簡易檢索 / 詳目顯示

研究生: 楊智筌
Zhi-QuanYang
論文名稱: 利用有限元素法探討地下結構腐蝕之受震行為
Use of finite element method to discuss the seismic behavior of underground structure corrosion
指導教授: 李安叡
An-Jui Li
口試委員: 歐章煜
Chang-Yu Ou
邱建國
Chien-Kuo Chiu
葛宇甯
Yu-Ning Ge
李安叡
An-Jui Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 171
中文關鍵詞: 地下結構有限元素法鋼筋混凝土地震腐蝕
外文關鍵詞: Underground structure, Finite element method, Reinforced concrete, Earthquake, Corrosion
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 連續壁在施工期間難以精確控制混凝土澆置品質,因此可能導致壁體表面有裂縫產生,使得連續壁內部鋼筋受地下水影響而發生腐蝕。而連續壁主要是用於抵抗側向土壓力的重要結構,假如連續壁內部鋼筋發生腐蝕的話,整體地下結構的安全性會受到嚴重的影響。特別是在地震發生時,壁體周圍土壤對連續壁所造成的土壓力會比靜態時還要大,而連續壁所需承受的彎矩也會提高。但若壁體的鋼筋發生腐蝕的話會,則會導致壁體承受彎矩的能力降低,因此整體地下結構的耐震性能亦會受到影響。

    過去在臺灣常常有地震破壞老舊結構物的案例,而老舊結構受損主要原因為早期耐震設計尚未成熟或是建築物已超過安全使用年限。因此近年來有許多建築物進行結構補強的案例,但補強範圍會影響所需的花費。因此本研究將以數值方法模擬鋼筋腐蝕之地下結構物,並觀察地震發生時連續壁較危險的位置為何處,往後要進行結構補強時即可先從此處進行評估與補強,進而達到補強效果。


    During the construction of the diaphragm wall, it is difficult to accurately control the quality of concrete placement, which may lead to cracks on the wall surface and corrosion of the internal reinforcement of the diaphragm wall due to the influence of groundwater. The diaphragm wall is mainly used to resist lateral earth pressure. If the reinforcement inside the diaphragm wall is corroded, the safety of the whole underground structure will be seriously affected. Especially in the case of earthquakes, the earth pressure on the diaphragm wall caused by the soil around the wall will be greater than that in the static state, and the bending moment of the continuous wall will also be increased. However, if the reinforcement of the wall is corroded, the ability of the wall to bear the bending moment will be reduced, so the seismic performance of the whole underground structure will also be affected.
    In the past, there are often cases of old structures damaged by earthquakes in Taiwan. The main reason for the damage of old structures is that the early seismic design is not mature, or the buildings have exceeded the safe service life. In recent years, there are many cases of structural reinforcement of buildings, but the scope of reinforcement will affect the cost. Therefore, this study will use a numerical method to investigate the underground structures corroded and observe the dangerous location of the diaphragm wall when the earthquake occurs. In the future, when structural reinforcement has to be carried out, it can be considered as the starting point.

    第1章 前言 第2章 文獻回顧 第3章 數值模型設置 第4章 地下腐蝕結構之動態分析 第5章 結論與建議

    1.廖瑞堂、歐章煜(1997),「台北國家企業中心深開挖工程行為之研究」,大地工程研究報告
    2.日本建築學會(AIJ),(1997),「鉄筋コンクリート造建築物の耐久性調査・診断および補修指針(案)・同解説」,丸善株式會社。
    3.金螢来,野口貴文,長井宏憲(2008),「腐食形態を考慮した腐食鉄筋の力学的性能の評価に関する研究」,日本建築学会構造系論文集,73(624),第181-188頁。
    4.詹絢存(2012),「已數值方法分析深開挖有限土體對土壓力之影響」,國立台灣科技大學營建工程系碩士學位論文。
    5.曾迪揚(2012),「有效應力不排水深開挖分析之勁度參數探討」,國立台灣科技大學營建工程系碩士學位論文。
    6.邱建國、林宜鋒(2014),「劣化鋼筋混凝土建築物生命週期地震風險評估研究」,臺灣建築學會,建築學報,第87期,第67~81頁。
    7.郭家豪(2018),「深開挖有限土體影響因子分析與應用」,國立台灣科技大學營建工程系碩士學位論文。
    8.邱建國、陳君弢、林昭妤、姚廷穎(2019),「鋼筋混凝土建築結構耐久性能診斷技術手冊研擬」,內政部建築研究所委。
    9.Atkinson and Sallfors G. (1991), “Experimental determination of stress-strain-time characteristics in laboratory and in-situ test”, Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering, Florence, pp.915-956.
    10.American Concrete Institute (ACI). “Building code requirements for structural concrete (ACI 318-14) and Commentary (ACI 318R-14) ”. Detroit; 2014.
    11.Azzam, W.R. (2014) “Seismic Response of Bucket Foundation and Structure Under Earthquake Loading”. Electronic Journal of Geotechnical Engineering Vol. 19, pp.1477-1489.
    12.Brinkgreve, R.B.J. Kappert, M.H. and Bonnier, P.G. (2007), “Hysteretic damping in a small-strain stiffness model” Numerical Models in Geomechanics – NUMOG X – Pande & Pietruszczak (eds)
    13.Clough, G.W. and O’Rourke, T.D. (1990), “Construction-Induced Movements of In-situ walls”, Geotech. Spec. Publ. No.25-Design and Performance of Earth Retaining Structure, American Society Civil Engineers, New York, pp.439-470.
    14.Castaldo P. and De luliis M. (2014), “Effects of deep excavation on seismic vulnerability of existing reinforced concrete framed structures”, Soil Dynamics and Earthquake Engineering 64, pp.102–112.
    15.Do, T.N., Ou, C.Y. and Chen, R.P. (2016), “A study of failure mechanisms of deep excavations in soft clay using the finite element method”, Computers and Geotechnics 73, pp.153-163.
    16.Hardin, B.O. and Drnevich, V.P. (1972a), “Shear modulus and damping in soils: Measurement and parameter effects”, Journal of Soil Mechanics and Foundations, Division, ASCE,98(6): pp.603-624.
    17.Hardin, B.O. and Drnevich, V.P. (1972b), “Shear modulus and damping in soils: Measurement and parameter effects”, Journal of Soil Mechanics and Foundations, Division, ASCE,98(7): pp.667-692.
    18.Hardin, B.O., Black, W.L. (1969). “Closure to vibration modulus of normally consolidated clays”. Proc. ASCE: Journal of the Soil Mechanics and Foundations Division, 95(SM6), pp.1531–1537.
    19.Janbu, J. (1963), “Soil Compressibility as Determined by Oedometer and Triaxial Test”, Proc. ECSMFE Wiesbaden, Vol. 1, pp.19-25.
    20.Kondner, R.L. (1963). “A hyperbolic stress strain formulation for sands”. 2. Pan. Am. ICOSFE Brazil, 1, pp.289–324.
    21.Lim Aswin, and Ou C.Y. (2017). “Stress paths in deep excavations under undrained conditions and its influence on deformation analysis”. Tunnelling and Underground Space Technology, 63, pp.118-132.
    22.Lim Aswin, Ou C.Y. and Hsieh, P.G. (2010), “Evaluation of Clay Constitutive Models For Analysis of Deep Excavation Under Undrained Conditions”, Journal of Geotechnical Engineering, Vol. 5, No. 1, pp.9-20.
    23.Ou, C.Y. and Hsieh, P.G. (2011), “A simplified method for predicting ground settlement profiles induced by excavation in soft clay”, Computers and Geotechnics 38, pp.987-997.
    24.Ou, C.Y. and Hsieh, P.G. (1998), “Shape of ground surface settlement profiles caused by excavation”, Canadian Geotechnical Journal, Vol. 35, No. 5, pp.1004-1017.
    25.Ou, C.Y. and Hsieh, P.G. and Chiou, D.C. (1993), “Characteristics of Ground Surface Settlement durung Excavation”, Canadian Geotechnical Journal, Vol. 36, pp.210-223.
    26.PLAXIS(2019), “2D 2019-Material Models Manual”.
    27.PLAXIS(2019), “2D 2019-Tutorial Manual”.
    28.PLAXIS(2019), “2D 2019-Reference Manual”.
    29.Santos, J.A., Correia, A.G. (2001). “Reference threshold shear strain of soil. Its application to obtain a unique strain-dependent shear modulus curve for soil”. In Proceedings 15th International Conference on Soil Mechanics and Geotechnical Engineering. Istanbul, Turkey, volume 1, pp.267–270.
    30.Serdar Koltuk, and Fernandez-Steeger, Tomas M. (2014) “Evaluation of seismic stability of coherent landslides: Analytical approach versus FEM”. Active Tectonics and Archeoseismology (PATA), pp.21-27
    31.Vucetic, M., Dobry, R. (1991). “Effect of soil plasticity on cyclic response”. Journal of Geotechnical Engineering, ASCE 117 (1), pp.89-107.
    32.Von Soos, P. (1980), “Properties of Soil and Rock (in German)”, In: Grund bautaschenbuch Part4, Edition 4, Ernst & Sohn, Berlin.
    33.Val, D. V., & Stewart, M. G. (2003). “Life-cycle cost analysis of reinforced concrete structures in marine environments”. Structure Safety, 25(4), pp.343-362.
    34.William, F.C. Mohamed, E.G. and Steven, M.G.(2009), “Seismic Assessment of WSDOT Bridges with Prestressed Hollow Core Piles”

    無法下載圖示 全文公開日期 2025/07/29 (校內網路)
    全文公開日期 2025/07/29 (校外網路)
    全文公開日期 2025/07/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE