design," Clin Orthop, Vol.278, pp.305-312(1992).
    [35] Liu, J., Lai, K.A. and Chou, Y.L., "Strength of the Pin-Bone Interface of External Fixation Pins in the Iliac Crest," Clin Orthop, Vol.310, pp.237-244(1995).
    [36] Thompson, J.D., Benjamin, J.B. and Szivek, J.A., "Pullout Strength of Cannulated and Noncannulated Cancellous Bone Screws," Clin Orthop, Vol.341, pp.241-249(1997).
    [37] Beaupre, G.S., Schneider, E. and Perren, S., "Stress Analysis of a Partially Slotted Intramedullary Nail," J Orthop Res, Vol.2, pp.369-376(1984).
    [38] Kempf, I., Grosse, A. and Beck, G., "Closed Locked Intramedullary Nailing: Its Application to Comminuted Fractures of the Femur," J Bone Joint Surg, Vol.67A, pp.709-720(1985).
    [39] Sim, E., Freimuller, W. and Reiter, T.J., "Finite Element Analysis of the Stress Distributions in the Proximal End of the Femur After Stabilization of a Pertrochanteric Model Fracture: A Comparison of Two Implants," Injury, Vol.26, pp.445-449(1995).
    [40] Wang, C.J., Yettram, A.L., Yao, M.S. and Procter, P., "Finite Element Analysis of a Gamma Nail within a Fractured Femur," Med Eng Phys, Vol.20, pp.677-683(1998).
    [41] Zimmerman, K.W. and Klasen, H.J., "Mechanical Failure of Intramedullary Nails After Fracture Union," J Bone Joint Surg, Vol.65B, pp.274-275(1983).
    [42] Chen, S.I., Lin, R.M. and Chang, C.H., "Biomechanical Investigation of Pedicle Screw-Vertebrae Complex: A Finite Element Approach Using Bonded and Contact Interface Conditions," Med Eng Phys, Vol.25, pp.275-282(2003).
    [43] Hou, S.M., Hsu, C.C., Wang, J.L., Chao, C.K. and Lin, J., "Mechanical Tests and Finite Element Models for Bone Holding Power of Tibial Locking Screws," Clin Biomech, Vol.19, pp.738-745(2004).
    [44] Hsu, C.C., Chao, C.K., Wang, J.L., Hou, S.M., Tsai, Y.T. and Lin, J., "Increase of Pullout Strength of Spinal Pedicle Screws with Conical Core: Biomechanical Tests and Finite Element Analysis," J Orthop Res, Vol.23, pp.788-794(2005).
    [45] Hearn, T.C., Schatzker, J. and Wolfson, N., "Extraction Strength of Cannulated Cancellous Bone Screws," J Orthop Trauma, Vol.7, No.2, pp.138-141(1993).
    [46] Rouleau, J.P., Blasier, R.B., Tsai, E. and Goldstein, S.A., "Cannulated Hip Screws: A Study of Fixation Integrity, Cut-Out Resistance, and High-Cycle Bending Fatigue Performance," J Orthop Trauma, Vol.8, pp.293-299(1994).
    [47] Gaebler, C., Stanzl-Tschegg, S., Heinze, G., Holper, B., Milne, T., Berger, G. and Vecsei, V., "Fatigue Strength of Locking Screws and Prototypes Used in Small-Diameter Tibial Nails: A Biomechanical Study," J Trauma, Vol.47, pp.379-384(1999).
    [48] Ashman, R.B., Galpin, R.D., Corin, J.D. and Johnston, C.E., "Biomechanical Analysis of Pedicle Screw Instrumentation Systems in a Corpectomy Model," Spine, Vol.14, pp.1398-1405(1989).
    [49] Christensen, F.B., Dalstra, M., Sejling, F., Overgaard, S. and Bunger, C., "Titanium-Alloy Enhances Bone-Pedicle Screw Fixation: Mechanical and Histomorphometrical Results of Titanium-Alloy Versus Stainless Steel," European Spine Journal, Vol.9, pp.97-103(2000).
    [50] McLain, R.F., McKinley, T.O., Yerby, S.A., Smith, T.S. and Sarigul-Klijn, N., "The Effect of Bone Quality on Pedicle Screw Loading in Axial Instability: A Synthetic Model," Spine, Vol.22, pp.1454-1460(1997).
    [51] Mikles, M.R., Asghar, F.A., Frankenburg, E.P., Scott, D.S. and Graziano, G.P., "Biomechanical Study of Lumbar Pedicle Screws in a Corpectomy Model Assessing Significance of Screw Height," J Spinal Disord Tech, Vol.17, pp.272-276(2004).
    [52] Cunningham, B.W., Sefter, J.C., Shono, Y. and McAfee, P.C., "Static and Cyclical Biomechanical Analysis of Pedicle Screw Spinal Constructs," Spine, Vol.18, pp.1677-1688(1993).
    [53] Asnis, S.E., Ernberg, J.J., Bostrom, M.P.G., Wright, T.M., Harrington, R.M., Tencer, A. and Peterson, M., "Cancellous Bone Screw Thread Design and Holding Power," J Orthop Trauma, Vol.10, pp.462-469(1996).
    [54] Brown, G.A., McCarthy, T., Bourgeault, C.A. and Callahan, D.J., "Mechanical Performance of Standard and Cannulated 4.0-mm Cancellous Bone Screws," J Orthop Res, Vol.18, pp.307-312(2000).
    [55] Firoozbakhsh, K.K., Moneim, M.S. and DeCoster, T.A., "Pullout Strength of Power- and Hand-driven Staples in Synthetic Bone: Effect of Design Parameters," J Orthop Trauma, Vol.6, pp.43-49(1992).
    [56] Lieberman, I.H., Khazim, R. and Woodside, T., "Anterior Vertebral Body Screw Pullout Testing: A Comparison of Zielke, Kaneda, Universal Spine System, and Universal Spine System With Pullout-Resistant Nut," Spine, Vol.23, pp.908-910(1998).
    [57] Pfeiffer, M., Gilberstson, L.G., Goel, V.K., Griss, P., Keller, J.C., Ryken, T.C. and Hoffamn, H.E., "Effects of Specimen Fixation Method on Pullout Tests of Pedicle Screws," Spine, Vol.21, pp.1037-1044(1996).
    [58] Polly, D.W., Orchowski, J.R. and Ellenbogen, R.G., "Revision Pedicle Screws: Bigger, Longer Shims - What Is Best?," Spine, Vol.23, pp.1374-1379(1998).
    [59] Ryken, T.C., Clausen, J.D., Traynelis, V.C. and Goel, V.K., "Biomechanical Analysis of Bone Mineral Density, Insertion Technique, Screw Torque, and Holding Strength of Anterior Cervical Plate Screws," J Neurosurg, Vol.83, pp.324-329(1995).
    [60] Sell, P., Collins, M. and Dove, J., "Pedicle Screws: Axial Pull-Out Strength in the Lumbar Spine," Spine, Vol.13, pp.1075-1076(1988).
    [61] Skinner, R., Maybee, J., Transfeldt, E., Venter, F.R. and Chalmers, W., "Experimental Pullout Testing and Comparison of Variables in Transpedicular Screw Fixation: A Biomechanical Study," Spine, Vol.15, pp.195-201(1990).
    [62] Zdeblick, T.A., Kunz, D.N., Cooke, M.E. and McCabe, R., "Pedicle Screw Pullout Strength: Correlation with Insertional Torque," Spine, Vol.18, pp.1673-1676(1993).
    [63] Abshire, B.B., McLain, R.F., Valdevit, A. and Kambic, H.E., "Characteristics of Pullout Failure in Conical and Cylindrical Pedicle Screws After Full Insertion and Back-out," Spine J, Vol.1, pp.408-414(2001).
    [64] Choi, W., Lee, S., Kim, J.W., Kim, J.K. and Goel, V., "Assessment of Pullout Strength of Various Pedicle Screw Designs in Relation to the Changes in Bone Mineral Density," 48th Annual Meeting of the Orthopaedic Research Society, (2002).
    [65] Halvorson, T.L., Kelley, L.A., Thomas, K.A., Whitecloud, T.S. and Cook, S.D., "Effects of Bone Mineral Density on Pedicle Screw Fixation," Spine, Vol.19, pp.2415-2420(1994).
    [66] Ono, A., Brown, M.D., Latta, L.L., Milne, E.L. and Holmes, D.C., "Triangulated Pedicle Screw Construct Technique and Pull-out Strength of Conical and Cylindrical Screws," Journal of Spine Disorders, Vol.14, pp.323-329(2001).
    [67] Yamagata, M., Kitahra, H., Minami, S., Takahashi, K., Isobe, K., Moriya, H. and Tamaki, T., "Mechanical Stability of the Pedicle Screw Fixation Systems for the Lumbar Spine," Spine, Vol.17, pp.S51-S54(1992).
    [68] Daftari, T.K., Horton, W.C. and Hutton, W.C., "Correlations Between Screw Hole Preparation, Torque of Insertion, and Pullout Strength for Spinal Screws," J Spinal Disord, Vol.7, No.2, pp.139-145(1994).
    [69] Lim, T.H., An, H.S., Evanich, C., Hasanoglu, K.Y., McGrady, L. and Wilson, C.R., "Strength of Anterior Vertebral Screw Fixation in Relationship to Bone Mineral Density," J Spinal Disord, Vol.8, No.2, pp.121-125(1995).
    [70] Buhler, D.W., Berlemann, U., Oxland, T.R. and Nolte, L.P., "Moments and Forces During Pedicle Screw Insertion: In Vitro and in Vivo Measurements," Spine, Vol.23, No.11, pp.1220-1228(1998).
    [71] Oktenoglu, B.T., Ferrara, L.A., Andalkar, N., Ozer, A.F., Sarioglu, A.C. and Benzel, E.C., "Effects of Hole Preparation on Screw Pullout Resistance and Insertional Torque: A Biomechanical Study," J Neurosurg, Vol.94, pp.91-96(2001).
    [72] Okuyama, K., Abe, E., Suzuki, T., Tamura, Y., Chiba, M. and Sato, K., "Influence of Bone Mineral Density on Pedicle Screw Fixation: A Study of Pedicle Screw Fixation Augmenting Posterior Lumbar Interbody Fusion in Elderly Patients," The Spine J, Vol.1, pp.402-407(2001).
    [73] McKinley, T.O., McLain, R.F., Yerby, S.A., Sarigul-Klijn, N. and Smith, T.S., "The Effect of Pedicle Morphometry on Pedicle Screw Loading: A Synthetic Model," Spine, Vol.22, pp.246-252(1997).
    [74] Yerby, S.A., Ehteshami, J.R. and McLain, R.F., "Loading of Pedicle Screws within the Vertebra," J Biomech, Vol.30, pp.951-954(1997).
    [75] McKinley, T.O., McLain, R.F., Yerby, S.A., Sharkey, N.A., Sarigul-Klijn, N. and Smith, T.S., "Characteristics of Pedicle Screw Loading: Effect of Surgical Technique on Intravertebral and Intrapedicular Bending Moments," Spine, Vol.24, No.1, pp.18-25(1999).
    [76] Stambough, J.L., Khatib, F.E., Genaidy, A.M. and Huston, R.L., "Strength and Fatigue Resistance of Thoracolumbar Spinal Imant: A Experimental Study of Selected Clinical Devices," J Spinal Disord, Vol.12, pp.410-414(1999).
    [77] Youssef, J.A., McKinley, T.O., Yerby, S.A. and McLain, R.F., "Characteristics of Pedicle Screw Loading. Effect of Sagittal Insertion Angle on Intrapedicular Bending Moments," Spine, Vol.24, pp.1077-1081(1999).
    [78] Fogel, G.R., Reitman, C.A., Liu, W. and Esses, S.I., "Physical Characteristics of Polyaxial-Headed Pedicle Screws and Biomechanical Comparison of Load with Their Failure," Spine, Vol.28, pp.470-473(2003).
    [79] Hansson, S. and Werke, M., "The Implant Thread as a Retention Element in Cortical Bone: The effect of Thread Size and Thread Profile: A Finite Element Study," J Biomech, Vol.36, pp.1247-1258(2003).
    [80] Stanford, R.E., Loefler, A.H., Stanford, P.M. and Walsh, W.R., "Multiaxial Pedicle Screw Designs: Static and Dynamic Mechanical Testing," Spine, Vol.29, pp.367-375(2004).
    [81] Barber, J.W., Boden, S.D., Ganey, T. and Hutton, W.C., "Biomechanical Study of Lumbar Pedicle Screws: Does Convergence Affect Axial Pullout Strength?," J Spinal Disord, Vol.11, pp.215-220(1998).
    [82] Gausepohl, T., Mohring, R., Penning, D. and Koebke, J., "Fine Thread Versus Coarse Thread: A Comparison of the Maximum Holding Power," Injury, Vol.32, pp.SD1-SD7(2001).
    [83] Lill, C.A., Schlegel, U., Wahl, D. and Schneider, E., "Comparison of the in Vitro Holding Strengths of Conical and Cylindrical Pedicle Screws in a Fully Inserted Setting and Backed Out 180 Degrees," J Spinal Disord, Vol.13, pp.259-266(2000).
    [84] Oberg, E., Jones, F.D., Horton, H.L. and Ryffel, H.H., "Fasteners in Machinery's Handbook," 25th ed Industrial Press, New York, (1996).
    [85] Keyak, J.H. and Skinner, H.B., "Three-Dimensional Finite Element Modeling of Bone: Effects of Element Size," J Biomed Eng, Vol.14, pp.483-489(1992).
    [86] Fowlkes, W.Y. and Creveling, C.M., "Engineering Methods for Robust Production Design Using Taguchi Method in Technology and Product Development," Addison Wesley, Reading, (1995).
    [87] Dar, F.H., Meakin, J.R. and Aspden, R.M., "Statistical Methods in Finite Element Analysis," J Biomech, Vol.35, pp.1155-1161(2002).
    [88] Westmoreland, G.L., McLaurin, T.M. and Hutton, W.C., "Screw Pullout Strength: A Biomechanical Comparison of Large-Fragment and Small-Fragment Fixation in the Tibial Plateau," J Orthop Trauma, Vol.16, pp.178-181(2002).
    [89] Hou, S.M., Wang, J.L. and Lin, J., "Mechanical Strength, Fatigue Life, and Failure Analysis of Two Prototypes and Five Conventional Tibial Locking Screws," J Orthop Trauma, Vol.16, pp.701-708(2002).
    [90] Marks, L.W. and Gardner, T.N., "The Use of Strain Energy as a Convergence Criterion in the Finite Element Modeling of Bone and the Effect of Model Geometry on Stress Convergence," J Biomed Eng, Vol.15, pp.474-476(1993).
    [91] Kasman, R.A. and Chao, E.Y.S., "Fatigue Performance of External Fixator Pins," J Orthop Res, Vol.2, pp.377-384(1984).
    [92] Davim, J.P., "Design of Optimisation of Cutting Parameters for Turning Metal Matrix Composites Based on the Orthogonal Arrays," J Mater Process Technol, Vol.132, pp.340-344(2003).
    [93] Tsao, C.C. and Hocheng, H., "Taguchi Analysis of Delamination Associated with Various Drill Bits in Drilling of Composite Material," Int J Mach Tool Manu, Vol.44, pp.1085-1090(2004).
    [94] Mitchell, M., "An introduction to Genetic Algorithms," A Bradford Book: Cambridge 1996).
    [95] Goldberg, D.E., "Genetic Algorithms in Search, Optimization, and Machine Learning," Addison Wesley, Reading, 1989).
    [96] Michalewicz, Z., "Genetic Algorithms + Data Structures = Evolution Programs," Springer, Berlin, (1992).
    [97] Taga, I., Funakubo, A. and Fukui, Y., "Design and Development of an Artificial Implantable Lung Using Multiobjective Genetic Algorithm: Evaluation of Gas Exchange Performance," ASAIO J, Vol.51, No.1, pp.92-102(2005).
    [98] Davim, J.P., "An Experimental Study of the Tribological Behaviour of the Brass/Steel Pair," J Mater Process Technol, Vol.100, pp.273-277(2000).
    [99] Niculescu, S.P., "Artificial Neural Networks and Genetic Algorithms in QSAR," J Mol Struct (THEOCHEM), Vol.622, pp.71-83(2003).
    [100] Su, F.C. and Wu, W.L., "Design and Testing of a Genetic Algorithm Neural Network in the Assessment of Gait Patterns," Med Eng Phys, Vol.22, pp.67-74(2000).
    [101] Lin, Y.C., Yan, B.H. and Huang, F.Y., "Surface Improvement Using a Combination of Electrical Discharge Machining with Ball Burnish Machining Based on the Taguchi Method," Int J Adv Manuf Technol, Vol.18, pp.673-682(2001).
    [102] Allen, R.F., Baldini, N.C., Donofrio, P.E., Gutman, E.L., Keefe, E. and Kramer, J.G., "Standard Test Method for Determining Axial Pull-Out Strength of Medical Bone Screws (F1691-96). Annual Book of ASTM Standards, Medical Devices and Services," West Conshohocken, The American Society for Testing and Materials, (1998).
    [103] Allen, R.F., Baldini, N.C., Donofrio, P.E., Gutman, E.L., Keefe, E. and Kramer, J.G., "Standard Specification and Test Method for Metallic Bone Plates (F382-99). Annual Book of ASTM Standards, Medical Devices and Services," West Conshohocken, The American Society for Testing and Materials, (1999).
    [104] Sanderson, P.L., Fraser, R.D., Hall, D.J., Cain, C.M.J., Osti, O.L. and Potter, G.R., "Short Segment Fixation of Thoracolumbar Burst Fractures without Fusion," Euro Spine J, Vol.8, pp.495-500(1999).
    [105] Gaines, R.W., "The Use of Pedicle-Screw Internal Fixation for the Operative Treatment of Spinal Disorders," J Bone Joint Surg(Am), Vol.82, pp.1458-1476(2000).
    [106] Parker, J.W., Lane, J.R., Karaikovic, E.E. and Gaines, R.W., "Successful Short-Segment Instrumentation and Fusion for Thoracolumbar Spine Fractures: A Consecutive 4.5-Year Series," Spine, Vol.25, pp.1157-1169(2000).
    [107] Vaccaro, A.R., Kim, D.H., Brodke, D.S., Harris, M., Chapman, J., Schildhauer, T., Routt, M.L.C. and Sasso, R.C., "Diagnosis and Management of Thoracolumbar Spine Fractures," J Bone Joint Surg (Am), Vol.85, pp.2456-2470(2003).
    [108] Chen, H.H., Wang, W.K., Li, K.C. and Chen, T.H., "Biomechanical Effects of the Body Augmenter for Reconstruction of the Vertebral Body," Spine, Vol.29, pp.E384-E387(2004).
    [109] Kaya, R.A. and Aydin, Y., "Modified Transpedicular Approach for the Surgical Treatment of Severe Thoracolumbar or Lumbar Burst Fractures," The Spine J, Vol.4, pp.208-217(2004).
    [110] Cho, D.Y., Lee, W.Y. and Sheu, P.C., "Treatment of Thoracolumbar Burst Fractures with Polymethyl Methacrylate Vertebroplasty and Short-Segment Pedicle Screw Fixation," Neurosurg, Vol.53, pp.1354-1361(2003).
    [111] Alanay, A., Acaroglu, E., Yazici, M., Oznur, A. and Surat, A., "Short-Segment Pedicle Instrumentation of Thoracolumbar Burst Fractures. Does Transpedicular Intracorporeal Grafting Prevent Early Failure?," Spine, Vol.26, pp.213-217(2001).
    [112] Renner, S.M., Lim, T.H., Kim, W.J., Katolik, L., An, H.S. and Andersson, G.B.J., "Augmentation of Pedicle Screw Fixation Strength Using an Injectable Calcium Phosphate Cement as a Function of Injection Timing and Method," Spine, Vol.29, pp.E212-E216(2004).
    [113] Acosta, F.L., Aryan, H.E., Taylor, W.R. and Ames, C.P., "Kyphoplasty-Augmented Short-Segment Pedicle Screw Fixation of Traumatic Lumbar Burst Fractures: Initial Clinical Experience and Literature Review," Neurosurg Focus, Vol.18, pp.1-6(2005).

    QR CODE