簡易檢索 / 詳目顯示

研究生: 張譯云
I-Yun Chang
論文名稱: 以深度學習法分析胸前X光影像之肺炎偵測與標記:批次資料控制與敏感度調控
Detection and location of pneumonia from CXR using deep learning: Batch controlling and sensitivity regulation
指導教授: 黃騰毅
Teng-Yi Huang
口試委員: 吳文超
Wen-Chau Wu
林益如
Yi-Ru Lin
蔡尚岳
Shang-Yueh Tsai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 40
中文關鍵詞: 深度學習肺炎胸前X光影像
外文關鍵詞: deep learning, pneumonia, frontal chest radiograph
相關次數: 點閱:149下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺炎指的是肺部出現發炎的症狀主要會影響肺泡功能,成因通常為受到細菌或病毒感染,肺炎常見的症狀包含咳嗽、咳痰、胸痛、呼吸困難、發燒等,透過胸前X光影像可以呈現其病灶區域與檢測其病理狀況,本研究的目的在於建立針對胸前X光影像的全自動診斷並標記肺炎區域之系統,透過此系統之分析及判斷,檢測X光影像中肺炎之病灶區域。在這項研究中,我們使用二維卷積神經網路及胸前X光影像來進行肺炎區域的標記和辨別。我們所使用的資料為2018 RSNA(北美放射科協會)肺炎偵測挑戰賽所提供之胸前X光影像訓練集,除了比較不同網路架構的神經網路表現結果之外,同時也研究出一種訓練模型之方式稱為「批次資料控制」,探討在固定批次資料量大小的條件下,透過調整批次訓練資料內不同類別之資料比例,並比較各種的資料比例組合作為卷積神經網路輸入資料所獲得之結果,進而發現透過「批次資料控制」,有助於控制模型之靈敏度、特異度等表現,且使用「批次資料控制」之模型表現也較穩定。透過此種模型訓練方式能解決醫療影像中常出現的資料類別不平衡之問題。


    In this study, we implemented an automatic segmentation system for detecting and locating lung opacities of pneumonia from frontal chest x-ray radiographs. We used frontal chest x-ray images as the input data of the convolution neural network to conduct the segmentation of pneumonia lesions and compare the performance of three different neural networks, mostly used for segmentation application. Furthermore, we excogitated a training method called “batch controlling” to solve the problem of data type unbalanced, which usually happened in medical image training. As its name implied, “batch controlling” means to control the data type combination in each batch, whose size was fixed, in our training process. The results supported that “batch controlling” could make models more stable and be conducive to adapt the performances of models, such as sensitivities and specificities. The batch controlling method could be advantageous to the convolution neural network with class-unbalanced datasets of medical imaging applications.

    Abstract 1 中文摘要 2 Chapter 1: Introduction 3 Chapter 2: Materials and Methods 6 2.1 Data Sets 6 2.2 Deep learning 9 2.2.1 Convolutional Neural Network 9 2.2.2 Semantic Segmentation 11 2.2.3 UNet 12 2.3 Batch Controlling 14 2.4 Quantitative Assessment 16 2.4.1 Visualized Interface 16 2.4.2 Evaluation 17 Chapter 3: Results 21 3.1 Comparison of Batch Controlling and Rand model 21 3.2 Results with Test data of Data Type Balanced 25 3.3 AUC ROC 27 3.4 Comparing Different Neural Networks 28 Chapter 4: Discussions and Conclusions 31 References 36

    1. Shvets AA, Rakhlin A, Kalinin AA, Iglovikov VIJtIICoML, Applications. Automatic Instrument Segmentation in Robot-Assisted Surgery Using Deep Learning. IEEE International Conference on Machine Learning and Applications (ICMLA) 2018:624-628.

    2. Alvi MF, Junejo F, Baloch MW, Rajput AJ. RoboCop; A Robust Surveillance Robot. 2018 15-15 June 2018. p 1-8.

    3. Fan X, Wang X, Xiao Y. A Combined 2D-3D Vision System for Automatic Robot Picking. 2014 10-12 Aug. 2014. p 513-516.

    4. Barua B, Gomes C, Baghe S, Sisodia J. A Self-Driving Car Implementation using Computer Vision for Detection and Navigation. 2019 15-17 May 2019. p 271-274.

    5. Lin W, Hsu W, Chiang Y. A Combination of Feedback Control and Vision-Based Deep Learning Mechanism for Guiding Self-Driving Cars. 2018 10-12 Dec. 2018. p 262-266.

    6. Jain AK. Working Model of Self-driving Car Using Convolutional Neural Network, Raspberry Pi and Arduino. 2018 29-31 March 2018. p 1630-1635.

    7. Park SH. Diagnostic Case-Control versus Diagnostic Cohort Studies for Clinical Validation of Artificial Intelligence Algorithm Performance. Radiology 2019;290(1):272-273.

    8. Park SH, Han K. Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction. Radiology 2018;286(3):800-809.

    9. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, van der Laak J, Hermsen M, Manson QF, Balkenhol M, Geessink O, Stathonikos N, van Dijk MC, Bult P, Beca F, Beck AH, Wang D, Khosla A, Gargeya R, Irshad H, Zhong A, Dou Q, Li Q, Chen H, Lin HJ, Heng PA, Haß C, Bruni E, Wong Q, Halici U, Öner M, Cetin-Atalay R, Berseth M, Khvatkov V, Vylegzhanin A, Kraus O, Shaban M, Rajpoot N, Awan R, Sirinukunwattana K, Qaiser T, Tsang YW, Tellez D, Annuscheit J, Hufnagl P, Valkonen M, Kartasalo K, Latonen L, Ruusuvuori P, Liimatainen K, Albarqouni S, Mungal B, George A, Demirci S, Navab N, Watanabe S, Seno S, Takenaka Y, Matsuda H, Ahmady Phoulady H, Kovalev V, Kalinovsky A, Liauchuk V, Bueno G, Fernandez-Carrobles MM, Serrano I, Deniz O, Racoceanu D, Venâncio R. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA 2017;318(22):2199-2210.

    10. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016;316(22):2402-2410.

    11. Sabottke CF, Spieler BM. The Effect of Image Resolution on Deep Learning in Radiography. 2020;2(1):e190015.

    12. Majkowska A, Mittal S, Steiner DF, Reicher JJ, McKinney SM, Duggan GE, Eswaran K, Chen P-HC, Liu Y, Kalidindi SR, Ding A, Corrado GS, Tse D, Shetty S. Chest Radiograph Interpretation with Deep Learning Models: Assessment with Radiologist-adjudicated Reference Standards and Population-adjusted Evaluation. Radiology 2020;294(2):421-431.

    13. Nam JG, Park S, Hwang EJ, Lee JH, Jin K-N, Lim KY, Vu TH, Sohn JH, Hwang S, Goo JM, Park CM. Development and Validation of Deep Learning–based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs. Radiology 2019;290(1):218-228.

    14. Hwang EJ, Park S, Jin KN, Kim JI, Choi SY, Lee JH, Goo JM, Aum J, Yim JJ, Cohen JG, Ferretti GR, Park CM. Development and Validation of a Deep Learning-Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs. JAMA network open 2019;2(3):e191095.

    15. Annarumma M, Withey SJ, Bakewell RJ, Pesce E, Goh V, Montana G. Automated Triaging of Adult Chest Radiographs with Deep Artificial Neural Networks. Radiology 2019;291(1):196-202.

    16. Taylor AG, Mielke C, Mongan J. Automated Detection of Moderate and Large Pneumothorax on Frontal Chest X-rays Using Deep Convolutional Neural Networks: A Retrospective Study. PLOS Medicine 2018;15(11):e1002697.

    17. Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz CP, Patel BN, Yeom KW, Shpanskaya K, Blankenberg FG, Seekins J, Amrhein TJ, Mong DA, Halabi SS, Zucker EJ, Ng AY, Lungren MP. Deep Learning for Chest Radiograph Diagnosis: A Retrospective Comparison of the CheXNeXt Algorithm to Practicing Radiologists. PLOS Medicine 2018;15(11):e1002686.

    18. Lakhani P, Sundaram B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology 2017;284(2):574-582.

    19. Murphy K, Smits H, Knoops AJG, Korst MBJM, Samson T, Scholten ET, Schalekamp S, Schaefer-Prokop CM, Philipsen RHHM, Meijers A, Melendez J, Ginneken Bv, Rutten M. COVID-19 on the Chest Radiograph: A Multi-Reader Evaluation of an AI System. Radiology 2020;0(0):201874.

    20. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding DY, Bagul A, Langlotz CP, Shpanskaya KS, Lungren MP, Ng AYJA. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017;abs/1711.05225.

    21. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RMJICoCV, Recognition P. ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017:3462-3471.

    22. Hwang EJ, Nam JG, Lim WH, Park SJ, Jeong YS, Kang JH, Hong EK, Kim TM, Goo JM, Park S, Kim KH, Park CM. Deep Learning for Chest Radiograph Diagnosis in the Emergency Department. Radiology 2019;293(3):573-580.

    23. Ronneberger O, Fischer P, Brox TJA. U-Net: Convolutional Networks for Biomedical Image Segmentation. MICCAI 2015;abs/1505.04597.

    無法下載圖示 全文公開日期 2025/07/15 (校內網路)
    全文公開日期 2025/07/15 (校外網路)
    全文公開日期 2025/07/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE