簡易檢索 / 詳目顯示

研究生: 吳建驊
Jian-Hua Wu
論文名稱: 含氟官能基苯並咪唑鋰鹽添加劑用於高溫高電壓鋰離子電池之研究
The Investigation of Fluoro-Functionlized Benzimidazole Li Salt Electrolyte Additive in Lithium Ion Battery
指導教授: 王復民
Fu-Ming Wang
口試委員: 蘇威年
none
林正裕
none
楊長榮
none
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 132
中文關鍵詞: 苯並咪唑電解液添加劑鋰離子電池鈍性膜
外文關鍵詞: benzimidazole, electrolyte, additive, lithium ion battery, SEI
相關次數: 點閱:476下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在鋰離子電池構成材料中,電解液扮演著讓正負極之間的鋰離子互相傳遞的重要角色。目前在電解液中常用的鋰鹽為LiPF6,不過LiPF6在高溫與高電壓環境下,容易產生PF5,使電解液降解形成LiF 和 HF,甚至破壞電極表面,使其安全性不佳,使其在應用上增添不少風險。本研究將苯並咪唑鋰鹽當作電解液添加劑行路易士酸反應,以減少PF5,以期維持電池性能。
本研究探討以苯並咪唑結構為主體在結構上導入氟官能基,開發興新型態含氟鋰鹽做為電解液之添加劑。該並咪唑結構藉由氟官能基的高電負度來幫助鋰鹽解離,開發出高離子傳導與高電壓電解液。並搭配過量鋰正極材料(Li1.2Ni0.2Mn0.6O2),進行循環伏安量測分析、交流阻抗測試、電池充放電與壽命趨勢,發現新型態含氟鋰鹽能提升電池性能。
此外,藉由臨場質譜產氣分析上發現,含氟鋰鹽添加劑用於過量鋰正極時,由於含氟官能基的高電負度能維護電解液進行的電化學反應,使高電壓正極材料在充放電過程中釋出的氧氣量減少,使得電池性能得以維持。


LiPF6 is widely used lithium salt, which plays a critical role in initiating electrochemical reaction in lithium ion batteries. However, LiPF6 is usually at several unreasonable surrounding such high T, high V, and high humidity. At high T, the LiPF6 suffers side reaction and forms PF5, which degrades the solid electrolyte interface (SEI) and leads the formations of LiF and HF. Due to the Lewis acid basic reaction, benzimidazole-based lithium salt (BZ) is used neutralized the PF5, which side reaction in lithium in battery.
In this study, modified BZ salt additives are successfully synthesized, which is designed with the electron-withdrawing groups. In terms of the results, fluoro-modified BZ salt increases the ability of electrolyte within lithium cathode layer material. Related cyclic voltammetry, electrochemical impedance spectroscopy, charge-discharge, and cycle life are investigated.
Our in-situ GC/MS analysis reveals that the fluoro-modified BZ inhibits the gas evolution from Li-rich cathode indication the electron-withdrawing groups is useful for maintain the anodic reaction of electrolyte. These materials are new, first publication for the application of high voltage lithium in battery.

目錄 摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1前言 1 1.2鋰離子電池原理與介紹 4 1.2.1正極 6 1.2.2負極 14 1.2.3隔離膜 16 1.2.4電解液 17 第二章 電解液文獻回顧 21 2.1添加劑 21 2.1.1 SEI形成改良添加劑 22 2.1.2正極保護添加劑 30 2.1.3減少鋰金屬沉積之添加劑 32 2.1.4安全性添加劑 33 2.1.5鋰鹽穩定劑 37 2.2鋰鹽 41 2.2.1 LiBOB 41 2.2.2 Li2B12F12 43 2.3 Benzimidazole vs Imidazole 45 2.4研究動機 49 第三章 實驗方法與儀器設備 51 3.1實驗藥品 51 3.2儀器設備 52 3.3材料合成鑑定分析 54 3.3.1質譜儀(Mass Spectrometry) 54 3.3.2核磁共振儀分析(NMR) 55 3.4電解液性能測試 55 3.4.1離子導電度(Ionic Conductivity) 55 3.4.2微分掃描熱卡分析儀(Differential Scanning Calorimeter) 57 3.5電化學性能測試 59 3.5.1半電池循環伏安法(Cyclic Voltammetry(for half cell)) 60 3.5.2電池測試(Battery Test) 61 3.5.3交流阻抗分析(Electrochemical Impedance Spectroscopy) 62 3.6電極表面分析 65 3.6.1掃描電子顯微鏡(Scanning Electron Microscope) 65 3.6.2能量散佈分析儀(Energy-Dispersive X-ray Spectroscopy) 66 3.7臨場質譜產氣分析(In-situ Mass Spectroscopy Gas Analysis) 67 第四章結果與討論 69 4.1 鋰鹽合成 69 4.1.1 Synthesis of 2-amino-4-fluoroaniline and 2-amino-4,5-difluoroaniline 69 4.1.2 Synthesis of fluorobenzimidazole and difluorobenzimidazole 70 4.1.3 Synthesis of Lithium Benzimidazole 71 4.2 電解液性能測試 75 4.2.1 離子導電度(Ionic Conductivity) 76 4.2.2差示掃描量熱法(Differential Scanning Calorimeter) 79 4.3電化學與電池性能測試 81 4.3.1耐高電壓循環伏安量測分析(Cycle Voltammetry) 81 4.3.2正極半電池耐高壓特性 84 4.3.3正極半電池交流阻抗分析 88 4.4 添加劑對正極材料表面分析 96 4.4.1掃描電子顯微鏡(Scanning Electron Microscope) 96 4.4.2能量散佈分析儀(Energy-Dispersive X-ray Spectroscopy) 98 4.5臨場質譜產氣分析(In-situ Mass Spectroscopy Gas Analysis) 99 4.6正極半電池高溫(60℃)充放電性能測試 102 第五章:結論 105 5.1鋰鹽合成與電解液性能 105 5.2添加劑對電化學與電池影響 105 5.3添加劑對正極材料表面影響 107 5.4產氣分析 107 第六章:未來工作展望 109 參考資料 111

1. M.S. Whittingham, Electrical Energy Storage and Intercalation Chemistry, Science, 192 (1976) 1126.
2. 陳俊佑, 鋰電池陰極材料表面修飾對其電池性能增進機制之探討,碩士, 化學工程系, 國立臺灣科技大學, 台北市, 2006.
3. J. B. Goodenough, K. Mizushima, and T. Takeda, Solid-Solution Oxides for Storage-Battery Electrodes, Japanese Journal of Applied Physics, 19 (1980) 305.
4. 李文雄, 鋰電池 E世代的能源, 科學發展, 362 (2003) 32.
5. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy & Environmental Science, 4 (2011) 3243.
6. Wikipedia. 鋰離子電池. 2014; Available from: http://zh.wikipedia.org/wiki/%E9%94%82%E7%A6%BB%E5%AD%90%E7%94%B5%E6%B1%A0.
7. 李源弘;雷永泉, 新能源材料.
8. 黃可龍;王兆翔;劉素琴, 鋰離子電池原理與技術. 2010.
9. 全球分析網. 電池的原理和分類. 2012; Available from: http://zx.qqfx.com.cn/news/90148.html.
10. G. C. Kuczynski, Trans. Am. Inst. Min. (Metall.) Eng, 185 (1949) 169.
11. S. Y. Chung, J. T. Bloking, and Y. M. Chiang, Nature Materials, 1 (2002) 123.
12. J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto and M. Arakawa, A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte , J. Power Sources, 74 (1998) 219.
13. C. Delmas, J. J. Braconnier and P. Haginmuller, A new variety of LiCoO2 with an unusual oxygen packing obtained by exchange reaction, Mater. Res. Bull., 17 (1982) 117.
14. J. Molenda, A. Stoklosa and T. Bak, Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties, Solid State Ionics, 36 (1989) 53.
15. S. Passerini, B. Scrosati and A. Gorenstein, The intercalation of lithium in nickel oxide and its electrochemical properties, Journal of The Electrochemical Society, 137 (1990) 3297.
16. J. R. Dahn, U. V. Sacken and C. A. Michal, Structure and electrochemistry of Li(1+x)NiO2 and A new Li2NiO2 phase with the Ni(OH)2 structure, Solid State Ionics, 44 (1990) 87.
17. Y.Shao-Horn, S. A. Hackney, A. R. Armstrong, P. G. Bruce, R. Gitzendanner, C. S. Johnson and M. M. Thackeray, Structural characterization of layered LiMnO2 electrodes by electron diffraction and lattice imaging, Journal of The Electrochemical Society, 146 (1999) 2404.
18. K. Numata, C. Sakaki and S. Yamanaka, Synthesis and characterization of layer structured solid solutions in the system of LiCoO2-Li2MnO3, Solid State Ionics,117 (1999) 257.
19. Z. H. Lu, J. R. Dahn, Understanding the anomalous capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies, Journal of The Electrochemical Society, 149 (2002) A815.
20. Z. H. Lu, L. Y. Beaulieu, R. A. Donaberger, C. L. Thomas, J. R. Dahn, Synthesis, structure and electrochemical behavior of Li[NixLi(1/3-2x/3) -Mn(2/3-x/3)]O2, Journal of The Electrochemical Society, 149 (2002) A778.
21. Z. Lu, D.D. MacNeil and J. Dahn, Layer cathode materials of Li[NixLi(1/3-2x/3) Mn(2/3-x/3)]O2 for lithium-ion batteries, Journal of The Electrochemical Society, 4 (2001) A191.
22. 林佑彥, 由花生殼製備鋰離子電池高電容量負極碳材料. 國立中央大學化學工程與材料工程研究所碩士論文, 2003.
23. Baohua Li, R.G., Kaixi Li, Chunxiang Lu, Licheng Ling, Electrochemical properties of MCMBs as anode for lithium ion battery, Fuel Chemistry Division Preprints, 47 (2002) 187.
24. 台灣塑膠公司塑膠事業部技術處, 鋰離子電池機能性電解液開發及應用.
25. 李治宏;龔丹誠, 材料世界網, 2013.
26. 陳仕玉;王兆翔;趙海雷;陳立泉, 鋰離子電池安全性添加劑. 化工進展, 2009.27.
27 J. Scheers, et al., Benzimidazole and imidazole lithium salts for battery electrolytes, Journal of Power Sources, 195 (2010) 6081.
28. 呂學隆, 鋰電池電解液產業在兩岸的發展現況. 工業材料雜誌, 2011.
29. 鄭錦淑;王復民, 鋰離子電池添加劑之發展. 化工, 58 (2011).
30. J. B. Goodenough and Y. Kim, Challenges for rechargeable batteries, Journal of Power Sources, 196 (2011) 6688.
31. S. S. Zhang, A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 162 (2006) 1379.
32. E. Peled, The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model, Journal of The Electrochemical Society, 126 (1979) 2047.
33. V. A. Agubra, J. W. Fergus., The formation and stability of the solid electrolyte interface on the graphite anode, Journal of Power Sources, 268 (2014) 153.
34. J. C. Burns, R. P. , K. J. Nelson, N. N. Sinha, A. Kassam, B. M. Way, Studies of the Effect of Varying Vinylene Carbonate (VC) Content in Lithium Ion Cells on Cycling Performance and Cell Impedance, Journal of The Electrochemical Society, 160 (2013) A1668.
35. D. Aurbach, K. G., B. Markovsky, Y. Gofer, M. Schmidt, U. Heider, On the use of vinylene carbonate(VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochimica Acta, 47 (2002) 1423.
36. M. C. Smart, B. V. R., K. B. Chin, W. C. West, and S. Surampudi, The 202nd meeting of Electrochemical Society 2002.
37. S. Y. Chung, J. T. Bloking, Y. M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes, Nature materials, 1 (2012) 123.
38. Y. Ein‐Eli, S. R. Thomas, and V. R. Koch, The Role of  SO2 as an Additive to Organic Li‐Ion Battery Electrolytes, Journal of The Electrochemical Society, 144 (1997) 1159.
39. C. Wang, et al., Electrochemical behaviour of a graphite electrode in propylene carbonate and 1,3-benzodioxol-2-one based electrolyte system, Journal of Power Sources, 74 (1998) 142.
40. J. Liu, et al., Lithium difluoro (oxalate) borate as a functional additive for lithium-ion batteries, Electrochemistry Communications, 9 (2007) 475.
41. S. S. Zhang, K. Xu, and T. R. Jow, LiBOB-based gel electrolyte Li-ion battery for high temperature operation, Journal of Power Sources, 54 (2006) 276.
42. S. S. Zhang, K. Xu, and T. R. Jow, Enhanced performance of natural graphite in Li-ion battery by oxalatoborate coating, Journal of Power Sources, 129 (2004) 275.
43. M. Xu, et al., Investigation and application of lithium difluoro (oxalate) borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries, Journal of Power Sources, 196 (2001) 6794.
44. E. Wang, et al., Stability of Lithium Ion Spinel Cells. III. Improved Life of Charged Cells, Journal of The Electrochemical Society, 147 (2000) 4023.
45. M. Y. Saidi, F. Gao, J. Barker, Scordilis-Kelley C, Additive to stabilize electrochemical cell, United States Patent, 5846673 (1998).
46. Z. Chen, et al., LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries, Electrochimica Acta, 51 (2006) 3322.
47. M. Ishikawa, M. Morita, and Y. Matsuda, In situ scanning vibrating electrode technique for lithium metal anodes, Journal of Power Sources, 68 (1997) 501.
48. R. D. Rauh and S.B. Brummer, The effect of additives on lithium cycling in propylene carbonate, Electrochimica Acta, 22 (1997) 75.
49. T. Hirai, I. Yoshimatsu, and J. I. Yamaki, Effect of Additives on Lithium Cycling Efficiency, Journal of The Electrochemical Society,141 (1994) 2300.
50. E. Eweka, J. R. Owen, and A. Ritchie, Electrolytes and additives for high efficiency lithium cycling, Journal of Power Sources, 65 (1997) 247.
51. 張千玉;高晶;劉銳;馬曉華, 鋰離子電池過充保護添加劑的進展, Battery Bimonthly, 39 (2009).
52. L. M. Moshurchak, C. Buhrmester, and J. R. Dahn, Spectroelectrochemical Studies of Redox Shuttle Overcharge Additive for LiFePO4-Based Li-Ion Batteries, Journal of The Electrochemical Society, 152 (2005) A1279.
53. J. R. Dahn, et al., High-Rate Overcharge Protection of LiFePO4-Based Li-Ion Cells Using the Redox Shuttle Additive 2,5-Ditertbutyl-1,4-dimethoxybenzene, Journal of The Electrochemical Society, 152 (2005) A1283.
54. K. Abe, et al., Functional electrolytes: Novel type additives for cathode materials, providing high cycleability performance, Journal of Power Sources, 153 (2006) 328.
55. H. Lee, et al., Co-Use of Cyclohexyl Benzene and Biphenyl for Overcharge Protection of Lithium-Ion Batteries, Electrochemical and Solid-State Letters, 9 (2006) A307.
56. Z. Y. Tang, Y. B. He, Q. S. Zhu, electrochemistry, 12 (2006) 383.
57. H. F. Xiang, et al., Dimethyl methylphosphonate-based nonflammable electrolyte and high safety lithium-ion batteries, Journal of Power Sources, 174 (2007) 335.
58. S. A. Pradanawati, F. M. Wang, and J. Rick, In Situ formation of pentafluorophosphate benzimidazole anion stabilizes high-temperature performance of lithium-ion batteries, Electrochimica Acta, 135 (2014) 388.
59. J. Barthel, A. Schmid, H. J. Gores, A New Class of Electrochemically and Thermally Stable Lithium Salts for Lithium Battery Electrolytes. V. Synthesis and Properties of Lithium Bis[2,3-pyridinediolato(2−)‐O,O′]borate, Journal of The Electrochemical Society, 147 (2000) 21.
60. J. Barthel, R. Buestrich, H. J. Gores, M. Schmidt, M. Wuhr, A New Class of Electrochemically and Thermally Stable Lithium Salts for Lithium Battery Electrolytes IV. Investigations of the Electrochemical Oxidation of Lithium Organoborates, Journal of The Electrochemical Society, 144 (1997) 3836.
61. J. Barthel, R. B., E. Carl, H. J. Gores, Preparation and Electrochemical Characterization of Micron‐Sized Spinel LiMn2O4, Journal of The Electrochemical Society, 143 (1996) 1591.
62. 蒲薇華;何向明;王莉;萬春榮;姜長印, 鋰離子電池LiBOB電解質鹽研究, 化學進展, 18 (2016).
63. K. Hayamizu, A. Matsuo, and J. Arai, A Divalent Lithium Salt Li2B12F12 Dissolved in Propylene Carbonate Studied by NMR Methods, Journal of The Electrochemical Society, 156 (2009) A744.
64. S. V. lvanov, W. J. C., Jr and W. H. Bailey, Process for the fluorination of boron hydrides, United States Patent, 6781005 (2004).
65. Arai, J., et al., A novel high temperature stable lithium salt (Li2B12F12) for lithium ion batteries, Journal of Power Sources, 193 (2009) 851.
66. T. Trzeciak, L. Niedzicki, G. Groszek, P. Wieczorek, M. Marcinek, W. Wieczorek, New trivalent imidazole-derived salt for lithium-ion cell electrolyte, Journal of Power Sources, 252 (2014) 229.
67. 陳盈助, 電解液配方對鋰離子電池性能之研究, 國立成功大學化學工程研究所碩士論文, (2002).
68. Q. C. Zhuang, X.-Y.Q., S. D. Xu,Y. H. Qiang and S. G. Sun, Diagnosis of Electrochemical Impedance Spectroscopy in Lithium-Ion Batteries.
69. K. Shibuya, T. O., T. Matsuda, T. Miura, 2,4-Bis(trifluoroethoxy)pyridine compound and drug containing the compound, Patent US7223764 (2007).
70. H. Y. Wu, et al., Electrochromic material containing unsymmetrical substituted N,N,N′,N′-tetraaryl-1,4-phenylenediamine: Synthesis and their optical, electrochemical, and electrochromic properties, Journal of Polymer Science Part A: Polymer Chemistry, 48 (2010) 1469.
71. G. A. Rupinder Kaur, A. Singh, Synthesis and Characterization of Some Novel Alkyl-2n-butyl-[4'(2"-carboxyphenyl-1"-yl)benzyl]benzimidazole-5-sulphonates, International Journal of Pharmaceutical & Biological Archives, (2010) 62.
72. S. S. Jitender, R. S. , H. Dureja,V. Kumar, Benzimidazoles with biphenyls: Synthesis of 5-substituted-2-n-propyl-1-[(2'-carboxybiphenyl-4-yl-)methyl] benzimidazoles, The Journal of the Indian Institute of Science, 82 (2002) 177.
73. S. Hy, F. Felix, J. Rick, W. N. Su, and B. J. Hwang, Direct In situ Observation of Li2O Evolution on Li-Rich High-Capacity Cathode Material, Li[NixLi(1−2x)/3Mn(2−x)/3]O2 (0 ≤ x ≤0.5), J. Am. Chem. Soc. 136 (2014) 999.
74. A. Robert Armstrong, M. Holzapfel, P Novak, C. S. Johnson, S. H. Kang, M. M. Thackeray, and P. G. Bruce, Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2, J. Am. Chem. Soc. 128 (2006) 8694.
75. P. Yan, A. Nie, J. Zheng, Y. Zhou, D Lu, X. Zhang, R. Xu, I. Belharouak, X. Zu, J. Xiao, K. Amine, J. Liu, F. Gao, R. Shahbazian-Yassar, Ji. G. Zhang, and C. M. Wang, Evolution of Lattice Structure and Chemical Composition of the Surface Reconstruction Layer in Li1.2Ni0.2Mn0.6O2 Cathode Material for Lithium Ion Batteries, American Chemical Society, 15 (2015) 514.

QR CODE