簡易檢索 / 詳目顯示

研究生: 盧祺龍
CHI-LUNG LU
論文名稱: 瀝青膠泥微觀表面形貌與疲勞性能研究
Microscopic Surface Morphology and Fatigue Performance of Asphalt Binders
指導教授: 廖敏志
Min-Chih Liao
口試委員: 陳建旭
盧之偉
蘇育民
林彥宇
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 104
中文關鍵詞: 原子力顯微鏡線性振幅掃描試驗多重應力潛變恢復試驗開裂試驗溫拌瀝青橡膠瀝青
外文關鍵詞: Fatigue Performance, Linear Amplitude Sweep, Micro-structure and morphology, Multiple Stress Creep Recovery
相關次數: 點閱:264下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 瀝青混凝土之老化與疲勞破壞為其失去使用性能的主因,瀝青老化為瀝青經歷溫度、濕度與車輛載重行駛等因素所造成之損耗,使其內部產生化學變化;瀝青之疲勞破壞為鋪面承受反覆交通荷重所引起的疲勞性破壞,疲勞裂縫在鋪面上最嚴重會以鱷魚皮狀開裂的形式呈現。本研究透過原子力顯微鏡觀測瀝青老化前後微觀表面形貌,以找出老化前後對微觀結構行為變化。原子力顯微鏡試驗結果可透過蜂相(Bee Phase)之大小以及個數可觀察到瀝青老化之樣態,隨著瀝青經長期老化後,基底瀝青之蜂相分解成數量眾多且細小狀,改質瀝青則無明顯變化,顯示改質瀝青在相同老化條件下擁有較好之瀝青性質。瀝青膠泥對瀝青混凝土之疲勞與車轍行為影響深遠,分別透過線性振幅掃描試驗與多重應力潛變恢復試驗探究瀝青在老化前後之抗疲勞與抗車轍性能,並將兩者作相關性分析。線性振幅掃描試驗中,基底瀝青之針入度越大,疲勞性能越佳,經老化後則耐疲勞能力下降;溫拌瀝青在新鮮狀態下與基底瀝青擁有相似之抗疲勞能力,老化後耐疲勞能力下降;橡膠瀝青隨著橡膠膠粉添加量提高,橡膠瀝青疲勞性能有顯著提升;改質Ⅲ型瀝青疲勞性能在老化前後皆擁有最佳之抗疲勞能力。多重應力潛變恢復試驗結果顯示,隨著基底瀝青之針入度越大,其不可恢復濳變柔量越大,恢復率則近似於無,表示瀝青抵抗變形能力較差;橡膠瀝青中橡膠膠粉添加量越多,能夠提升瀝青恢復性能,在老化前後皆能使不可恢復濳變柔量降低、恢復率提升;改質Ⅲ型瀝青在未老化以及長期老化後皆位於可恢復區域,顯現其有足夠彈性,能維持瀝青良好之恢復性能。比較瀝青膠泥疲勞與車轍行為關係,當恢復率較低時,有較高之疲勞性能,反之當恢復率提升而車轍性能下降,則會使疲勞性能提升。
    本研究亦進行瀝青混合料開裂試驗驗證膠泥的疲勞性質,以密級配瀝青混凝土設計,基底瀝青混凝土隨針入度越大,CTIndex越佳,抗開裂能力越好,溫拌瀝青之CTIndex則較基底瀝青無明顯提升,改質Ⅲ型瀝青混凝土之CTIndex則較其他基底瀝青為佳。橡膠瀝青混凝土採用越級配設計,其雖擁有極高CTIndex,但間接張力極值較低。瀝青膠泥與瀝青混凝土間之疲勞性能藉由線性振幅掃描試驗以及開裂試驗比較可得出兩者間擁有高度正相關性,在密級配設計下,改質Ⅲ型瀝青混凝土老化前後仍擁有最佳之Nf及CTIndex,顯示其疲勞性能表現最為優異。


    Fatigue damage is the main factor for downgrading the performance of asphalt concrete. The aging of bitumen is one of the main factors which affect the fatigue performance of asphalt pavement. This thesis aimed to investigate microscopic surface morphology, fatigue performance, and rutting performance of binders. In this study, to investigate the changes in the microstructural behavior of aged and unaged asphalt binders, the microscopic surface morphology was observed by Atomic Force Microscope (AFM) and evaluated based on the size and number of bee phases. The fatigue and rutting properties of aged and unaged binders were explored through the linear amplitude sweep test and multiple stress creep recovery tests respectively. Different types of penetration graded bitumen, polymer modified bitumen (MIII), rubber modified bitumen, and warm-mix asphalt binders were investigated in this study.
    The microscopic surface morphology investigated by AFM revealed that, under the same aging condition, the bee phase of the neat asphalt decomposes into a large number and fine-shapes. However, modified asphalt has not shown significant change in bee phases, indicating that the modified asphalt has a better resistance against aging. The result from the linear amplitude sweep test showed that the greater the penetration of the neat asphalt resulted the better the fatigue performance and all penetration graded bitumen decrease in the fatigue resistance due to aging. The warm-mix asphalt has comparable fatigue resistance to the neat asphalt in the fresh state but has lower fatigue resistance after aging. In crumb rubber-modified bitumen, as the content of rubber powder increases, a significant improvement in the fatigue performance has resulted. Moreover, the fatigue performance of MIII asphalt has the best fatigue resistance before and after aging. The results of the multiple stress creep recovery test show that, as the penetration of the neat asphalt increases, the non-recoverable creep compliance increases and has not recovery rate, this indicating that the soft grade asphalt has poor resistance to permanent deformation. In both aged and unaged conditions, the modified III asphalt showed a higher recovery rate and lower non-recoverable creep compliance compared to other asphalt binder types, this means elastic enough to maintain the good recovery for better resistance of performance deformation. Comparing the relationship between asphalt fatigue and rutting behavior, when the recovery rate is low, there is a higher fatigue performance. Conversely, when the recovery rate increases and the rutting performance decreases, the fatigue performance will increase.
    This study also conducted asphalt mixture cracking tests to verify the fatigue properties of the asphalt binders. For penetration graded asphalt, warm-mix asphalt, and MIII asphalt dense-graded asphalt concrete was designed. The result showed that the greater the penetration of the neat asphalt concrete, the better the CTIndex and the better the anti-cracking ability. Warm-mix asphalt has no significant improvement in CTIndex, and the modified III asphalt resulted in a higher CTIndex value other than other neat asphalts. To account a free space for rubber particles in aggregate skeletons, gap graded gradation were used for rubber modified asphalt concrete. The resulted showed a very high CTIndex and with increase in rubber content CTIndex showed a significant increment. The correlation between fatigue performance of asphalt binder and asphalt concrete is established through the linear amplitude sweep test and cracking test. It can be concluded that there is a high positive correlation between the two. Generally, the modified III asphalt showed the best performance before and after aging in terms of fatigue resistance with higher value of Nf and CTIndex.

    摘要 I ABSTRACT III 致謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 1.4 研究範圍 3 第二章 文獻回顧 4 2.1 瀝青疲勞性質 4 2.2 瀝青膠泥微觀結構 6 2.2.1 原子力顯微鏡工作原理 6 2.2.2 原子力顯微鏡瀝青膠泥製備方式 7 2.2.3 瀝青膠泥於原子力顯微鏡之應用 8 2.3 瀝青膠泥疲勞性能試驗 15 2.3.1 G*sinδ指標 15 2.3.2 時間掃描試驗 15 2.3.3 線性振幅掃描試驗發展 16 2.3.4 線性振幅掃描試驗分析 19 2.4 瀝青膠泥車轍性能試驗 22 2.4.1 G*/sinδ指標 22 2.4.2 多重應力濳變恢復試驗(MSCR) 22 2.5 開裂試驗(IDEAL-CT) 25 第三章 研究計畫 29 3.1 試驗範圍 29 3.2 研究流程 30 3.3 試驗材料 31 3.3.1 基底瀝青 31 3.3.2 溫拌瀝青 32 3.3.3 橡膠瀝青 33 3.4 試驗方法及設備 34 3.4.1 針入度試驗 34 3.4.2 軟化點試驗 35 3.4.3 黏滯度試驗 36 3.4.4 原子力顯微鏡試驗 37 3.4.5 線性振幅掃描試驗 39 3.4.6 多重應力潛變恢復試驗 40 3.4.7 開裂試驗 41 第四章 結果與分析 42 4.1 瀝青基本物性分析 42 4.2 原子力顯微鏡(AFM)試驗分析 43 4.2.1 瀝青微觀表面結構與化學型態關係 44 4.2.2 瀝青膠泥經老化後之微觀結構變化 45 4.3 線性振幅掃描(LAS)試驗 52 4.3.1 不同瀝青種類對瀝青疲勞性能之影響 55 4.3.2 不同瀝青種類老化對瀝青疲勞性能之影響 60 4.3.3 瀝青老化前後對瀝青疲勞性能之影響 63 4.4 多重應力潛變恢復(MSCR)試驗 65 4.4.1 不同瀝青種類老化對瀝青車轍性能之影響 65 4.4.2 不同添加量橡膠瀝青老化後對瀝青車轍性能之影響 67 4.5 瀝青膠泥試驗結果比較 69 4.5.1 線性振幅掃描試驗對瀝青物性相關性分析 69 4.5.2 各式瀝青之疲勞性能與MSCR性能指標關係 71 4.6 開裂試驗 75 4.7 瀝青膠泥與瀝青混凝土相關性比較 80 第五章 結論與建議 82 5.1 結論 82 5.2 建議 84 參考文獻 85

    簡瑞妤 (2020),「橡膠改質對瀝青黏結料與混合料之工程績效影響」,國立臺灣科技大學營建工程系,臺北。
    羅玉珊 (2020),「橡膠改質對瀝青黏結料與混合料之工程績效影響」,國立臺灣科技大學營建工程系,臺北。
    中華民國國家標準 (2020),「鋪面用改質柏油,CNS 14184:2020 K5150」,經濟部標準檢驗局。
    AASHTO TP 101-12 (2018) “ Standard Method of Test for Estimating Fatigue Resistance of Asphalt Binders Using the Linear Amplitude Sweep”, American Association of State Highway and Transportation Officials.
    ASTM D5/D5M-19 (2019). “Standard Test Method for Penetration of Bituminous Materials”, American Society for Testing and Materials.
    ASTM D36/D36M-14 (2014). “Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus)”, American Society for Testing and Materials.
    ASTM D4402/D4402M-15 (2015). “Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer”, American Society for Testing and Materials.
    ASTM D7405-15 (2020). “Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer”, American Society for Testing and Materials.
    ASTM D946/D946M-15 (2020). “Standard Specification for Penetration-Graded Asphalt Binder for Use in Pavement Construction” American Society for Testing and Materials.

    ASTM D8225-19 (2020). “Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature”, American Society for Testing and Materials.
    Ahmed, T. M., Al-Khalid, H., & Ahmed, T. Y. (2019). “Review of techniques, approaches and criteria of hot-mix asphalt fatigue”, Journal of Materials in Civil Engineering, 31(12), 03119004.
    Allen, R. G., Little, D. N., & Bhasin, A. (2012). “Structural characterization of micromechanical properties in asphalt using atomic force microscopy” ,Journal of Materials in Civil Engineering, 24(10), 1317-1327.
    Binnig, G., Quate, C. F., & Gerber, C. (1986). “Atomic force microscope”, Physical review letters, 56(9), 930.
    Butt, H. J., Cappella, B., & Kappl, M. (2005). “Force measurements with the atomic force microscope: Technique, interpretation and applications”, Surface science reports, 59(1-6), 1-152.
    D'Angelo, J. A. (2009). “The relationship of the MSCR test to rutting”, Road Materials and Pavement Design, 10(sup1), 61-80.
    Dong, Z., Liu, Z., Wang, P., & Gong, X. (2017). “Nanostructure characterization of asphalt-aggregate interface through molecular dynamics simulation and atomic force microscopy”, Fuel, 189, 155-163.
    Du, Y., Chen, J., Han, Z., & Liu, W. (2018). “A review on solutions for improving rutting resistance of asphalt pavement and test methods”, Construction and Building Materials, 168, 893-905.
    Hawks, N. F., Teng, T. P., Bellinger, W. Y., Rogers, R. B., Baker, C., Brosseau, K. L., & Humphrey, L. C. (1993). “Distress identification manual for the long-term pavement performance project”, Strategic Highway Research Program, Washington.
    Hintz, C., & Bahia, H. (2013). “Simplification of linear amplitude sweep test and specification parameter”, Transportation research record, 2370(1), 10-16.
    Hintz, C., Velasquez, R., Johnson, C., & Bahia, H. (2011). “Modification and validation of linear amplitude sweep test for binder fatigue specification”, Transportation Research Record, 2207(1), 99-106.
    Jäger, A., Lackner, R., Eisenmenger-Sittner, C., & Blab, R. (2004). “Identification of four material phases in bitumen by atomic force microscopy”, Road Materials and Pavement Design, 5(sup1), 9-24.
    Kim, Y., Lee, H. J., Little, D. N., Kim, Y. R., Gibson, N., King, G., ... & Fee, F. (2006). “A simple testing method to evaluate fatigue fracture and damage performance of asphalt mixtures”, Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions (Vol. 75, pp. 755-788). Association of Asphalt Paving Technologist.
    Kutay, M. E., Gibson, N. H., & Youtcheff, J. (2008). “Conventional and viscoelastic continuum damage (VECD)-based fatigue analysis of polymer modified asphalt pavements (with discussion)”, Journal of the Association of Asphalt Paving Technologists, 77.
    Loeber, L., Sutton, O., Morel, J. V. J. M., Valleton, J. M., & Muller, G. (1996). “New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy” Journal of microscopy, 182(1), 32-39.
    Masad, E., Somadevan, N., Bahia, H. U., & Kose, S. (2001). “Modeling and experimental measurements of strain distribution in asphalt mixes”, Journal of Transportation Engineering, 127(6), 477-485.

    Miller, J. S., & Bellinger, W. Y. (2003). “Distress identification manual for the long-term pavement performance program”, (No. FHWA-RD-03-031). United States. Federal Highway Administration. Office of Infrastructure Research and Development.
    Pauli, A. T., Robertson, R. E., Eggleston, C. M., Branthaver, J. F., & Grimes, W. (2001). “Atomic force microscopy investigation of SHRP asphalts”, PREPRINTS-AMERICAN CHEMICAL SOCIETY DIVISION OF PETROLEUM CHEMISTRY, 46(2), 104-110.
    Peng, W., Zejiao, D., & Yiqiu, T. (2016). “Study on the cause of formation of bituminous bee structure based on molecular simulation”, Proceedings of the Chinese Journal of Highway, 29(3), 9-16.
    Saboo, N., Sukhija, M., & Chaudhary, M. (2020). “Relating asphalt binders response to LAS and LAOS tests at intermediate temperatures”, Mechanics of Time-Dependent Materials, 1-15.
    Sabouri, M., Mirzaiyan, D., & Moniri, A. (2018). “Effectiveness of Linear Amplitude Sweep (LAS) asphalt binder test in predicting asphalt mixtures fatigue performance”, Construction and Building Materials, 171, 281-290.
    Safaei, F., & Castorena, C. (2016). “Temperature effects of linear amplitude sweep testing and analysis. Transportation Research Record ”, 2574(1), 92-100.
    Schapery, R. A. (1984). “Correspondence principles and a generalized J integral for large deformation and fracture analysis of viscoelastic media”, International journal of fracture, 25(3), 195-223.
    Singh, D., Girimath, S., & Ashish, P. K. (2018). “Performance evaluation of polymer-modified binder containing reclaimed asphalt pavement using multiple stress creep recovery and linear amplitude sweep tests”, Journal of Materials in Civil Engineering, 30(3), 04018004.
    Vasconcelos, K. L. (2010). “Moisture diffusion in asphalt binders and fine aggregate mixtures”, (Vol. 71, No. 08).
    Veytskin, Y., Bobko, C., & Castorena, C. (2016). “Nanoindentation and atomic force microscopy investigations of asphalt binder and mastic”, Journal of Materials in Civil Engineering, 28(6), 04016019.
    Wang, Y., & Zhang, H. (2021). “Influence of asphalt microstructure to its high and low temperature performance based on atomic force microscope (AFM)”, Construction and Building Materials, 267, 120998.
    Zhang, H., Wang, Y., Yu, T., & Liu, Z. (2020). “Microstructural characteristics of differently aged asphalt samples based on atomic force microscopy (AFM)”, Construction and Building Materials, 255, 119388.
    Zhang, J., Walubita, L. F., Faruk, A. N., Karki, P., & Simate, G. S. (2015). “Use of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance–A laboratory study”, Construction and Building Materials, 94, 218-227.
    Zhou, F. (2019). “Development of an IDEAL Cracking Test for Asphalt Mix Design", Quality Control and Quality Assurance. NCHRP-IDEA Program Project Final Report, (195).

    無法下載圖示 全文公開日期 2023/08/02 (校內網路)
    全文公開日期 2026/08/02 (校外網路)
    全文公開日期 2031/08/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE