簡易檢索 / 詳目顯示

研究生: Abere Habtamu Manayia
Abere Habtamu Manayia
論文名稱: 用於高效癌症治療的光反應性金屬核鹼基功能化超分子奈 米粒子的開發
Development of Photoreactive Metallo-Nucleobase Functionalized Supramolecular Nanoparticles for Efficient Cancer Chemotherapy Treatment
指導教授: 鄭智嘉
Chih-Chia Cheng
口試委員: 鄭智嘉
Chih-Chia Cheng
蔡協致
Hsieh-Chih Tsai
陳建光
Jem-Kun Chen
簡秀紋
Hsiu-Wen Chien
雍 教授
Yuan Chung
戴子安 教授
Chi-An Dai
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 148
中文關鍵詞: 超分子聚合物金屬介導的核鹼基對超分子奈米粒子紫外線照射結構穩定性細胞毒性
外文關鍵詞: supramolecular polymer, metal-mediated nucleobase base pair supramolecular nanoparticle, UV irradiation, structural stability, cytotoxicity
相關次數: 點閱:218下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

超分子聚合物的發展為將藥物運送至身體特定目標區域提供了一個良好的機制,有助於減少放射治療引起的副作用,同時也鼓勵研究人員專注於化學治療方法。由核鹼基衍生的超分子聚合物能在水溶液中快速自組裝為奈米級材料,具有可調節的可逆性和結構穩定性等獨特物理性質,使其適用於藥物傳遞系統。然而,設計和開發多刺激響應的核鹼基功能化超分子聚合物仍然是一項重大挑戰,同時實現所需的物理化學性質並將其應用於藥物傳遞系統也面臨著相當的困難。此外,另一項重大挑戰是設計、操作和控制金屬介導的核鹼基功能化鹼基對超分子奈米顆粒以及光反應性的金屬介導的核鹼基功能化鹼基對超分子奈米顆粒,以獲得所需的物理性質,從而能夠在微型腫瘤環境條件下實現高度可控的共軛奈米顆粒解離和金屬離子的選擇性釋放。
因此,在本篇論文中,我們設計並合成了具有雙功能的胞嘧啶終止超分子聚合物和以汞介導的尿嘧啶功能化鹼基對超分子聚合物,兩者均成功地以所需的產率獲得。在紫外線照射下,胞嘧啶和尿嘧啶會形成光二聚體,使得胞嘧啶功能化超分子聚合物和汞介導的尿嘧啶功能化鹼對超分子奈米顆粒能夠形成光交聯結構並在水溶液中自發自組裝。此外,具有光反應性的胞嘧啶功能化超分子聚合物與經紫外線照射的金屬共軛超分子奈米顆粒共享獨特的性質,包括所需的奈米級尺寸、球形形態、優越的結構穩定性和在水溶液中對pH的敏感性。更重要的是,體外研究證實,載有藥物的微胞中的光二聚化的Cy-PPG聚合物和U-Hg-U超分子奈米顆粒(無需使用游離藥物或螢光探針)與未照射的超分子奈米顆粒相比,顯著增強了它們在細胞內的內吞作用和對癌細胞的大量凋亡。


The development of supramolecular polymers, which carry and transport drugs to specific target spots within the body, offers a good mechanism to minimize the side effects addressed by radiotherapy and encourages researchers to focus on chemotherapeutic treatment approaches. Supramolecular polymers derived from nucleobases enable them to rapidly self-assemble into nano-size materials in an aqueous solution, resulting in unique physical properties such as tunable reversibility and structural stability, making them suitable for use in drug delivery systems. While designing and developing multi-stimuli-responsive nucleobase-functionalized supramolecular polymers remains a significant challenge, achieving the required physico-chemical properties and making them applicable in drug delivery systems also remains a significant challenge. Moreover, another significant challenge is the design, manipulation, and control of metal-mediated nucleobase functionalized base pair supramolecular nanoparticles and photo-reactive metal-mediated nucleobase functionalized base pair supramolecular nanoparticles with desired physical properties that allow for a high level of well-controlled dissociation of the conjugated nanoparticles and controlled release of the metal ions in selective cancer cells under micro-tumor environmental conditions. As a result, in this dissertation, we designed and synthesized bi-functional cytosine-terminated supramolecular polymers and mercury-mediated uracil functionalized base pair supramolecular polymers, both of which were successfully obtained at the required yield. The presence of cytosine and uracil photodimers induced by UV irradiation, cytosine-functionalized supramolecular polymers, and mercury-mediated uracil-functionalized base pairs supramolecular nanoparticles can form photo-cross-linked structures and spontaneously self-assemble in aqueous solutions. Furthermore, photo-reactive cytosine-functionalized supramolecular polymers shared unique properties with irradiated metallo-conjugated supramolecular nanoparticles, including desired nanosize, spherical morphology, excellent structural stability, and pH responsiveness in aqueous solution. More importantly, in vitro studies confirmed that photo-dimerized Cy-PPG polymer within drug-loaded micelles and U-Hg-U supramolecular nanoparticles (without using free drugs or fluorescence probes) significantly enhanced their internalization and massive apoptotic cancer cell death compared to non-irradiated supramolecular nanoparticles.

Chinese Abstract ii Abstract iii Acknowledgment iv Abbreviations ix List of Figure ix List of Schemes xiii CHAPTER-1 1 1. Introduction 1 1.1 Background 1 1.2 Motivation and Objective of the study 4 1.3 Dissertation Organizations 7 CHAPTER-2 8 2. Literature Review 8 2.1 Over View of chemotherapy 8 2.2 Nanoparticles 10 2.3 Classification of Nanoparticles 13 2.3.1 Organic nanoparticles 13 2.3.2 Inorganic Nanoparticles 16 2.4 Mechanism of Targeting Nano-particles 17 2.5 Stimuli responsive nanoparticles 19 2.5.1 Endogenous stimuli responsive nanoparticles 19 2.5.2 Exogenous stimuli responsive nanoparticles 21 2.6 Nucleobase Functionalized Supramolecular Nanoparticles 26 2.7 Metallo-nucleobase functionalized supramolecular nanoparticles 30 CHAPTER-3 33 3. Experimental Sections 33 3.1 Chemicals and Materials 33 3.2 Synthesis of cytosine functionalized supramolecular Polymer 33 3.3 Photo-dimerization protocol of Cy-PPG supramolecular polymer 35 3.4 Preparation of DOX-loaded Cy-PPG supramolecular micelles 35 3.5 Synthesis of mercury mediated uracil-base pair functionalized supramolecular nanoparticles 36 3.6 Photo-dimerization efficiency of mercury-mediated uracil-functionalized supramolecular nanoparticle 38 3.7 Dynamic Light Scattering and Zeta potential analysis 38 3.8 Photoluminescence Spectroscopy 39 3.9 Morphological analysis of polymers 39 3.10 Determination of lower critical solution temperature 39 3.11 Determination of critical micelle concentration 40 3.12 Kinetic stability of supramolecular and coordinated supramolecular nanoparticles 40 3.13 In vitro doxorubicin release of doxorubicin-loaded Cy-PPG supramolecular micelles 41 3.14 pH-responsiveness characterstics of mercury-conjugated non-irradiated and irradiated supramolecular nanoparticles 42 3.15 Hemolysis assay of mercury coordinated non-irradiated and irradiated supramolecular nanoparticles 42 3.16 Cell lines and Culture 43 3.17 In vitro cytotoxicity of the cytosine functionalized polymer and mercury coordinated nanoparticle 43 3.18 Cellular localization behavior of cytosine functionalized polymer and mercury conjugated supramolecular nanoparticles 44 3.19 Confocal Laser Scanning Microscopy 44 3.20 Flow cytometry 45 3.21 Quantitative analysis of cumulative cells death 45 CHAPTER-4 47 4. Photo-reactive Cytosine-Functionalized Self-Assembled Micelles with Enhanced Cellular Uptake Capability for Efficient Cancer Chemotherapy 47 4.1 Introduction 47 4.2 Results and Discussion 51 4.2.1 Synthesis of photo-reactive cytosine functionalized supramolecular polymers 51 4.2.2 Photo-reactivity of Cy-PPG supramolecular polymer in aqueous solution 51 4.2.3 Characterization of cytosine-functionalized supramolecular polymer 55 4.2.4 Self-assembly behavior of cytosine functionalized supramolecular polymer 58 4.3 Conclusion 74 CHAPTER-5 75 5. Photo-reactive Mercury-Containing Metallo-supramolecular Nanoparticles with Tailorable Properties that Promote Enhanced Cellular Uptake for Effective Cancer Chemotherapy 75 5.1 Introduction 75 5.2 Results and Discussion 80 5.3 Conclusion 108 CHAPTER-6 109 6. Summery and Outlooks 109 6.1 Summery 109 6.2 Outlooks 110 Reference 111

1. Chu, E.; Sartorelli, A., Cancer chemotherapy. Lange’s Basic and Clinical Pharmacology 2018, 948-976.
2. (a) Emerich, D. F.; Thanos, C. G., Nanotechnology and medicine. Expert opinion on biological therapy 2003, 3 (4), 655-663; (b) Shaffer, C., Nanomedicine transforms drug delivery. Drug discovery today 2005, 10 (23-24), 1581-1582; (c) Sahoo, S.; Parveen, S.; Panda, J., The present and future of nanotechnology in human health care. Nanomedicine: Nanotechnology, biology and medicine 2007, 3 (1), 20-31.
3. Li, S.; Vert, M., Biodegradable polymers: polyesters. John Wiley & Sons: 1999.
4. (a) Connor, E. F.; Lees, I.; Maclean, D., Polymers as drugs—Advances in therapeutic applications of polymer binding agents. Journal of Polymer Science Part A: Polymer Chemistry 2017, 55 (18), 3146-3157; (b) Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H., Exploiting the enhanced permeability and retention effect for tumor targeting. Drug discovery today 2006, 11 (17-18), 812-818.
5. (a) Helsel, M. E.; Franz, K. J., Pharmacological activity of metal binding agents that alter copper bioavailability. Dalton Transactions 2015, 44 (19), 8760-8770; (b) Englinger, B.; Pirker, C.; Heffeter, P.; Terenzi, A.; Kowol, C. R.; Keppler, B. K.; Berger, W., Metal drugs and the anticancer immune response. Chemical reviews 2018, 119 (2), 1519-1624.
6. Fortman, D. J.; Brutman, J. P.; De Hoe, G. X.; Snyder, R. L.; Dichtel, W. R.; Hillmyer, M. A., Approaches to sustainable and continually recyclable cross-linked polymers. ACS Sustainable Chemistry & Engineering 2018, 6 (9), 11145-11159.
7. Kato, R.; Mirmira, P.; Sookezian, A.; Grocke, G. L.; Patel, S. N.; Rowan, S. J., Ion-conducting dynamic solid polymer electrolyte adhesives. ACS Macro Letters 2020, 9 (4), 500-506.
8. (a) Nair, K. P.; Breedveld, V.; Weck, M., Complementary hydrogen-bonded thermoreversible polymer networks with tunable properties. Macromolecules 2008, 41 (10), 3429-3438; (b) Obert, E.; Bellot, M.; Bouteiller, L.; Andrioletti, F.; Lehen-Ferrenbach, C.; Boué, F., Both water-and organo-soluble supramolecular polymer stabilized by hydrogen-bonding and hydrophobic interactions. Journal of the American Chemical Society 2007, 129 (50), 15601-15605; (c) Danila, I.; Riobé, F. o.; Piron, F.; Puigmartí-Luis, J.; Wallis, J. D.; Linares, M.; Ågren, H.; Beljonne, D.; Amabilino, D. B.; Avarvari, N., Hierarchical chiral expression from the nano-to mesoscale in synthetic supramolecular helical fibers of a nonamphiphilic C 3-symmetrical π-functional molecule. Journal of the American Chemical Society 2011, 133 (21), 8344-8353; (d) Chow, C. F.; Fujii, S.; Lehn, J. M., Metallodynamers: Neutral dynamic metallosupramolecular polymers displaying transformation of mechanical and optical properties on constitutional exchange. Angewandte Chemie 2007, 119 (26), 5095-5098; (e) Yang, S. K.; Ambade, A. V.; Weck, M., Supramolecular ABC triblock copolymers via one-pot, orthogonal self-assembly. Journal of the American Chemical Society 2010, 132 (5), 1637-1645.
9. Ma, X.; Tian, H., Stimuli-responsive supramolecular polymers in aqueous solution. Accounts of Chemical Research 2014, 47 (7), 1971-1981.
10. Gao, Z.; Chen, M.; Hu, Y.; Dong, S.; Cui, J.; Hao, J., Tunable assembly and disassembly of responsive supramolecular polymer brushes. Polymer Chemistry 2017, 8 (18), 2764-2772.
11. Blanchard, A. T.; Salaita, K., Emerging uses of DNA mechanical devices. Science 2019, 365 (6458), 1080-1081.
12. (a) Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C.-W.; Lin, V. S.-Y., Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced drug delivery reviews 2008, 60 (11), 1278-1288; (b) Yan, X.; Wang, F.; Zheng, B.; Huang, F., Stimuli-responsive supramolecular polymeric materials. Chemical Society Reviews 2012, 41 (18), 6042-6065; (c) Mura, S.; Nicolas, J.; Couvreur, P., Stimuli-responsive nanocarriers for drug delivery. Nature materials 2013, 12 (11), 991-1003.
13. (a) Zhang, X.; Rehm, S.; Safont-Sempere, M. M.; Würthner, F., Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems. Nature chemistry 2009, 1 (8), 623-629; (b) Tan, J. P.; Kim, S. H.; Nederberg, F.; Fukushima, K.; Coady, D. J.; Nelson, A.; Yang, Y. Y.; Hedrick, J. L., Delivery of Anticancer Drugs Using Polymeric Micelles Stabilized by Hydrogen‐Bonding Urea Groups. Macromolecular rapid communications 2010, 31 (13), 1187-1192; (c) Ding, J.; Chen, L.; Xiao, C.; Chen, L.; Zhuang, X.; Chen, X., Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. Chemical Communications 2014, 50 (77), 11274-11290.
14. (a) Singh, Y.; Palombo, M.; Sinko, P. J., Recent trends in targeted anticancer prodrug and conjugate design. Current medicinal chemistry 2008, 15 (18), 1802-1826; (b) Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; Järvinen, T.; Savolainen, J., Prodrugs: design and clinical applications. Nature reviews Drug discovery 2008, 7 (3), 255-270.
15. Tan, S.; Sha, Y.; Zhu, T.; Rahman, M. A.; Tang, C., Photoresponsive supramolecular polymers based on quadruple hydrogen-bonding and a photochromic azobenzene motif. Polymer Chemistry 2018, 9 (44), 5395-5401.
16. Xu, J. F.; Chen, Y. Z.; Wu, D.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z., Photoresponsive hydrogen‐bonded supramolecular polymers based on a stiff stilbene unit. Angewandte Chemie 2013, 125 (37), 9920-9924.
17. (a) Abebe Alemayehu, Y.; Tewabe Gebeyehu, B.; Cheng, C.-C., Photosensitive supramolecular micelles with complementary hydrogen bonding motifs to improve the efficacy of cancer chemotherapy. Biomacromolecules 2019, 20 (12), 4535-4545; (b) Douki, T.; Cadet, J., Individual determination of the yield of the main UV-induced dimeric pyrimidine photoproducts in DNA suggests a high mutagenicity of CC photolesions. Biochemistry 2001, 40 (8), 2495-2501.
18. (a) Roca-Sanjuán, D.; Olaso-González, G.; González-Ramírez, I.; Serrano-Andrés, L.; Merchán, M., Molecular basis of DNA photodimerization: Intrinsic production of cyclobutane cytosine dimers. Journal of the American Chemical Society 2008, 130 (32), 10768-10779; (b) Cheng, R.; Meng, F.; Deng, C.; Klok, H.-A.; Zhong, Z., Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013, 34 (14), 3647-3657.
19. (a) Ono, A.; Cao, S.; Togashi, H.; Tashiro, M.; Fujimoto, T.; Machinami, T.; Oda, S.; Miyake, Y.; Okamoto, I.; Tanaka, Y., Specific interactions between silver (I) ions and cytosine–cytosine pairs in DNA duplexes. Chemical communications 2008, (39), 4825-4827; (b) Alemayehu, Y. A.; Ilhami, F. B.; Manayia, A. H.; Cheng, C.-C., Mercury-containing supramolecular micelles with highly sensitive pH-responsiveness for selective cancer therapy. Acta Biomaterialia 2021, 129, 235-244.
20. (a) Aguirre-Ghiso, J. A., Models, mechanisms and clinical evidence for cancer dormancy. Nature Reviews Cancer 2007, 7 (11), 834-846; (b) Pethe, A. M.; Yadav, K. S., Polymers, responsiveness and cancer therapy. Artificial cells, nanomedicine, and biotechnology 2019, 47 (1), 395-405; (c) Siegel, R. L.; Miller, K. D.; Jemal, A., Cancer statistics, 2018. CA: a cancer journal for clinicians 2018, 68 (1), 7-30.
21. Sarkar, S.; Horn, G.; Moulton, K.; Oza, A.; Byler, S.; Kokolus, S.; Longacre, M., Cancer development, progression, and therapy: an epigenetic overview. International journal of molecular sciences 2013, 14 (10), 21087-21113.
22. UNDP, U., Population Growth: Implications for Human Development. 2019.
23. Russo, M. M.; Sundaramurthi, T. In An overview of cancer pain: epidemiology and pathophysiology, Seminars in oncology nursing, Elsevier: 2019; pp 223-228.
24. Feldman, D., Polymers and polymer nanocomposites for cancer therapy. Applied Sciences 2019, 9 (18), 3899.
25. Ringborg, U.; Bergqvist, D.; Brorsson, B.; Cavallin-Ståhl, E.; Ceberg, J.; Einhorn, N.; Frödin, J.-e.; Järhult, J.; Lamnevik, G.; Lindholm, C., The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001--summary and conclusions. Acta oncologica 2003, 42 (5-6), 357-365.
26. Jackson, S. P.; Bartek, J., The DNA-damage response in human biology and disease. Nature 2009, 461 (7267), 1071-1078.
27. Baskar, R.; Lee, K. A.; Yeo, R.; Yeoh, K.-W., Cancer and radiation therapy: current advances and future directions. International journal of medical sciences 2012, 9 (3), 193.
28. Riehemann, K.; Schneider, S. W.; Luger, T. A.; Godin, B.; Ferrari, M.; Fuchs, H., Nanomedicine—challenge and perspectives. Angewandte Chemie International Edition 2009, 48 (5), 872-897.
29. Bhosle, J.; Hall, G., Principles of cancer treatment by chemotherapy. Surgery (Oxford) 2009, 27 (4), 173-177.
30. Abbas, Z.; Rehman, S., An overview of cancer treatment modalities. Neoplasm 2018, 1, 139-157.
31. DeVita, V. T.; Chu, E., A history of cancer chemotherapy. Cancer research 2008, 68 (21), 8643-8653.
32. (a) Sun, J.; Wei, Q.; Zhou, Y.; Wang, J.; Liu, Q.; Xu, H., A systematic analysis of FDA-approved anticancer drugs. BMC systems biology 2017, 11 (5), 1-17; (b) Olivier, T.; Haslam, A.; Prasad, V., Anticancer drugs approved by the US food and drug administration from 2009 to 2020 according to their mechanism of action. JAMA network open 2021, 4 (12), e2138793-e2138793.
33. Sharma, S.; Chowdhury, G.; Chakrabarty, A., A Concise Overview of Chemotherapeutic Drugs in Gastrointestinal Cancers: Mechanisms of Action and Resistance. Journal of Cancer Science and Clinical Therapeutics 2021, 5 (1), 11-35.
34. Wang, X.; Wang, Y.; Chen, Z. G.; Shin, D. M., Advances of cancer therapy by nanotechnology. Cancer research and treatment: official journal of Korean Cancer Association 2009, 41 (1), 1.
35. Sinha, R.; Kim, G. J.; Nie, S.; Shin, D. M., Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Molecular cancer therapeutics 2006, 5 (8), 1909-1917.
36. (a) Arayne, M. S.; Sultana, N.; Qureshi, F., nanoparticles in delivery of cardiovascular drugs. Pakistan journal of pharmaceutical sciences 2007, 20 (4), 340-348; (b) Patra, J. K.; Baek, K.-H., Green nanobiotechnology: factors affecting synthesis and characterization techniques. Journal of Nanomaterials 2014, 2014.
37. Mirza, A. Z.; Siddiqui, F. A., Nanomedicine and drug delivery: a mini review. International Nano Letters 2014, 4 (1), 1-7.
38. Kumar Khanna, V., Targeted delivery of nanomedicines. International Scholarly Research Notices 2012, 2012.
39. (a) Jahangirian, H.; Lemraski, E. G.; Webster, T. J.; Rafiee-Moghaddam, R.; Abdollahi, Y., A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. International journal of nanomedicine 2017, 12, 2957; (b) Lam, P.-L.; Wong, W.-Y.; Bian, Z.; Chui, C.-H.; Gambari, R., Recent advances in green nanoparticulate systems for drug delivery: efficient delivery and safety concern. Nanomedicine 2017, 12 (4), 357-385.
40. (a) Yu, M.; Xu, L.; Tian, F.; Su, Q.; Zheng, N.; Yang, Y.; Wang, J.; Wang, A.; Zhu, C.; Guo, S., Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular barriers. Nature communications 2018, 9 (1), 1-11; (b) Hendrickson, G. R.; Smith, M. H.; South, A. B.; Lyon, L. A., Design of multiresponsive hydrogel particles and assemblies. Advanced Functional Materials 2010, 20 (11), 1697-1712.
41. (a) Quan, X.-Q.; Kang, L.; Yin, X.-Z.; Jin, Z.-H.; Gao, Z.-G., Synthesis of PEGylated hyaluronic acid for loading dichloro (1, 2-diaminocyclohexane) platinum (II)(DACHPt) in nanoparticles for cancer treatment. Chinese Chemical Letters 2015, 26 (6), 695-699; (b) Gupta, P.; Garcia, E.; Sarkar, A.; Kapoor, S.; Rafiq, K.; Chand, H. S.; Jayant, R. D., Nanoparticle based treatment for cardiovascular diseases. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders) 2019, 19 (1), 33-44.
42. Deng, Y.; Zhang, X.; Shen, H.; He, Q.; Wu, Z.; Liao, W.; Yuan, M., Application of the nano-drug delivery system in treatment of cardiovascular diseases. Frontiers in bioengineering and biotechnology 2020, 489.
43. Hamid, R.; Manzoor, I., Nanomedicines: Nano based Drug Delivery Systems Challenges and Opportunities. Alternative Medicine: Update 2021, 59.
44. Duncan, R., The dawning era of polymer therapeutics. Nature reviews Drug discovery 2003, 2 (5), 347-360.
45. Kim, S. T.; Saha, K.; Kim, C.; Rotello, V. M., The role of surface functionality in determining nanoparticle cytotoxicity. Accounts of chemical research 2013, 46 (3), 681-691.
46. Lin, W., Introduction: nanoparticles in medicine. ACS Publications: 2015; Vol. 115, pp 10407-10409.
47. Chen, G.; Roy, I.; Yang, C.; Prasad, P. N., Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chemical reviews 2016, 116 (5), 2826-2885.
48. (a) Ealia, S. A. M.; Saravanakumar, M. In A review on the classification, characterisation, synthesis of nanoparticles and their application, IOP conference series: materials science and engineering, IOP Publishing: 2017; p 032019; (b) Khalid, K.; Tan, X.; Mohd Zaid, H. F.; Tao, Y.; Lye Chew, C.; Chu, D.-T.; Lam, M. K.; Ho, Y.-C.; Lim, J. W.; Chin Wei, L., Advanced in developmental organic and inorganic nanomaterial: A review. Bioengineered 2020, 11 (1), 328-355.
49. Guerrero-Cázares, H.; Tzeng, S. Y.; Young, N. P.; Abutaleb, A. O.; Quiñones-Hinojosa, A.; Green, J. J., Biodegradable polymeric nanoparticles show high efficacy and specificity at DNA delivery to human glioblastoma in vitro and in vivo. ACS nano 2014, 8 (5), 5141-5153.
50. Kumari, A.; Yadav, S. K.; Yadav, S. C., Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and surfaces B: biointerfaces 2010, 75 (1), 1-18.
51. Rampino, A.; Borgogna, M.; Blasi, P.; Bellich, B.; Cesàro, A., Chitosan nanoparticles: preparation, size evolution and stability. International journal of pharmaceutics 2013, 455 (1-2), 219-228.
52. Tekade, S.; Mode, S.; Waghmare, S., Effect of Asparagus racemosus, Sida cordifolia and Levamisole on immunological parameters in experimentally induced mmunosuppressed broilers. Veterinary World 2008, 1 (2), 49.
53. Tekade, R. K.; Dutta, T.; Tyagi, A.; Bharti, A. C.; Das, B. C.; Jain, N. K., Surface-engineered dendrimers for dual drug delivery: a receptor up-regulation and enhanced cancer targeting strategy. Journal of drug targeting 2008, 16 (10), 758-772.
54. Tekade, R. K.; Maheshwari, R.; Soni, N.; Tekade, M.; Chougule, M. B., Nanotechnology for the development of nanomedicine. In Nanotechnology-based approaches for targeting and delivery of drugs and genes, Elsevier: 2017; pp 3-61.
55. Nakhaei, P.; Margiana, R.; Bokov, D. O.; Abdelbasset, W. K.; Jadidi Kouhbanani, M. A.; Varma, R. S.; Marofi, F.; Jarahian, M.; Beheshtkhoo, N., Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Frontiers in Bioengineering and Biotechnology 2021, 748.
56. Bozzuto, G.; Molinari, A., Liposomes as nanomedical devices. International journal of nanomedicine 2015, 10, 975.
57. (a) Yadav, H. K.; Almokdad, A. A.; Sumia, I.; Debe, M. S., Polymer-based nanomaterials for drug-delivery carriers. In Nanocarriers for drug delivery, Elsevier: 2019; pp 531-556; (b) Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S., Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. Journal of Controlled Release 2021, 332, 312-336.
58. Cagel, M.; Tesan, F. C.; Bernabeu, E.; Salgueiro, M. J.; Zubillaga, M. B.; Moretton, M. A.; Chiappetta, D. A., Polymeric mixed micelles as nanomedicines: Achievements and perspectives. European Journal of Pharmaceutics and Biopharmaceutics 2017, 113, 211-228.
59. Kim, T.-Y.; Kim, D.-W.; Chung, J.-Y.; Shin, S. G.; Kim, S.-C.; Heo, D. S.; Kim, N. K.; Bang, Y.-J., Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clinical cancer research 2004, 10 (11), 3708-3716.
60. (a) Kedar, U.; Phutane, P.; Shidhaye, S.; Kadam, V., Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine: Nanotechnology, Biology and Medicine 2010, 6 (6), 714-729; (b) Opanasopit, P.; Yokoyama, M.; Watanabe, M.; Kawano, K.; Maitani, Y.; Okano, T., Block copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting. Pharmaceutical research 2004, 21 (11), 2001-2008.
61. Fang, F.; Li, M.; Zhang, J.; Lee, C.-S., Different strategies for organic nanoparticle preparation in biomedicine. ACS Materials Letters 2020, 2 (5), 531-549.
62. (a) Khan, I.; Saeed, K.; Khan, I., Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry 2019, 12 (7), 908-931; (b) Khan, F. A., Synthesis of nanomaterials: methods & technology. In Applications of Nanomaterials in Human Health, Springer: 2020; pp 15-21.
63. (a) Huang, H.-C.; Barua, S.; Sharma, G.; Dey, S. K.; Rege, K., Inorganic nanoparticles for cancer imaging and therapy. Journal of controlled Release 2011, 155 (3), 344-357; (b) Jeelani, S.; Reddy, R. J.; Maheswaran, T.; Asokan, G.; Dany, A.; Anand, B., Theranostics: A treasured tailor for tomorrow. Journal of pharmacy & bioallied sciences 2014, 6 (Suppl 1), S6.
64. Mishra, R.; Mishra, S.; Barot, Y. B., Greener synthesis and stabilization of metallic nanoparticles in ionic liquids. In Handbook of Greener Synthesis of Nanomaterials and Compounds, Elsevier: 2021; pp 245-276.
65. (a) de Barros, H. R.; Piovan, L.; Sassaki, G. L.; de Araujo Sabry, D.; Mattoso, N.; Nunes, Á. M.; Meneghetti, M. R.; Riegel-Vidotti, I. C., Surface interactions of gold nanorods and polysaccharides: From clusters to individual nanoparticles. Carbohydrate polymers 2016, 152, 479-486; (b) Corbierre, M. K.; Cameron, N. S.; Sutton, M.; Mochrie, S. G.; Lurio, L. B.; Rühm, A.; Lennox, R. B., Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices. Journal of the American Chemical Society 2001, 123 (42), 10411-10412.
66. Kulkarni, N.; Muddapur, U., Biosynthesis of metal nanoparticles: a review. Journal of Nanotechnology 2014, 2014.
67. Basu, O.; Das, S. K., Supramolecular inorganic chemistry leading to functional materials. Journal of Chemical Sciences 2020, 132 (1), 1-31.
68. Winter, A.; Schubert, U. S., Synthesis and characterization of metallo-supramolecular polymers. Chemical Society Reviews 2016, 45 (19), 5311-5357.
69. Vitvarova, T.; Svoboda, J.; Hissler, M.; Vohlidal, J., Conjugated metallo-supramolecular polymers containing a phosphole unit. Organometallics 2017, 36 (4), 777-786.
70. Gu, F. X.; Karnik, R.; Wang, A. Z.; Alexis, F.; Levy-Nissenbaum, E.; Hong, S.; Langer, R. S.; Farokhzad, O. C., Targeted nanoparticles for cancer therapy. Nano today 2007, 2 (3), 14-21.
71. Narum, S. M.; Le, T.; Le, D. P.; Lee, J. C.; Donahue, N. D.; Yang, W.; Wilhelm, S., Passive targeting in nanomedicine: fundamental concepts, body interactions, and clinical potential. In Nanoparticles for biomedical applications, Elsevier: 2020; pp 37-53.
72. Torchilin, V., Tumor delivery of macromolecular drugs based on the EPR effect. Advanced drug delivery reviews 2011, 63 (3), 131-135.
73. (a) Langer, R.; Peer, D.; Karp, J.; Hong, S.; Farokhzad, O.; Margalit, R., Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol 2007, 2, 751-760; (b) Matsumura, Y.; Maeda, H., A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer research 1986, 46 (12_Part_1), 6387-6392.
74. (a) Maeda, H., The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in enzyme regulation 2001; (b) Fang, J.; Nakamura, H.; Maeda, H., The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced drug delivery reviews 2011, 63 (3), 136-151.
75. Jain, R. K., Barriers to drug delivery in solid tumors. Scientific American 1994, 271 (1), 58-65.
76. Cho, K.; Wang, X.; Nie, S.; Chen, Z.; Shin, D. M., Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research 2008, 14 (5), 1310-1316.
77. (a) Kamaly, N.; Xiao, Z.; Valencia, P. M.; Radovic-Moreno, A. F.; Farokhzad, O. C., Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chemical Society Reviews 2012, 41 (7), 2971-3010; (b) Wang, X.; Li, S.; Shi, Y.; Chuan, X.; Li, J.; Zhong, T.; Zhang, H.; Dai, W.; He, B.; Zhang, Q., The development of site-specific drug delivery nanocarriers based on receptor mediation. Journal of controlled release 2014, 193, 139-153.
78. Xu, X.; Shi, J.; Farokhzad, O. C., Stimuli-responsive nanoparticles for biomedical applications. Google Patents: 2019.
79. Savla, R.; Taratula, O.; Garbuzenko, O.; Minko, T., Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. Journal of controlled release 2011, 153 (1), 16-22.
80. (a) An, X.; Zhu, A.; Luo, H.; Ke, H.; Chen, H.; Zhao, Y., Rational design of multi-stimuli-responsive nanoparticles for precise cancer therapy. Acs Nano 2016, 10 (6), 5947-5958; (b) Batrakova, E. V.; Bronich, T. K.; Vetro, J. A.; Kabanov, A. V., Polymer micelles as drug carriers. Nanoparticulates as drug carriers 2006, 57-93.
81. Raza, A.; Rasheed, T.; Nabeel, F.; Hayat, U.; Bilal, M.; Iqbal, H. M., Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecules 2019, 24 (6), 1117.
82. Kocak, G.; Tuncer, C.; Bütün, V., pH-Responsive polymers. Polymer Chemistry 2017, 8 (1), 144-176.
83. Warburg, O., On the origin of cancer cells. Science 1956, 123 (3191), 309-314.
84. Gao, W.; Chan, J. M.; Farokhzad, O. C., pH-responsive nanoparticles for drug delivery. Molecular pharmaceutics 2010, 7 (6), 1913-1920.
85. Swietach, P.; Vaughan-Jones, R. D.; Harris, A. L.; Hulikova, A., The chemistry, physiology and pathology of pH in cancer. Philosophical Transactions of the Royal Society B: Biological Sciences 2014, 369 (1638), 20130099.
86. Tang, H.; Zhao, W.; Yu, J.; Li, Y.; Zhao, C., Recent development of pH-responsive polymers for cancer nanomedicine. Molecules 2018, 24 (1), 4.
87. Nikravan, G.; Haddadi-Asl, V.; Salami-Kalajahi, M., Synthesis of dual temperature–and pH-responsive yolk-shell nanoparticles by conventional etching and new deswelling approaches: DOX release behavior. Colloids and Surfaces B: Biointerfaces 2018, 165, 1-8.
88. Raza, A.; Hayat, U.; Rasheed, T.; Bilal, M.; Iqbal, H. M., “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review. Journal of Materials Research and Technology 2019, 8 (1), 1497-1509.
89. Nagareddy, R.; Thomas, R. G.; Jeong, Y. Y., Stimuli-Responsive Polymeric Nanomaterials for the Delivery of Immunotherapy Moieties: Antigens, Adjuvants and Agonists. International Journal of Molecular Sciences 2021, 22 (22), 12510.
90. Li, M.; Chen, Z., Thermo‐responsive polymers for thermal regulation in electrochemical energy devices. Journal of Polymer Science 2021, 59 (20), 2230-2245.
91. Ward, M. A.; Georgiou, T. K., Thermoresponsive polymers for biomedical applications. Polymers 2011, 3 (3), 1215-1242.
92. Zhang, M.; Xu, C.; Wen, L.; Han, M. K.; Xiao, B.; Zhou, J.; Zhang, Y.; Zhang, Z.; Viennois, E.; Merlin, D., A hyaluronidase-responsive nanoparticle-based drug delivery system for targeting colon cancer cells. Cancer research 2016, 76 (24), 7208-7218.
93. Napoli, A.; Valentini, M.; Tirelli, N.; Müller, M.; Hubbell, J. A., Oxidation-responsive polymeric vesicles. Nature materials 2004, 3 (3), 183-189.
94. Seuring, J.; Agarwal, S., Polymers with upper critical solution temperature in aqueous solution: Unexpected properties from known building blocks. ACS Publications: 2013.
95. Seuring, J.; Agarwal, S., Polymers with upper critical solution temperature in aqueous solution. Macromolecular rapid communications 2012, 33 (22), 1898-1920.
96. Huglin, M. B.; Radwan, M. A., Unperturbed dimensions of a zwitterionic polymethacrylate. Polymer international 1991, 26 (2), 97-104.
97. Park, Y.; Hashimoto, C.; Ozaki, Y.; Jung, Y. M., Understanding the phase transition of linear poly (N-isopropylacrylamide) gel under the heating and cooling processes. Journal of Molecular Structure 2016, 1124, 144-150.
98. (a) Sundström, V., Light in elementary biological reactions. Progress in Quantum Electronics 2000, 24 (5), 187-238; (b) Figg, C. A.; Hickman, J. D.; Scheutz, G. M.; Shanmugam, S.; Carmean, R. N.; Tucker, B. S.; Boyer, C.; Sumerlin, B. S., Color-coding visible light polymerizations to elucidate the activation of trithiocarbonates using Eosin Y. Macromolecules 2018, 51 (4), 1370-1376; (c) Tucker, B. S.; Coughlin, M. L.; Figg, C. A.; Sumerlin, B. S., Grafting-from proteins using metal-free PET–RAFT polymerizations under mild visible-light irradiation. ACS Macro Letters 2017, 6 (4), 452-457.
99. Zhao, Y., Light-responsive block copolymer micelles. Macromolecules 2012, 45 (9), 3647-3657.
100. (a) Katz, J. S.; Zhong, S.; Ricart, B. G.; Pochan, D. J.; Hammer, D. A.; Burdick, J. A., Modular synthesis of biodegradable diblock copolymers for designing functional polymersomes. Journal of the American Chemical Society 2010, 132 (11), 3654-3655; (b) Cabane, E.; Malinova, V.; Menon, S.; Palivan, C. G.; Meier, W., Photoresponsive polymersomes as smart, triggerable nanocarriers. Soft Matter 2011, 7 (19), 9167-9176.
101. Han, D.; Tong, X.; Zhao, Y., Fast photodegradable block copolymer micelles for burst release. Macromolecules 2011, 44 (3), 437-439.
102. Jiang, J.; Qi, B.; Lepage, M.; Zhao, Y., Polymer micelles stabilization on demand through reversible photo-cross-linking. Macromolecules 2007, 40 (4), 790-792.
103. Trenor, S. R.; Shultz, A. R.; Love, B. J.; Long, T. E., Coumarins in polymers: from light harvesting to photo-cross-linkable tissue scaffolds. Chemical reviews 2004, 104 (6), 3059-3078.
104. Lino, M. M.; Ferreira, L., Light-triggerable formulations for the intracellular controlled release of biomolecules. Drug Discovery Today 2018, 23 (5), 1062-1070.
105. Jung, S. H.; Na, K.; Lee, S. A.; Cho, S. H.; Seong, H.; Shin, B. C., Gd (III)-DOTA-modified sonosensitive liposomes for ultrasound-triggered release and MR imaging. Nanoscale research letters 2012, 7 (1), 1-10.
106. (a) Vivero-Escoto, J. L.; Slowing, I. I.; Wu, C.-W.; Lin, V. S.-Y., Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. Journal of the American Chemical Society 2009, 131 (10), 3462-3463; (b) Tong, R.; Hemmati, H. D.; Langer, R.; Kohane, D. S., Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. Journal of the American Chemical Society 2012, 134 (21), 8848-8855.
107. Yuan, Q.; Zhang, Y.; Chen, T.; Lu, D.; Zhao, Z.; Zhang, X.; Li, Z.; Yan, C.-H.; Tan, W., Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid. ACS nano 2012, 6 (7), 6337-6344.
108. Majumder, J.; Minko, T., Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opinion on Drug Delivery 2021, 18 (2), 205-227.
109. Lu, F.; Chen, Y.; Fu, B.; Chen, S.; Wang, L., Multistimuli responsive supramolecular polymer networks via host-guest complexation of pillararene-containing polymers and sulfonium salts. Chinese Chemical Letters 2022.
110. Šponer, J.; Leszczynski, J.; Hobza, P., Hydrogen bonding, stacking and cation binding of DNA bases. Journal of Molecular Structure: THEOCHEM 2001, 573 (1-3), 43-53.
111. McHale, R.; O’Reilly, R. K., Nucleobase containing synthetic polymers: advancing biomimicry via controlled synthesis and self-assembly. Macromolecules 2012, 45 (19), 7665-7675.
112. Sikder, A.; Esen, C.; O’Reilly, R. K., Nucleobase-Interaction-Directed Biomimetic Supramolecular Self-Assembly. Accounts of Chemical Research 2022, 9747-9757.
113. (a) Dong, R.; Zhou, Y.; Huang, X.; Zhu, X.; Lu, Y.; Shen, J., Functional supramolecular polymers for biomedical applications. Advanced materials 2015, 27 (3), 498-526; (b) Hendrikse, S. I.; Dankers, P. Y.; Meijer, E., From supramolecular polymers to multi-component biomaterials. 2017.
114. Li, Z.-T.; Wu, L.-Z., Hydrogen bonded supramolecular structures. Springer: 2015; Vol. 87.
115. Crowley, J. D.; Goshe, A. J.; Bosnich, B., Molecular recognition. Self-assembly of molecular trigonal prisms and their host–guest adducts. Chemical communications 2003, (22), 2824-2825.
116. Adams, H.; Hunter, C. A.; Lawson, K. R.; Perkins, J.; Spey, S. E.; Urch, C. J.; Sanderson, J. M., A supramolecular system for quantifying aromatic stacking interactions. Chemistry–A European Journal 2001, 7 (22), 4863-4877.
117. Desiraju, G. R.; Steiner, T., The weak hydrogen bond: in structural chemistry and biology. International Union of Crystal: 2001; Vol. 9.
118. Li, J.; Wang, Z.; Hua, Z.; Tang, C., Supramolecular nucleobase-functionalized polymers: Synthesis and potential biological applications. Journal of Materials Chemistry B 2020, 8 (8), 1576-1588.
119. Zhou, Q.; Rokita, S. E., A general strategy for target-promoted alkylation in biological systems. Proceedings of the National Academy of Sciences 2003, 100 (26), 15452-15457.
120. Bertolasi, V.; Gilli, P.; Gilli, G., Hydrogen Bonding and Electron Donor− Acceptor (EDA) Interactions Controlling the Crystal Packing of Picric Acid and Its Adducts with Nitrogen Bases. Their Rationalization in Terms of the p K a Equalization and Electron-Pair Saturation Concepts. Crystal growth & design 2011, 11 (7), 2724-2735.
121. Del Prado, A.; González‐Rodríguez, D.; Wu, Y. L., Functional Systems Derived from Nucleobase Self‐assembly. ChemistryOpen 2020, 9 (4), 409-430.
122. (a) Sijbesma, R. P.; Meijer, E., Self-assembly of well-defined structures by hydrogen bonding. Current opinion in colloid & interface science 1999, 4 (1), 24-32; (b) Fredericks, J.; Hamilton, A., Comprehensive Supramolecular Chemistry. vol 1996, 9, 565.
123. de Greef, T. F.; Meijer, E., Supramolecular polymers. Nature 2008, 453 (7192), 171-173.
124. Cheng, C.-C.; Gebeyehu, B. T.; Huang, S.-Y.; Alemayehu, Y. A.; Sun, Y.-T.; Lai, Y.-C.; Chang, Y.-H.; Lai, J.-Y.; Lee, D.-J., Entrapment of an adenine derivative by a photo-irradiated uracil-functionalized micelle confers controlled self-assembly behavior. Journal of colloid and interface science 2019, 552, 166-178.
125. Karabıyık, H.; Sevinçek, R.; Karabıyık, H., π-Cooperativity effect on the base stacking interactions in DNA: is there a novel stabilization factor coupled with base pairing H-bonds? Physical Chemistry Chemical Physics 2014, 16 (29), 15527-15538.
126. Pu, F.; Ren, J.; Qu, X., Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials. Chemical Society Reviews 2018, 47 (4), 1285-1306.
127. (a) Ariga, K.; Ishihara, S.; Labuta, J.; P Hill, J., Supramolecular approaches to nanotechnology: switching properties and dynamic functions. Current Organic Chemistry 2011, 15 (21), 3719-3733; (b) Dobrawa, R.; Würthner, F., Metallosupramolecular approach toward functional coordination polymers. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43 (21), 4981-4995.
128. Ghiassinejad, S.; Mortensen, K.; Rostamitabar, M.; Malineni, J.; Fustin, C.-A.; Van Ruymbeke, E., Dynamics and Structure of Metallo-supramolecular Polymers Based on Short Telechelic Precursors. Macromolecules 2021, 54 (13), 6400-6416.
129. Beck, J. B.; Rowan, S. J., Multistimuli, multiresponsive metallo-supramolecular polymers. Journal of the American Chemical Society 2003, 125 (46), 13922-13923.
130. Zhou, P.; Shi, R.; Yao, J.-f.; Sheng, C.-f.; Li, H., Supramolecular self-assembly of nucleotide–metal coordination complexes: From simple molecules to nanomaterials. Coordination Chemistry Reviews 2015, 292, 107-143.
131. Zhang, J.; Su, C.-Y., Metal-organic gels: From discrete metallogelators to coordination polymers. Coordination Chemistry Reviews 2013, 257 (7-8), 1373-1408.
132. Funai, T.; Aotani, M.; Kiriu, R.; Nakamura, J.; Miyazaki, Y.; Nakagawa, O.; Wada, S. i.; Torigoe, H.; Ono, A.; Urata, H., Silver (I)‐Ion‐Mediated Cytosine‐Containing Base Pairs: Metal Ion Specificity for Duplex Stabilization and Susceptibility toward DNA Polymerases. ChemBioChem 2020, 21 (4), 517-522.
133. Ono, A.; Torigoe, H.; Tanaka, Y.; Okamoto, I., Binding of metal ions by pyrimidine base pairs in DNA duplexes. Chemical society reviews 2011, 40 (12), 5855-5866.
134. Takezawa, Y.; Suzuki, A.; Nakaya, M.; Nishiyama, K.; Shionoya, M., Metal-dependent dna base pairing of 5-carboxyuracil with itself and all four canonical nucleobases. Journal of the American Chemical Society 2020, 142 (52), 21640-21644.
135. Houlton, A., New aspects of metal-nucleobase chemistry. 2002.
136. Manayia, A. H.; Ilhami, F. B.; Lee, A.-W.; Cheng, C.-C., Photoreactive Cytosine-Functionalized Self-Assembled Micelles with Enhanced Cellular Uptake Capability for Efficient Cancer Chemotherapy. Biomacromolecules 2021, 22 (12), 5307-5318.
137. Fan, M.; Yan, J.; Tan, H.; Ben, D.; He, Q.; Huang, Z.; Hu, X., Nanostructured gel scaffolds for osteogenesis through biological assembly of biopolymers via specific nucleobase pairing. Macromolecular Bioscience 2014, 14 (11), 1521-1527.
138. Watson, J. D.; Crick, F. H., Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 1953, 171 (4356), 737-738.
139. (a) Sherrington, D. C.; Taskinen, K. A., Self-assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions. Chemical Society Reviews 2001, 30 (2), 83-93; (b) Yagai, S., Supramolecular complexes of functional chromophores based on multiple hydrogen-bonding interactions. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2006, 7 (4), 164-182; (c) Lawrence, D. S.; Jiang, T.; Levett, M., Self-assembling supramolecular complexes. Chemical Reviews 1995, 95 (6), 2229-2260.
140. (a) Gu, R.; Oweida, T.; Yingling, Y. G.; Chilkoti, A.; Zauscher, S., Enzymatic synthesis of nucleobase-modified single-stranded DNA offers tunable resistance to nuclease degradation. Biomacromolecules 2018, 19 (8), 3525-3535; (b) Liu, L.; Wang, R.; Wang, C.; Wang, J.; Chen, L.; Cheng, J., Light-triggered release of drug conjugates for an efficient combination of chemotherapy and photodynamic therapy. Biomaterials science 2018, 6 (5), 997-1001; (c) Guo, Z.; Sui, J.; Ma, M.; Hu, J.; Sun, Y.; Yang, L.; Fan, Y.; Zhang, X., pH-Responsive charge switchable PEGylated ε-poly-l-lysine polymeric nanoparticles-assisted combination therapy for improving breast cancer treatment. Journal of Controlled Release 2020, 326, 350-364; (d) Li, Z.; Huang, J.; Wu, J., pH-Sensitive nanogels for drug delivery in cancer therapy. Biomaterials science 2021, 9 (3), 574-589.
141. Lee, R.-S.; Peng, K.-Y.; Wang, S.-W.; Li, Y.-Z., Synthesis and characterization of amphiphilic poly (pseudo-amino acid) polymers containing a nucleobase. Polymer Journal 2014, 46 (10), 710-721.
142. Deng, H.; Lin, L.; Wang, S.; Yu, G.; Zhou, Z.; Liu, Y.; Niu, G.; Song, J.; Chen, X., X‐ray‐Controlled Bilayer Permeability of Bionic Nanocapsules Stabilized by Nucleobase Pairing Interactions for Pulsatile Drug Delivery. Advanced Materials 2019, 31 (37), 1903443.
143. Schreier, W. J.; Schrader, T. E.; Koller, F. O.; Gilch, P.; Crespo-Hernández, C. E.; Swaminathan, V. N.; Carell, T.; Zinth, W.; Kohler, B., Thymine dimerization in DNA is an ultrafast photoreaction. Science 2007, 315 (5812), 625-629.
144. Varghese, A.; Rupert, C. S. ULTRAVIOLET IRRADIATION OF CYTOSINE NUCLEOSIDES IN FROZEN SOLUTION PRODUCES CYCLOBUTANE-TYPE DIMERIC PRODUCTS; Univ. of Texas, Dallas: 1971.
145. Niggli, H. J., DETERMINATION OF CYTOSINE‐CYTOSINE PHOTODIMERS IN THE DNA OF CLOUDMAN S91 MELANOMA CELLS USING HIGH PRESSURE LIQUID CHROMATOGRAPHY. Photochemistry and photobiology 1992, 55 (5), 793-796.
146. (a) Cheng, C.-C.; Chang, F.-C.; Wang, J.-H.; Chu, Y.-L.; Wang, Y.-S.; Lee, D.-J.; Chuang, W.-T.; Xin, Z., Large-scale production of ureido-cytosine based supramolecular polymers with well-controlled hierarchical nanostructures. RSC advances 2015, 5 (93), 76451-76457; (b) Cheng, C.-C.; Yang, X.-J.; Fan, W.-L.; Lee, A.-W.; Lai, J.-Y., Cytosine-functionalized supramolecular polymer-mediated cellular behavior and wound healing. Biomacromolecules 2020, 21 (9), 3857-3866.
147. Rochette, P. J.; Lacoste, S.; Therrien, J.-P.; Bastien, N.; Brash, D. E.; Drouin, R., Influence of cytosine methylation on ultraviolet-induced cyclobutane pyrimidine dimer formation in genomic DNA. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2009, 665 (1-2), 7-13.
148. Gebeyehu, B. T.; Huang, S.-Y.; Lee, A.-W.; Chen, J.-K.; Lai, J.-Y.; Lee, D.-J.; Cheng, C.-C., Dual stimuli-responsive nucleobase-functionalized polymeric systems as efficient tools for manipulating micellar self-assembly behavior. Macromolecules 2018, 51 (3), 1189-1197.
149. Zhao, Y.; Tremblay, L.; Zhao, Y., Phototunable LCST of water-soluble polymers: exploring a topological effect. Macromolecules 2011, 44 (10), 4007-4011.
150. Zhou, Q.; Zhang, L.; Yang, T.; Wu, H., Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. International journal of nanomedicine 2018, 13, 2921.
151. (a) Kuang, H.; Wu, S.; Xie, Z.; Meng, F.; Jing, X.; Huang, Y., Biodegradable amphiphilic copolymer containing nucleobase: synthesis, self-assembly in aqueous solutions, and potential use in controlled drug delivery. Biomacromolecules 2012, 13 (9), 3004-3012; (b) Ke, X.; Ng, V. W. L.; Ono, R. J.; Chan, J. M.; Krishnamurthy, S.; Wang, Y.; Hedrick, J. L.; Yang, Y. Y., Role of non-covalent and covalent interactions in cargo loading capacity and stability of polymeric micelles. Journal of Controlled Release 2014, 193, 9-26.
152. Fuguet, E.; Ràfols, C.; Rosés, M.; Bosch, E., Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems. Analytica Chimica Acta 2005, 548 (1-2), 95-100.
153. (a) Xiao, K.; Luo, J.; Li, Y.; Lee, J. S.; Fung, G.; Lam, K. S., PEG-oligocholic acid telodendrimer micelles for the targeted delivery of doxorubicin to B-cell lymphoma. Journal of controlled release 2011, 155 (2), 272-281; (b) Hsiue, G.-H.; Wang, C.-H.; Lo, C.-L.; Wang, C.-H.; Li, J.-P.; Yang, J.-L., Environmental-sensitive micelles based on poly (2-ethyl-2-oxazoline)-b-poly (L-lactide) diblock copolymer for application in drug delivery. International journal of pharmaceutics 2006, 317 (1), 69-75.
154. Gebeyehu, B. T.; Lee, A.-W.; Huang, S.-Y.; Muhabie, A. A.; Lai, J.-Y.; Lee, D.-J.; Cheng, C.-C., Highly stable photosensitive supramolecular micelles for tunable, efficient controlled drug release. European Polymer Journal 2019, 110, 403-412.
155. (a) Li, Y.; Ding, J.; Zhu, J.; Tian, H.; Chen, X., Photothermal effect-triggered drug release from hydrogen bonding-enhanced polymeric micelles. Biomacromolecules 2018, 19 (6), 1950-1958; (b) Kim, S. H.; Tan, J. P.; Nederberg, F.; Fukushima, K.; Colson, J.; Yang, C.; Nelson, A.; Yang, Y.-Y.; Hedrick, J. L., Hydrogen bonding-enhanced micelle assemblies for drug delivery. Biomaterials 2010, 31 (31), 8063-8071.
156. Lu, J.; Owen, S. C.; Shoichet, M. S., Stability of self-assembled polymeric micelles in serum. Macromolecules 2011, 44 (15), 6002-6008.
157. Ilhami, F. B.; Huang, S.-Y.; Chen, J.-K.; Kao, C.-Y.; Cheng, C.-C., Multifunctional adenine-functionalized supramolecular micelles for highly selective and effective cancer chemotherapy. Polymer Chemistry 2020, 11 (4), 849-856.
158. (a) Kuang, H.; Wu, S.; Meng, F.; Xie, Z.; Jing, X.; Huang, Y., Core-crosslinked amphiphilic biodegradable copolymer based on the complementary multiple hydrogen bonds of nucleobases: synthesis, self-assembly and in vitro drug delivery. Journal of Materials Chemistry 2012, 22 (47), 24832-24840; (b) Yan, K.; Zhang, S.; Zhang, K.; Miao, Y.; Qiu, Y.; Zhang, P.; Jia, X.; Zhao, X., Enzyme-responsive polymeric micelles with fluorescence fabricated through aggregation-induced copolymer self-assembly for anticancer drug delivery. Polymer Chemistry 2020, 11 (48), 7704-7713.
159. Wang, C.; Zhang, G.; Liu, G.; Hu, J.; Liu, S., Photo-and thermo-responsive multicompartment hydrogels for synergistic delivery of gemcitabine and doxorubicin. Journal of Controlled Release 2017, 259, 149-159.
160. Wang, D.; Jin, Y.; Zhu, X.; Yan, D., Synthesis and applications of stimuli-responsive hyperbranched polymers. Progress in Polymer Science 2017, 64, 114-153.
161. (a) Vermes, I.; Haanen, C.; Steffens-Nakken, H.; Reutellingsperger, C., A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. Journal of immunological methods 1995, 184 (1), 39-51; (b) Van Engeland, M.; Nieland, L. J.; Ramaekers, F. C.; Schutte, B.; Reutelingsperger, C. P., Annexin V‐affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry: The Journal of the International Society for Analytical Cytology 1998, 31 (1), 1-9.
162. Wang, T.; Dong, J.; Yuan, X.; Wen, H.; Wu, L.; Liu, J.; Sui, H.; Deng, W., A new chalcone derivative C49 reverses doxorubicin resistance in MCF-7/DOX cells by inhibiting p-glycoprotein expression. Frontiers in pharmacology 2021, 12, 653306.
163. (a) Spokoyny, A. M.; Kim, D.; Sumrein, A.; Mirkin, C. A., Infinite coordination polymer nano-and microparticle structures. Chemical Society Reviews 2009, 38 (5), 1218-1227; (b) Wang, S.; McGuirk, C. M.; d'Aquino, A.; Mason, J. A.; Mirkin, C. A., Metal–organic framework nanoparticles. Advanced Materials 2018, 30 (37), 1800202.
164. (a) Xu, N.; Li, Y.; Cheng, Q.; Zhang, G., Structures and properties of two coordination polymers constructed by the semirigid bi-functional 5-((1-methyl-1H-tetrazol-5-yl) thio) isophthalic acid ligand. Journal of Solid State Chemistry 2018, 258, 453-459; (b) Boutar, M.; Desroches, C.; Mattoussi, N.; Noamane, M. H.; Bois, L.; Gautier-Luneau, I.; Abidi, R.; Luneau, D., Coordination polymers of zinc (II) and manganese (II) made by complexation of calix [4] arene functionalized with carboxylates afford alveolar materials. Inorganica Chimica Acta 2019, 486, 562-567.
165. (a) Han, F. S.; Higuchi, M.; Kurth, D. G., Metallo‐supramolecular polymers based on functionalized bis‐terpyridines as novel electrochromic materials. Advanced Materials 2007, 19 (22), 3928-3931; (b) Knapton, D.; Burnworth, M.; Rowan, S. J.; Weder, C., Fluorescent Organometallic Sensors for the Detection of Chemical‐Warfare‐Agent Mimics. Angewandte Chemie 2006, 118 (35), 5957-5961.
166. (a) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–organic framework materials as chemical sensors. Chemical reviews 2012, 112 (2), 1105-1125; (b) Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C., Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature materials 2010, 9 (2), 172-178.
167. Jeyakkumar, P.; Liang, Y.; Guo, M.; Lu, S.; Xu, D.; Li, X.; Guo, B.; He, G.; Chu, D.; Zhang, M., Emissive metallacycle‐crosslinked supramolecular networks with tunable crosslinking densities for bacterial imaging and killing. Angewandte Chemie International Edition 2020, 59 (35), 15199-15203.
168. Nishiyabu, R.; Hashimoto, N.; Cho, T.; Watanabe, K.; Yasunaga, T.; Endo, A.; Kaneko, K.; Niidome, T.; Murata, M.; Adachi, C., Nanoparticles of adaptive supramolecular networks self-assembled from nucleotides and lanthanide ions. Journal of the American Chemical Society 2009, 131 (6), 2151-2158.
169. Liu, D.; Kramer, S. A.; Huxford-Phillips, R. C.; Wang, S.; Della Rocca, J.; Lin, W., Coercing bisphosphonates to kill cancer cells with nanoscale coordination polymers. Chemical Communications 2012, 48 (21), 2668-2670.
170. Alemayehu, Y. A.; Fan, W.-L.; Ilhami, F. B.; Chiu, C.-W.; Lee, D.-J.; Cheng, C.-C., Photosensitive supramolecular micelle-mediated cellular uptake of anticancer drugs enhances the efficiency of chemotherapy. International journal of molecular sciences 2020, 21 (13), 4677.
171. (a) Chun, H. J.; Kim, S.; Han, Y. D.; Kim, D. W.; Kim, K. R.; Kim, H.-S.; Kim, J.-H.; Yoon, H. C., Water-soluble mercury ion sensing based on the thymine-Hg2+-thymine base pair using retroreflective Janus particle as an optical signaling probe. Biosensors and Bioelectronics 2018, 104, 138-144; (b) Ono, A.; Togashi, H., Highly selective oligonucleotide‐based sensor for mercury (II) in aqueous solutions. Angewandte Chemie 2004, 116 (33), 4400-4402.
172. Zhao, R.; Kong, W.; Sun, M.; Yang, Y.; Liu, W.; Lv, M.; Song, S.; Wang, L.; Song, H.; Hao, R., Highly stable graphene-based nanocomposite (GO–PEI–Ag) with broad-spectrum, long-term antimicrobial activity and antibiofilm effects. ACS applied materials & interfaces 2018, 10 (21), 17617-17629.
173. Wirth, T. H.; Davidson, N., Studies of the chemistry of mercury in aqueous solution. I. Mercury (I) and mercury (II) complexes of aniline. Journal of the American Chemical Society 1964, 86 (20), 4314-4318.
174. (a) Rajendran, A.; Endo, M.; Katsuda, Y.; Hidaka, K.; Sugiyama, H., Photo-cross-linking-assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly. Journal of the American Chemical Society 2011, 133 (37), 14488-14491; (b) Hua, Z.; Wilks, T. R.; Keogh, R.; Herwig, G.; Stavros, V. G.; O’Reilly, R. K., Entrapment and rigidification of adenine by a photo-cross-linked thymine network leads to fluorescent polymer nanoparticles. Chemistry of Materials 2018, 30 (4), 1408-1416.
175. Zhu, C.; Xiao, J.; Tang, M.; Feng, H.; Chen, W.; Du, M., Platinum covalent shell cross-linked micelles designed to deliver doxorubicin for synergistic combination cancer therapy. International journal of nanomedicine 2017, 12, 3697.
176. (a) Honary, S.; Zahir, F., Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Tropical Journal of Pharmaceutical Research 2013, 12 (2), 255-264; (b) Honary, S.; Zahir, F., Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Tropical journal of pharmaceutical research 2013, 12 (2), 265-273.
177. (a) Choi, J.; Reipa, V.; Hitchins, V. M.; Goering, P. L.; Malinauskas, R. A., Physicochemical characterization and in V itro hemolysis evaluation of silver nanoparticles. Toxicological Sciences 2011, 123 (1), 133-143; (b) Hisey, B.; Ragogna, P. J.; Gillies, E. R., Phosphonium-functionalized polymer micelles with intrinsic antibacterial activity. Biomacromolecules 2017, 18 (3), 914-923.
178. Kalyane, D.; Raval, N.; Maheshwari, R.; Tambe, V.; Kalia, K.; Tekade, R. K., Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Materials Science and Engineering: C 2019, 98, 1252-1276.
179. (a) Dai, S.; Tam, K., Isothermal titration calorimetric studies on the temperature dependence of binding interactions between poly (propylene glycol) s and sodium dodecyl sulfate. Langmuir 2004, 20 (6), 2177-2183; (b) Bordat, A.; Boissenot, T.; Nicolas, J.; Tsapis, N., Thermoresponsive polymer nanocarriers for biomedical applications. Advanced drug delivery reviews 2019, 138, 167-192.
180. Che, Y.; Yang, X.; Zang, L., Ultraselective fluorescent sensing of Hg 2+ through metal coordination-induced molecular aggregation. Chemical communications 2008, (12), 1413-1415.
181. Siddique, S.; Chow, J. C., Application of nanomaterials in biomedical imaging and cancer therapy. Nanomaterials 2020, 10 (9), 1700.
182. Gerweck, L. E.; Seetharaman, K., Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer research 1996, 56 (6), 1194-1198.
183. (a) Dausend, J.; Musyanovych, A.; Dass, M.; Walther, P.; Schrezenmeier, H.; Landfester, K.; Mailänder, V., Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromolecular bioscience 2008, 8 (12), 1135-1143; (b) Chen, B.; Le, W.; Wang, Y.; Li, Z.; Wang, D.; Ren, L.; Lin, L.; Cui, S.; Hu, J. J.; Hu, Y., Targeting negative surface charges of cancer cells by multifunctional nanoprobes. Theranostics 2016, 6 (11), 1887.
184. (a) Adam, G.; Adam, G., Cell surface charge and regulation of cell division of 3T3 cells and transformed derivatives. Experimental cell research 1975, 93 (1), 71-78; (b) Le, W.; Chen, B.; Cui, Z.; Liu, Z.; Shi, D., Detection of cancer cells based on glycolytic-regulated surface electrical charges. Biophysics Reports 2019, 5 (1), 10-18.
185. Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M. A.; Alkawareek, M. Y.; Dreaden, E. C.; Brown, D.; Alkilany, A. M.; Farokhzad, O. C.; Mahmoudi, M., Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews 2017, 46 (14), 4218-4244.

QR CODE