簡易檢索 / 詳目顯示

研究生: 戴珮珊
Pei-Shan Dai
論文名稱: 利用震波最大速度推估值決定半主動斜面式滾動隔震支承阻尼力之研究
Semi-active control of a sloped rolling-type seismic isolation bearing using predicted peak velocity of earthquake excitation
指導教授: 許丁友
Ting-Yu Hsu
口試委員: 鍾立來
Lap-Loi Chung
汪向榮
Shiang-Jung Wang
陳沛清
Pei-Ching Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 97
中文關鍵詞: 斜面式滾動隔震支承半主動控制地震預警類神經網路最大地表速度
外文關鍵詞: sloped rolling-type seismic isolators, semi-active control, earthquake early warning, artificial neural network, PGV
相關次數: 點閱:478下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

傳統定阻尼式滾動隔震支承,為了避免大地震下的支承最大位移反應超出設計值而產生碰撞,需要設計較高的阻尼力來避免此現象的發生,可能導致滾動隔震支承加速度反應於一般中小地震下過度放大,隔震效果不佳。前人研究嘗試將壓電致動器安裝於滾動隔震支承內,使滾動隔震支承具備可變式阻尼的功能,亦即致動器可根據地震特性即時更改隔震支承之阻尼力。前人研究並探討滾動隔震支承最大位移反應與地震特性參數之相關性,得出最大地表速度(PGV)與滾動隔震支承最大位移反應的相關性較佳。本研究將利用地震初達波到達後的前幾秒資訊,建立預測PGV的類神經網路模型,並建立根據PGV控制阻尼力的控制律。如此即可根據初達波特徵預測PGV,並根據控制律得到該次地震所需要的阻尼力。本研究並建立不同秒數的PGV預測模型,根據不同秒數的PGV預測結果以更新所推估之阻尼力,並探討此方法對於斜面式滾動隔震支承之隔震效果。


In order to avoid the maximum displacement response of the sloped rolling-type seismic isolators (SRI) exceeding the design value and causing a collision when a large earthquake occurs, a higher damping force is a conventional solution. However, higher damping force may cause the acceleration response of the SRI over-amplified under small and moderate earthquakes. A previous study attempted to install a piezoelectric actuator in the SRI, so as to accord the SRI a variable damping function. That is, the actuator can change the damping force of the SRI according to seismic characteristics in real time. The correlation between the maximum displacement response of SRI and seismic characteristic parameters has been discussed in the previous study. The results indicated that the correlation between the peak ground velocity (PGV) and the maximum displacement response of SRI is the best among the studied seismic characteristic parameters. This study uses the information of the first few seconds after the arrival of primary wave to train an artificial neural network (ANN) model for predicting PGV. The control law to control the damping force according to PGV is also established. Therefore, the required damping force of a coming earthquake can be predicted a few seconds after the arrival of primary wave. The effects of the uncertainty in PGV prediction on the performance of semi-active control of the SRI are also studied. In addition, the performance of semi-active control of the SRI using the PGV predicted at different seconds after the arrival of primary wave is also studied.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景與文獻回顧 1 1.2 研究內容與架構 4 第二章 斜面式滾動隔震支承(SRI) 5 2.1 SRI基本構造 5 2.2 SRI運動方程式推導 6 2.3 SRI數值分析程式 11 2.4 本研究模擬之SRI模型構造與設定參數 13 第三章 地震資料 15 3.1 訓練資料(Training data, T-data) 15 3.2 測試資料 17 3.2.1 2016年2月6日美濃地震 17 3.2.2 2018年2月6日花蓮地震 17 3.3 地震資料PGA及PGV分布情況 18 第四章 利用類神經網路建立地震特性參數預測模型 20 4.1 類神經網路介紹 20 4.2 輸入參數 23 4.2.1 地震訊號六個特徵參數 23 4.2.2 特定頻率之傅立葉振幅含量平均 24 4.3 輸出參數 26 4.4 建立類神經網路模型 28 4.5 線性調整類神經網路模型 33 第五章 建立控制阻尼力的控制律 35 5.1 控制律 35 5.2 評估控制律表現所使用之參數 37 5.2.1 加速度反應比 37 5.2.2 有效隔震比 37 5.3 決定最佳控制律 37 第六章 數值分析 39 6.1 探討tp各別秒數之結果 40 6.1.1 探討P值與R值 40 6.1.2 探討最大位移反應超過門檻值20公分(PO) 48 6.1.3 利用PGV回歸公式之結果與比較 54 6.2 探討tp不同秒數組合之結果 56 6.3 測試地震使用tp3s+5s+10s組合之效果 61 6.3.1 美濃地震 61 6.3.2 花蓮地震 64 6.4 將ANN輸出參數改為阻尼因子,探討其隔震效果(以tp3s為例) 67 第七章 結論與未來研究方向 70 參考文獻 74 附錄 77

[1] Saaed, T., Nikolakopoulos, G., Jonasson, J. E., and Hedlund, H. (2013). "A state-of-the-art review of structural control systems." Journal of Vibration and Control, vol. 21.
[2] Spencer, B., Dyke, S., Sain, M., and Carlson, J. (1997). "Phenomenological Model of a Magnetorheological Damper. " Journal of Engineering Mechanics-asce - J ENG MECH-ASCE, vol. 123.
[3] Pnevmatikos, N. (2017). "Pole placement algorithm for control of civil structures subjected to earthquake excitation." Journal of Applied and Computational Mechanics, vol. 3, pp. 25-36.
[4] Hamidi, M., and El Naggar, M. H. (2007). "On the performance of SCF in seismic isolation of the interior equipment of buildings." Earthquake Engineering & Structural Dynamics, vol. 36, no. 11, pp. 1581-1604.
[5] CRS, Cosine Curved Rail System. Available: https://www.oiles.co.jp/menshin/building/menshin/kikimenshin/
[6] ISO-Base™ Seismic Isolation. Available: https://www.coastseismicsafe.com/products-services/iso-base/
[7] Tsai, M. H., Wu, S. Y., Chang, K. C., and Lee, G. (2007). "Shaking table tests of a scaled bridge model with rolling-type seismic isolation bearings." Engineering Structures, vol. 29, pp. 694-702.
[8] Wang, S. J., Hwang, J. S., Chang, K. C., Shiau, C. Y., Lin, W. C., Tsai, M. S., Hong, J. X., and Yang, Y. H. (2014). "Sloped multi-roller isolation devices for seismic protection of equipment and facilities." Earthquake Engineering & Structural Dynamics, vol. 43, no. 10, pp. 1443-1461.
[9] Ou, Y. C., Song, J., and Lee, G. (2009). "A parametric study of seismic behavior of roller seismic isolation bearings for highway bridges." Earthquake Engineering & Structural Dynamics, vol. 39, pp. 541-559.
[10] Lee George, C., Ou, Y. C., Niu, T., Song, J., and Liang, Z. (2010). "Characterization of a Roller Seismic Isolation Bearing with Supplemental Energy Dissipation for Highway Bridges." Journal of Structural Engineering, vol. 136, no. 5, pp. 502-510.
[11] 許志隆。(2015)。「斜面式滾動隔震支承之地震力位移反應探討」。碩士論文,國立臺灣科技大學。
[12] 卓忠陽。(2017)。「斜面式滾動隔震支承之多軸向遲滯行為試驗與地震力位移反應探討」。碩士論文,國立臺灣科技大學。
[13] Wang, S. J., Yu, C. H., Cho, C. Y., and Hwang, J. S. (2019). "Effects of design and seismic parameters on horizontal displacement responses of sloped rolling-type seismic isolators." Structural Control and Health Monitoring, vol. 26, no. 5, p. e2342.
[14] Chen, P. C., and Wang, S. J. (2017). "Improved control performance of sloped rolling-type isolation devices using embedded electromagnets." Structural Control and Health Monitoring, vol. 24, no. 1, p. e1853.
[15] Chen, P.C., Hsu, S. C., Zhong, Y. J., and Wang, S. J. (2019). "Real-time hybrid simulation of smart base-isolated raised floor systems for high-tech industry." Smart Structures and Systems, vol. 23, pp. 91-106.
[16] 許丁友。(2017)。「現地型強震預警技術與應用」。土木水利,44(1),68-75。
[17] Wu, Y., and Kanamori, H. (2005). "Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves." Bulletin of the Seismological Society of America, vol. 95.
[18] Hsiao, N. C., Wu, Y. M., Shin, T. C., Zhao, L., and Teng, T. L. (2009). " Development of earthquake early warning system in Taiwan." Geophysical Research Letters, vol. 36, no. 5.
[19] Pnevmatikos, N. G., Kallivokas, L. F., and Gantes, C. J. (2004). "Feed-forward control of active variable stiffness systems for mitigating seismic hazard in structures." Engineering Structures, vol. 26, no. 4, pp. 471-483.
[20] De Iuliis, M., and Faella, C. (2013). "Effectiveness analysis of a semiactive base isolation strategy using information from an early-warning network." Engineering Structures, vol. 52, pp. 518-535.
[21] Maddaloni, G., Caterino, N., and Occhiuzzi, A. (2011). "Semi-active control of the benchmark highway bridge based on seismic early warning systems." Bulletin of Earthquake Engineering, vol. 9, pp. 1703-1715.
[22] Maddaloni, G., Caterino, N., Nestovito, G., and Occhiuzzi, A. (2012). "Use of seismic early warning information to calibrate variable dampers for structural control of a highway bridge: evaluation of the system robustness." Bulletin of Earthquake Engineering.
[23] Nuzzo, I., Caterino, N., Maddaloni, G., and Occhiuzzi, A. (2017). "Smart hybrid isolation of a case study highway bridge exploiting seismic early warning information." Engineering Structures, vol. 147, pp. 134-147.
[24] 黃治華。(2019)。「強震預警技術應用於半主動斜面式滾動隔震支承之研究」。碩士論文,國立臺灣科技大學。
[25] Wang, S. J., Yu, C. H., Lin, W. C., Hwang, J. S., and Chang, K. C. (2017). "A generalized analytical model for sloped rolling-type seismic isolators." Engineering Structures, vol. 138, pp. 434-446.
[26] 梁家瑋。(2018)。「利用初達波特徵推估最大樓板加速度反應之研究」,碩士論文。國立臺灣科技大學。
[27] 郭俊翔,林哲民,謝宏灝,張毓文,溫國樑。(2016)。「美濃地震震源與地動特性」。國家地震工程研究中心簡訊,97,2-4。
[28] 郭俊翔,黃雋彥,林哲民,趙書賢,林沛暘,溫國樑,蕭乃祺,林金泉。 (2018)。「0206花蓮地震強地動記錄與近斷層波形特徵」。地工技術,(156),25-34。
[29] Hsu, T. Y., Huang, S. K., Chang, Y. W., Kuo, C. H., Lin, C. M., Chang, T. M., Wen, K. L., Loh, C. H. (2013). "Rapid on-site peak ground acceleration estimation based on support vector regression and P-wave features in Taiwan." Soil Dynamics and Earthquake Engineering, vol. 49, pp. 210-217.
[30] Hsu, T. Y., Lin, P. Y., Wang, H. H., Chiang, H. W., Chang, Y. W., Kuo, C. H., Lin, C. M., Wen, K. L. (2018). "Comparing the Performance of the NEEWS Earthquake Early Warning System Against the CWB System During the 6 February 2018 Mw 6.2 Hualien Earthquake." Geophysical Research Letters, vol. 45, no. 12, pp. 6001-6007.

無法下載圖示 全文公開日期 2025/12/04 (校內網路)
全文公開日期 2030/12/04 (校外網路)
全文公開日期 2030/12/04 (國家圖書館:臺灣博碩士論文系統)
QR CODE