簡易檢索 / 詳目顯示

研究生: 張靖威
Jing-Wei Jang
論文名稱: 多層陶瓷電容安置於印刷電路板的施力位移與極限應變
Displacement and Ultimate Strain of Multilayer Ceramic Capacitors Placed on a Printed Circuit Board Subjected to Bending
指導教授: 趙振綱
Ching-Kong Chao
黃育熙
Yu-Hsi Huang
口試委員: 趙振綱
Ching-Kong Chao
黃育熙
Yu-Hsi Huang
徐慶琪
Ching-Chi Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 147
中文關鍵詞: 多層陶瓷電容印刷電路板玻璃纖維板三點彎曲試驗拉伸試驗應變分析動態電容值靜態電容值有限元素法
外文關鍵詞: Multilayer ceramic capacitor, Printed circuit board, Glass fiber reinforced plastics, Three point flexural test, Tensile test, Strain analysis, Dynamic capacitance, Static capacitance, Finite element method
相關次數: 點閱:293下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究與科技公司合作,根據科技公司的損壞之測試需求,探討印刷電路板經由三點彎曲試驗(Three-Point Flexural Test)下壓受力後的位移及應變後,對於安裝於印刷電路板上之多層陶瓷電容(Multilayer Ceramic Capacitor, MLCC)的影響,將於三點彎曲試驗中對多層陶瓷電容量測其靜態電容值、動態電容值及動態阻抗值,判斷其是否失效;另外也對多層陶瓷電容進行金相觀察,透過金相顯微鏡,觀察多層陶瓷電容外部及內部的結構是否破裂。
    本研究會先針對玻璃纖維板進行拉伸試驗及三點彎曲試驗,將得到玻纖板的材料常數輸入有限元素模擬,並與後續實驗進行討論。在三點彎曲試驗後,可得到多層陶瓷電容失效時的極限位移與其對應的極限應變值,可供日後設計電路板及安裝多層陶瓷電容時參考。另外,透過對測試板進行鑲埋及研磨處理,可由金相顯微鏡觀察多層陶瓷電容內部裂紋失效的情形,其中電容大小和金屬內電極層是影響多層陶瓷電容的重要因素。


    This study is an industry-academia cooperation with technology company. According to the testing requirements, this study investigates the influence of the displacement and strain on the Multilayer Ceramic Capacitor (MLCC) mounted on the printed circuit board after being subjected to three-point flexural test. In the three-point flexural test, the static capacitance value, dynamic capacitance value and dynamic impedance value of the multilayer ceramic capacitor will be measured to determine whether it is invalid. In addition, the metallographic observation of the multilayer ceramic capacitor will be carried out and the multilayer ceramic capacitor will be observed if the structure outside and inside the capacitor is broken through a metallographic microscope.
    In this study, the tensile test and three-point flexural test of the glass fiber reinforced plastics will be carried out first, and the material constant will be input into the finite element simulation and discussed with subsequent experiments. After the three-point bending test, the displacement and ultimate strain of multilayer ceramic capacitors at failure can be obtained. The results can be used as a reference when designing circuit boards and multilayer ceramic capacitors in the future. In addition, by embedding and grinding the test plate, the failure of the internal cracks of the multilayer ceramic capacitor can be observed by a metallographic microscope. The size of the capacitor and the metal inner electrode layer are important factors affecting the multilayer ceramic capacitor.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XIII 符號索引 XV 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 目標印刷電路板及多層陶瓷電容簡介 6 1.4 內容介紹 10 第二章 實驗基本理論與實驗儀器介紹 12 2.1 拉伸試驗基本理論 12 2.2 三點彎曲試驗基本理論 13 2.3 楊氏係數計算 16 2.4 千分錶 17 2.5 應變規與動態應變計 18 2.6 數位影像相關法 21 2.7 阻抗分析儀 25 第三章 玻璃纖維板實驗 26 3.1 玻璃纖維板拉伸試驗 26 3.1.1 ASTM D3039 規範及試片尺寸 26 3.1.2 實驗流程 27 3.1.3 結果與討論 27 3.2 玻璃纖維板三點彎曲試驗 37 3.2.1 ASTM D790 規範及試片尺寸 37 3.2.2 實驗流程 37 3.2.3 結果與討論 38 3.3 討論 46 第四章 數值計算分析 48 4.1 分析目的與模型建立 48 4.2 邊界條件設定 48 4.3 網格收斂性分析 49 4.4 模擬結果 49 第五章 多層陶瓷電容安置於印刷電路板三點彎曲試驗 54 5.1 小變形量三點彎曲試驗 54 5.1.1 治具設計與改良 54 5.1.2 實驗方法與實驗步驟 55 5.1.3 實驗結果與討論 56 5.2 大變形量三點彎曲試驗 82 5.2.1 治具設計與改良 82 5.2.2 實驗方法與實驗步驟 82 5.2.3 實驗結果與討論 83 5.3 討論 116 第六章 多層陶瓷電容三點彎曲試驗後金相觀察 118 6.1 實驗方法與實驗步驟 118 6.2 實驗結果與討論 123 第七章 結論與未來展望 131 7.1 結論 131 7.2 未來展望 132 參考文獻 133 附錄 136

    [1] C, Frank, “Past, Present & Future,” Circuit World, vol. 31, no. 2, 2005.
    [2] D, Charles, “Electrical apparatus and method of manufacturing the same,” U.S. Patent. 1563731A, 1925.
    [3] Abdelkhak, M., Salama, S., & Eltawil, A. B., “Improving efficiency of TV PCB assembly line using a discrete event simulation approach: a case study,” In: Proceedings of the 10th International Conference on Computer Modeling and Simulation, p. 211-215, 2018.
    [4] Pole‐Baker, M.E., "Printed Circuits—Origins and Development: Part 1," Circuit World, vol. 10, no. 2, pp. 9-12, 1984.
    [5] I. M. Ross, “The invention of the transistor,” in Proceedings of the IEEE, vol. 86, no. 1, pp. 7-28, 1998.
    [6] H. R. More, A. W. Malang, “The Silicon Controlled Rectifier Dimmer,” in Journal of the SMPTE, vol. 68, no. 10, pp. 678-683, 1959.
    [7] C. B. Aiken, “Theory of the Diode Voltmeter,” in Proceedings of the Institute of Radio Engineers, vol. 26, no. 7, pp. 859-876, 1938.
    [8] Burdett, K., Shi, S., & Wright, R., “Pricing and matching with frictions,” Journal of Political Economy vol. 109, no. 5, pp. 1060-1085, 2001.
    [9] Kishi, H., Mizuno, Y., & Chazono, H., “Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives,” Japanese journal of applied physics, vol. 42, no. 1R: pp. 1-15, 2003.
    [10] Post, H. A., et al., “Failure mechanisms and qualification testing of passive components,” Microelectronics Reliability, vol. 45, issue 9-11, pp. 1626-1632, 2005.
    [11] Yang, S. J., et al., ”Reliability estimation and failure analysis of multilayer ceramic chip capacitors,” International Journal of Modern Physics B, vol. 17, no. 08n09, pp. 1318-1323, 2003.
    [12] Y. C. Chan and F. Yeung, “Failure analysis mechanisms of miniaturized multilayer ceramic capacitors under normal service conditions,” Proceedings of IEEE 43rd Electronic Components and Technology Conference (ECTC '93), pp. 1152-1155, 1993.
    [13] Freiman, S. W., & Pohanka, R. C., “Review of mechanically related failures of ceramic capacitors and capacitor materials,” Journal of the american ceramic society, vol. 72, no. 12, pp. 2258-2263, 1989.
    [14] Rawal, S., Ladew, R., & Garcia, R., “Factors responsible for thermal shock behavior of chip capacitors,” Proc. of the 37th Electronic Components Conference, 1987.
    [15] Chan, Y.C., Yeung, F. & Mok, T.S., “Failure analysis of miniaturized multilayer ceramic capacitors in surface mount printed circuit board assemblies,” J Mater Sci: Mater Electron, vol. 5, no. 1, pp. 25–29, 1994.
    [16] Watkins, J. R., “Evaluating the Susceptibility of Electronic Components Assembled with Leaded Solder to Flexural Failures, with High Rate Considerations,” Department of Mechanical Engineering, Theses and Dissertations at University of Maryland Libraries, 2008.
    [17] Chen, KY., Huang, CW., Wu, M. et al., “Advanced characterization of mechanical properties of multilayer ceramic capacitors,” J Mater Sci: Mater Electron, vol. 25, no. 2, pp. 627–634, 2014.
    [18] V. Serea and S. Wiese, “A Finite Element Modelling Approach of Test Setups for Multilayer Ceramic Capacitors,” 2019 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC), pp. 1-4, 2019.
    [19] J. A. Ahmar and S. Wiese, “A crack propagation analysis of multilayer ceramic capacitors,” 2015 European Microelectronics Packaging Conference (EMPC), pp. 1-4, 2015.
    [20] Chen, K. Y., et al. "Control of stress concentration in surface‐mounted multilayer ceramic capacitor subjected to bending,” Journal of the American Ceramic Society, vol. 97, no. 4, pp. 1170-1176, 2014.
    [21] Huang, C. W., et al. “Finite element analysis and design of thermal–mechanical stresses in multilayer ceramic capacitors,” International Journal of Applied Ceramic Technology, vol. 12, no. 2, pp. 451-460, 2015.
    [22] 童士恒,翁孟嘉,施明祥,數位影像相關係數法於擋土牆監測之應用,大地技師,第8期,68-77頁,2014年。
    [23] 林憲陽,壓電陶瓷複合層板動態特性之數值分析與實驗量測,國立臺灣大學機械工程學研究所博士論文,2002年。
    [24] 李霽儒,提升數位影像相關法效能並應用於跨尺度動態問題量測與機械手臂之系統整合,國立臺灣大學機械工程學研究所博士論文,2021年。
    [25] ASTM D3039, “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials,” American Society for Testing and Materials International, 2002.
    [26] ASTM D790, “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” American Society for Testing and Materials International, 2010.

    無法下載圖示 全文公開日期 2024/07/22 (校內網路)
    全文公開日期 2024/07/22 (校外網路)
    全文公開日期 2024/07/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE