簡易檢索 / 詳目顯示

研究生: 蕭宏達
Hung-Da Hsiao
論文名稱: 呼吸現象與粒子在分歧氣管之運動數值模擬
Numerical Simulations of Particle Motion and Pulmonary Phenomena in Bifurcated Lung Airways
指導教授: 陳明志 
Ming-Jyh Chern
口試委員: 孫珍理
none
詹明宜
none
牛仰堯
Yang-Yao Niu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 93
中文關鍵詞: 氣膠沈積呼吸力學呼吸效率質量傳輸支氣管
外文關鍵詞: Pulmonary dynamics, Branching Tubes, Mass Transfer, Lung, Pulmonary efficiency., Aerosol deposition
相關次數: 點閱:227下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用數值方法來模擬呼吸原理與粒子在分歧氣管之運動模擬。利用改變雷諾數(Reynolds number)和沃斯理數(Womersley number)來模擬不同的呼吸狀態。
以一個呼吸週期(T)來看,吸氣過程時,在T/4和T/2間,氣管的外側邊壁開始產生迴流區域,
吸入的氧氣被擠壓到氣管的內側邊壁。呼氣過程時,在3T/4和T間,氣管的分歧區域和外側的邊壁上開始產生迴流區域,氧氣被滯留到分歧管內側邊壁和外側的邊壁上,下一次吸氣時再將滯留的氧氣往分歧管內部推進。隨著不斷的呼吸,使得吸入的氧氣能夠逐漸的進入氣管內層,完成氣體交換。

在觀察不同呼吸狀態下的呼吸效率發現,若是增加吸入氣體的體積,呼吸效率會隨之增加。
若是降低呼吸的頻率,呼吸效率也會隨之增加。粒子在分歧氣管之運動模擬結果觀察出,
呼氣時,會有部分的微粒子沈積在氣管的分歧區域表面和氣管管壁表面上,若是降低呼吸頻率,微粒子在氣管內沈積率會隨之增加。若是減少吸入的呼吸流量,微粒子在氣管內的沈積效率也會隨之增加。


Numerical approaches were performed to simulate the particle motions in bifurcated lung airways and phenomena of pulmonary.Nondimensional parameters, Reynolds number and Womersley number, were used to observe effects breathing patterns on pulmonary efficiency and particle motions.When we observe pulmonary phenomena in airways in a breath cycle(T), separation regions formed on the side walls of the bifurcations were observed between T/4 and T/2 during inspiration.
The incoming O2 was carried to the regions near inner walls of the bifurcations.During expiration, separation regions formed at two different places were observed between 3T/4 and T.The first one was found at the intersection between daughter and parent tubes, and the other one appeared downstream in the regions near the side walls of bifurcations.Some of O2 were trapped in the separation regions.
Subsequently, in the next inspiration, the trapped O2 was carried further downstream the alveoli.

Comparing the pulmonary efficiency among different breathing condition, we found that, increasing respiratory volume could enhance the breathing efficiency.However, decreasing oscillation frequency may also improve the breathing efficiency.Comparing the particle deposition efficiency among a variety of breathing condition, it was found that a few of particles deposit on the intersection surface between parent and daughter tubes and the surface of bifurcations.Decreasing in breathing frequency could improve the particle deposition efficiencies.Nonethless, decreasung respiratory volume may enhance the particle deposition efficiency.

目錄 中文摘要...........................................................i 英文摘要...........................................................ii 致謝...............................................................iv 目錄...............................................................v 符號索引...........................................................vii 圖目錄.............................................................x 1 導論 1.1 研究動機與研究目的...............................................1 1.2 文獻回顧........................................................2 1.3 論文架構........................................................6 2 物理模型與理論分析 2.1 氣管的幾何模型簡介與建構方法.......................................7 2.2 數學模式........................................................10 2.2.1 數學模式......................................................10 2.2.2 流場參數之定義.................................................11 2.2.3 邊界條件......................................................13 2.3 小結............................................................13 3 數值模式 3.1 計算流體軟體之簡介與建構方法.......................................15 3.2 計算網格........................................................17 3.2.1 網格點的產生方法...............................................17 3.2.2 格點模型的建立.................................................18 3.3 數值模擬模式與參數設定............................................19 3.4 計算設備和時間...................................................20 3.5 數值驗證........................................................20 3.6 小結...........................................................21 4 呼吸力學基本機制的基本探討 4.1 呼吸力學基本機制的介紹............................................23 4.2 實驗與數值運算的比較與討論.........................................25 4.3 流場型態與濃度分析................................................26 4.3.1 不同呼吸狀態下氣管縱向剖面的流場與濃度分析.........................26 4.3.2 不同呼吸狀態下氣管橫向剖面的流場分析..............................29 4.4 呼吸效率比較.....................................................30 4.5 小結............................................................32 5 氣管內微粒子運動模擬 5.1 數值運算設定.....................................................36 5.2 微粒子在氣管內的運動軌跡可視化-以正常呼吸為例........................37 5.3 微粒子在氣管內的運動軌跡可視化-以不同呼吸模態為例....................39 5.4 小結............................................................41 6 結論與建議 6.1 結論............................................................43 6.2 建議............................................................45 參考文獻............................................................47

[1] Weibel, B.J., 1963, Morphometry of the Human Lung, Academic Press, New York, USA.
[2] Pedley, T.J., 1977, Pulmonary fluid dynamics. Annu. Rev. Fluid Mech 9, 229-274.
[3] Grotberg, J.B., 1994, Pulmonary flow and transport phenomena. Annu. Rev. Fluid Mech 26, 529-571.
[4] Ukil, S. and Reinhardt, J. M., 2004, Smoothing lung segmentation surfaces in 3D x-ray CT images using anatomic guidance. Proceedings of SPIE - The International Society for Optical Engineering, Progress in Biomedical Optics and Imaging - Medical Imaging2004: Imaging Processing 5370, 1066-1075,International Society for Optical Engineering, Bellingham, WA 98227-0010, USA.
[5] Kiraly, A.P., Higgins, W.E., Hoffman, E.A., McLennan, G. and Reinhardt, J.M., 2002, 3D human airway segmentation for virtual bronchoscopy. Physiology and Function From Multidimensional Images 4683, 16-29.
[6] Aykac, D., Hoffman, E.A., McLennan, G. and Reinhardt, J.M., 2003, Segmentation and analysis of the human airway tree from tree-dimensional x-ray CT images. IEEE Transactions on Medical Imaging 22, 940-950.
[7] Li, B. J., Christensen, G. E., Hoffman, E.A., McLennan, G. and Reinhardt, J.M., 2003, Establishing a normative atlas of the human lung: intersubject warping and registration of volumetric CT images. Acad Radiol 10, 255-265.
[8] Mochizuki, S., 2003, Convective mass transport during ventilation in a model of branched airways of human lungs. Proceedings of Pacific Symposium on Flow Visualization and Image Processing 4, Chamonix Mont-Blanc, France.
[9] Horikomi, T. and Watanabe, T., 2003, Diffusion enhancement in high frequency ventilation(HFV) in a double-bifurcation airway model. Proceedings of Pacific Symposium on Flow Visualization and Image Processing 4, Chamonix Mont-Blanc, France.
[10] Heyder, J., Gebhart, J., Rudolf, G., Schiller, C. F. and Stahlhofen, W., 1986, Deposition of particles in the human respiratory tract in the size range 0.005-15μm. J. Aerosol Sci. 17, 811-825.
[11] Zhang, Z., Kleinstreuer, C. and Kim, C.S., 2002, Gas-solid two-phase flow in a triple bifurcation lung airway model. International Journal of Multiphase Flow 28, 1021-1046.
[12] Zhang, Z. and Kleinstreuer, C., 2003, Species heat and mass transfer in a human upper airway model. International Journal of Heat and Mass Transfer 46, 4755-4768.
[13] Brucker, Ch. and Schroder, W., 2003, Flow visualization in a model of the bronchial tree in the human lung airways via 3-D PIV. Proceedings of Pacific Symposium on Flow Visualization and Image Processing 4, Chamonix Mont-Blanc, France.
[14] Weibel, E.R., 1991, Design of airway and blood vessels considered as branching trees. The Lung, eds. Crystal, R.G., West, J.B. et al., 1, Raven Press, 711-720, New York, USA.
[15] Kim, C.S., Brown, L.K., Lewars, G.G., Sackner, M.A., 1983, Deposition of aerosol particles and flow resistance in mathematical and experimental airway. Journal of Applied Physiology: Respiration Environment Exercise Physiology 55, 154-163.
[16] Hofmann, W., Balashazy, I., Koblinger, L., 1995, The effect of gravity on particle deposition patterns in bronchial airway bifurcations. J. Aerosol Sci. 26, 1161-1168.
[17] Reist, P. C., 1993, Aerosol Science and Technology, McGraw-Hill, Inc.
[18] Zhang, Z. and Kleinstreuer, C., 2004, Airflow structures and nano-particle deposition in a human upper airway model. Journal of Computational Physics 198, 178-210.

QR CODE