簡易檢索 / 詳目顯示

研究生: 陳易寬
Yi-Kuan Chen
論文名稱: 鎂基複合材料Mg-Ca / MgO經等通道轉角擠製對機械性質與耐蝕性之研究
Effect of Equal Channel Angular Pressing on the mechanical properties and corrosion resistance of Mg-Ca / MgO magnesium matrix composites
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 丘群
Chiu Chun
李天錫
Tien-Hsi Lee
曾有志
Yu-Chin Tzeng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 121
中文關鍵詞: 鎂基複合材料等通道轉角擠製機械性質耐蝕性質
外文關鍵詞: magnesium matrix composites, equal-channel angular pressing, mechanical properties, corrosion resistance
相關次數: 點閱:331下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鎂合金作為可生物降解之植入物被廣泛研究,但由於鎂合金在人體內的腐蝕速率過快,造成許多不利影響。本實驗利用等徑轉角擠製ECAP及強化相之添加,加以改善可生物降解之鎂合金。以鎂鈣合金(Mg-1Ca)作為實驗基材,用奈米級之MgO顆粒作為添加的強化相,添加量分別為0、1、2 wt. %,使用重力鑄造法製備鎂基複合材料。隨後鑄錠切割成ECAP試棒,再進行450 °C之T4固溶處理,持溫24小時,再以等徑轉角擠製加工(ECAP)之Bc路徑進行擠製,加工道次是分別為1、4道次,研究不同比例之Mg-1Ca / MgO鎂基複合材料及不同道次之微觀結構、機械性質及耐腐蝕性的影響。
實驗結果中發現,添加MgO後因散布強化有效增加極限抗拉強度及降伏強度,但會因強化項為脆性且部分團聚的關係使材料伸長率下降,而鎂基複合材料藉由後續的ECAP擠製加工使晶粒產生動態再結晶而晶粒細化,其機械性質進一步提升,且經過4道次ECAP後,含有強化項的鎂基複合材料延展性比無添加強化項的更加優異。在電化學實驗中,添加過多的MgO會使耐蝕力下降,但透過ECAP加工後能藉由晶粒細化使保護膜更能抵抗腐蝕,提升耐蝕能力。


Magnesium alloys are widely studied as biodegradable implants, but due to the rapid corrosion rate of magnesium alloys in human body, many adverse effects are caused. In this experiment, the magnesium alloys were improved by using equal channel angular pressing and the reinforcement.
Mg-1Ca was used as the experimental substrate, and nano MgO particles were used as the reinforcement with the addition amounts of 0, 1, and 2 wt. %, respectively. After solution treatment, the cast ingots were extruded by equal channel angular pressing process, and the number of passes was 1 and 4 respectively.
The experimental results show that the addition of MgO to the material effectively increases the ultimate tensile strength and yield strength due to the dispersal strengthening, but the elongation decreases due to the agglomeration of the reinforcement. The mechanical properties of the magnesium-based composite material were further improved by the ECAP process, which resulted in dynamic recrystallization and grain refinement.
In electrochemical experiments, the addition of too much MgO will reduce the corrosion resistance, but the ECAP process can make the protective film more resistant to corrosion by grain refinement and improve the corrosion resistance.

摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 ix 表目錄 xv 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.2.1 鎂鈣合金相關文獻 4 1.2.2 鑄造技術相關文獻 7 1.2.3 機械加工對鎂合金影響相關文獻 8 1.2.4 鎂基複合材料相關文獻 18 1.2.5 MgO之生物相容性相關文獻 25 1.3 文獻回顧整理 26 1.4 研究動機與目的 27 第二章 研究理論基礎 30 2.1 鎂之基本性質 30 2.2 鎂主要優缺點 31 2.3 金屬元素鈣對鎂合金及生物相容性影響 33 2.4 鎂腐蝕概論 35 2.4.1鎂的腐蝕機制 35 2.4.2 不同類型腐蝕的說明 36 2.5 鎂基複合材料強化理論 39 2.5.1 晶粒細化強化 40 2.5.2 熱膨脹係數差異之影響 40 2.5.3 Orowan強化與散佈強化 40 2.5.4 負荷影響 41 2.5.5 析出強化 41 2.6 鎂合金鑄造法 42 2.6.1砂模鑄造法 (Sand Casting) 42 2.6.2重力鑄造法 (Gravity Casting) 42 2.6.3壓力鑄造法 42 2.6.4 真空鑄造法 43 2.7氧化鎂(MgO)之特性 43 2.8鎂合金熱處理 43 2.9等通道轉角擠製(Equal Channel Angular Pressing, ECAP) 44 2.10 腐蝕電化學分析原理 49 2.10.1 腐蝕電化學量測 49 2.10.2 開路電位 49 2.10.3 Tafel 外推法 50 2.10.4 動電位極化法(Potentiodynamic polarization, PDP) 51 第三章 實驗方法與步驟 52 3.1 實驗方式 52 3.2實驗材料 54 3.3實驗設備 55 3.3.1電阻式熔煉爐 55 3.2.2 等徑轉角擠製機 (Equal Channel Angular Pressing) 58 3.3.3高溫熱處理爐 60 3.3.4 濕式研磨/拋光機 61 3.3.5 光學顯微鏡 (Optical Microscope, OM) 61 3.3.6 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 62 3.3.7 愛克斯光繞射 (X-ray Diffraction, XRD) 63 3.3.8 拉伸試驗機 (Material Test System, MTS) 64 3.3.9 微型維克氏硬度機(Micro-Vickers Hardness Tester) 66 3.3.10 恆電位儀及電化學三電極系統 67 3.4 實驗規劃 71 3.4.1 鎂基複合材料製備 71 3.4.2 熱處理 73 3.4.3 ECAP擠製加工及試棒規劃 73 3.4.4 拉伸試片規劃 73 3.4.5電化學試片規劃 74 3.4.6 HBSS模擬溶液調配 75 第四章 結果與討論 76 4.1 Mg-1Ca/MgO鎂基複合材料表面微觀結構分析 76 4.1.1 OM微觀結構分析 76 4.1.2 平均晶粒尺寸分析 82 4.2 Mg-1Ca/MgO鎂基複合材料成分分析 85 4.2.1 材料密度分析 85 4.2.2 XRD材料成分分析 86 4.2.3 SEM微觀組織材料分析 88 4.3 Mg-1Ca/MgO鎂基複合材料機械性質分析 92 4.3.1拉伸試驗 92 4.4.2拉伸試片斷面分析 97 4.4.3硬度試驗 103 4.4鎂基複合材料在HBSS中的電化學分析 106 第五章 結論 113 第六章 未來研究方向 115 參考文獻 116   圖目錄 圖1-1鎂鈣合金OM圖 4 圖1-2鈣含量對鎂鈣合金硬度值的影響 5 圖1-3鎂鈣合金在 Kokubo 溶液中的極化曲線 5 圖1-4鎂鈣合金之極化電阻 7 圖1-5電阻式熔煉爐式意圖 8 圖1-6鎂鈣合金拉伸性能圖 9 圖1-7 AZ31鎂合金維氏硬度圖 10 圖1-8 AZ31鎂合金析氫量圖 11 圖1-9 AZ31鎂合金經不同道次ECAP的工程應力-應變曲線 12 圖1-10 AZ31鎂合金在SBF中進行SSRT的應力應變圖 12 圖1-11 AZ91之OM圖 14 圖1-12經不同道次ECAP之AZ91的腐蝕重量損失圖 14 圖1-13 ME21鎂合金在空氣、蒸餾水和漢克斯溶液中的SSRT曲線 15 圖1-14未加工及經ECAP後純Mg、Mg-1Ca和Mg-2Sr之SEM圖 17 圖1-15經ECAP後純Mg、Mg-1Ca和Mg-2Sr之拉伸性能 17 圖1-16擠壓態及經ECAP後純Mg、Mg-1Ca和Mg-2Sr之腐蝕後重量損失圖 17 圖1-17不同溫度及下壓率軋製之Mg-1Ca在SBF中的腐蝕率 18 圖1-18不同β-TCP含量之鎂合金機械性能 19 圖1-19 Mg-Zn-Ca /MgO在SBF中的動電位極化曲線 21 圖1-20 Mg-Zn-Ca /β-TCP經ECAE後在37°C下SBF中的極化曲線 22 圖1-21 AZ61/Al2O3/SiC的 (a) 硬度圖和 (b)應力-應變圖 24 圖1-22 AZ61/Al2O3/SiC複合材料的斷裂表面 25 圖1-23 MgO、 ZnO 及MgO/ZnO 在外周血單核細胞中的生物相容性測定 26 圖2-1鎂的六方最密堆積晶體結構 30 圖2-2 Mg-Ca二元相圖 34 圖2-3等通道轉角擠製示意圖 45 圖2-4等通道轉角擠製加工路徑示意圖 46 圖2-5四種不同路徑的旋轉角度及方向 47 圖2-6單次擠製通過模具中的剪切示意圖:X、Y和Z為三個正交的觀測面 48 圖2-7ECAP加工路徑特性 48 圖2-8 Tafel 外推法 50 圖3-1實驗流程圖 53 圖3-2 Pure Mg之外觀圖 54 圖3-3 Mg-30Ca之外觀圖 54 圖3-4奈米級MgO之SEM圖 55 圖3-5電阻式熔煉爐外觀 56 圖3-6電阻式熔煉爐示意圖 57 圖3-7熔煉工具 57 圖3-8喇叭型模具及尺寸圖 58 圖3-9等徑轉角擠製機實體圖 59 圖3-10模角(Φ)120°、外側圓角(Ψ)0°模具內部示意圖 59 圖3-11高溫熱處理爐 60 圖3-12濕式研磨/拋光機外觀圖 61 圖3-13光學顯微鏡 62 圖3-14高解析度場發射掃描式電子顯微鏡 7900F 63 圖3-15 D2 PHASER 粉末X 光繞射儀 64 圖3-16拉伸試驗機 65 圖3-17微型維克氏硬度機 67 圖3-18硬度測試示意圖 67 圖3-19 Solartron SI 1287 69 圖3-20 Solartron SI 1260 69 圖3-21密封五口瓶 69 圖3-22白金片電極 70 圖3-23飽和氯化銀電極 70 圖3-24電化學冷鑲埋試片正、背面圖 70 圖3-25 ECAP棒材規劃圖 72 圖3-26 拉伸試片尺寸規格 74 圖4-1 As-cast Mg-1Ca之OM圖 77 圖4-2 Mg-1Ca經T4固溶處理之OM圖 77 圖4-3 Mg-1Ca經T4固溶處理之OM圖 78 圖4-4 Mg-1Ca/ 1 wt.% MgO經T4固溶處理之OM圖 78 圖4-5 Mg-1Ca/ 2 wt.% MgO經T4固溶處理之OM圖 79 圖4-6 Mg-1Ca經1道次ECAP之OM圖 79 圖4-7 Mg-1Ca/ 1 wt.% MgO經1道次ECAP之OM圖 80 圖4-8 Mg-1Ca/ 2 wt.% MgO經1道次ECAP之OM圖 80 圖4-9 Mg-1Ca經4道次ECAP之OM圖 81 圖4-10 Mg-1Ca/ 1 wt.% MgO經4道次ECAP之OM圖 81 圖4-11 Mg-1Ca/ 2 wt.% MgO經4道次ECAP之OM圖 82 圖4-12平均晶粒尺寸 84 圖4-13 MgO之XRD圖 86 圖4-14 Mg-1Ca經不同ECAP道次擠製之XRD圖 87 圖4-15 Mg-1Ca/1 wt.% MgO經不同ECAP道次擠製之XRD圖 87 圖4-16 Mg-1Ca/2 wt.% MgO經不同ECAP道次擠製之XRD圖 88 圖4-17 Mg1Ca鎂基複合材料之SEM及EDS圖 89 圖4-18 (A) Mg1Ca鎂基複合材料EDS圖中之強化相MgO 90 圖4-19 (B) Mg1Ca鎂基複合材料EDS圖中之β相Mg2Ca 90 圖4-20 (C) Mg1Ca鎂基複合材料EDS圖中之基體Mg 91 圖4-21鎂基複合材料MgO團聚現象之SEM圖 91 圖4-22 鎂基複合材料最大拉伸應力 95 圖4-23 鎂基複合材料降伏強度 95 圖4-24 鎂基複合材料伸長率 96 圖4-25 Mg-1Ca之SEM拉伸斷面圖 99 圖4-26 Mg-1Ca經1道次ECAP之SEM拉伸斷面圖 99 圖4-27 Mg-1Ca經4道次ECAP之SEM拉伸斷面圖 100 圖4-28 Mg-1Ca/1wt.%MgO之SEM拉伸斷面圖 100 圖4-29 Mg-1Ca/1wt.%MgO經1道次ECAP之SEM拉伸斷面圖 101 圖4-30 Mg-1Ca/1wt.%MgO經4道次ECAP之SEM拉伸斷面圖 101 圖4-31 Mg-1Ca/2wt.%MgO之SEM拉伸斷面圖 102 圖4-32 Mg-1Ca/2wt.%MgO經1道次ECAP之SEM拉伸斷面圖 102 圖4-33 Mg-1Ca/2wt.%MgO經4道次ECAP之SEM拉伸斷面圖 103 圖4-34 Mg-1Ca經不同ECAP擠製道次之硬度圖 109 圖4-35 Mg-1Ca添加不同重量百分比之MgO之動電位極化曲線圖 109 圖4-36 Mg-1Ca經不同ECAP加工道次之動電位極化曲線圖 108 圖4-37 Mg-1Ca/ 1 wt.%經不同ECAP加工道次之動電位極化曲線圖 110 圖4-38 Mg-1Ca /2 wt.%經不同ECAP加工道次之動電位極化曲線圖 110 圖4-39 Mg-1Ca鎂基複合材料經不同ECAP加工道次之開路電位圖 111 圖4-40 Mg-1Ca鎂基複合材料經不同ECAP加工道次之腐蝕電流密度圖 112   表目錄 表1-1鎂鈣合金與人體皮質骨的彎曲性能 6 表1-2鎂鈣合金的壓縮性能 6 表1-3鎂鈣合金腐蝕速率表 9 表1-4 AZ31鎂合金殘餘應力表 10 表1-5 AZ31鎂合金經不同道次ECAP的腐蝕電位及腐蝕電流密度 12 表1-6未加工與經ECAP加工之鎂合金在不同溶液中的拉伸性能 15 表1-7 β-TCP鎂基複合材料的腐蝕電位及腐蝕電流 19 表1-8 α-TCP鎂基複合材料電化學參數表 20 表1-9 Mg-Zn-Ca /MgO的鑄態和擠壓態的晶粒尺寸 21 表2-1鎂之物理參數表 31 表2-2天然骨與各種植入材料的物理和機械性能比較 32 表3-1 Pure Mg純鎂錠成分表 54 表3-2 Mg-30Ca 鎂鈣合金成分表 55 表3-3 腐蝕液配方 61 表3-4 模擬體液SBF成分表 71 表4-1平均晶粒尺寸下降百分比 85 表4-2鎂基複合材料密度表 85 表4-3鎂基複合材料最大拉伸應力及提升百分比 96 表4-4鎂基複合材料降伏強度及提升百分比 97 表4-5鎂基複合材料伸長率及提升百分比 97 表4-6鎂基複合材料之硬度值及提升百分比 105 表4-7鎂基複合材料經不同ECAP加工道次的各項腐蝕數據 111

[1] S. V. S. Prasad, S. B. Prasad, K. Verma, R. K. Mishra, V. Kumar, S. Singh,“The role and significance of Magnesium in modern day research-A review,” Journal of Magnesium and Alloys, vol. 10, no. 1, pp. 1-61, Jan. 2022.
[2] M. Niinomi, M. Nakai, and J. Hieda, “Development of new metallic alloys for biomedical applications,” Acta Biomaterialia , vol. 8, no. 11, pp. 3888-3903, Nov. 2012.
[3] J. Vormann , “Magnesium: nutrition and metabolism,” Molecular Aspects of Medicine, vol. 24, no. 1-3, pp. 27-37, Feb. 2003.
[4] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. J. Wirth, and H. Windhagen,“In vivo corrosion of four magnesium alloys and the associated bone response,”Biomaterials, vol. 26, no. 17, pp. 3557-3563, Jun. 2005.
[5] G. Chandra, A. Pandey,“Preparation Strategies for Mg-Alloys for Biodegradable Orthopaedic Implants and Other Biomedical Applications: A Review,”IRBM, vol. 43, no. 3, pp. 229-249, Jun. 2022.
[6] N. Li and Y. Zheng,“Novel Magnesium Alloys Developed for Biomedical Application: A Review,” Journal of Materials Science & Technology, vol. 29, no. 6, pp. 489-502, Jun. 2013.
[7] A. Hoppe, N. S.Güldal, and A. R. Boccaccini,“A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics,” Biomaterials, vol. 32, no. 11, pp. 2757-2774, Apr. 2011.
[8] S. Castiglioni ,A. Cazzaniga ,W. Albisetti, and J. A. M. Maier,“Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions,” Nutrients, vol. 5, no. 8, pp. 3022-3033 , Jul. 2013.
[9] Z. Li, X. Gu, S. Lou, and Y. Zheng,“The development of binary Mg–Ca alloys for use as biodegradable materials within bone,”Biomaterials, vol. 29, no. 10, pp. 1329-1344, Apr. 2008.
[10] W. Li, Y. Shen, J. Shen, D. Shen, X. Liu, Y. Zheng, K. W. K. Yeung, S. Guan, O. B. Kulyasova, and R. Z. Valiev,“In vitro and in vivo studies on pure Mg, Mg–1Ca and Mg–2Sr alloys processed by equal channel angular pressing,” Nano Materials Science, vol. 2, no. 1, pp. 96-108, Mar. 2020.
[11] Y. F. Zheng, X. N. Gu, Y. L. Xi, and D. L. Chai,“In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy,” Acta Biomaterialia, vol. 6, no. 5, pp. 1783-1791, May. 2010.
[12] R. Z.Valiev, and T. G. Langdon,“Principles of equal-channel angular pressing as a processing tool for grain refinement,” Progress in Materials Science, vol. 51, no. 7, pp. 881-981, Sep. 2006.
[13] A. Muralidhar, S. Narendranath, and H. S. Nayaka,“Effect of equal channel angular pressing on AZ31 wrought magnesium alloys,”Journal of Magnesium and Alloys, vol. 1, no. 4, pp. 336-340, Dec. 2013.
[14] S. Dutta, S. Gupta, and M. Roy,“Recent Developments in Magnesium Metal–Matrix Composites for Biomedical Applications: A Review,”ACS Biomaterials Science & Engineering, vol. 6, no. 9, pp. 4748-4773, Aug. 2020.
[15] D. Bellucci, A. Sola, R. Salvatori, A. Anesi, L. Chiarini, and V. Cannillo,“Role of magnesium oxide and strontium oxide as modifiers in silicate-based bioactive glasses: Effects on thermal behaviour, mechanical properties and in-vitro bioactivity,” Materials Science and Engineering: C, vol. 72, pp. 566-575, Mar. 2017.
[16] A. K. Singh, K. Pramanik, A. Biswas,“MgO enables enhanced bioactivity and antimicrobial activity of nano bioglass for bone tissue engineering application,”Materials Technology : Advanced Performance Materials, vol. 34, no. 13, pp. 818-826, Jul. 2019.
[17] H. R. B. Rad, M. H. Idris, M. R. A. Kadir, S. Farahany,“Microstructure analysis and corrosion behavior of biodegradable Mg–Ca implant alloys,” Materials & Design, vol. 33, pp. 88-97, Jan. 2012.
[18] Y. Wan, G. Xiong, H. Luo, F. He, Y. Huang, X. Zhou,“Preparation and characterization of a new biomedical magnesium–calcium alloy,” Materials & Design, vol. 29, no. 10, pp. 2034-2037, Dec. 2008.
[19] 李亦賢 (2020),「不同比例SiCp添加與不同熱處理方式對鎂基複合材料機械性質及疲勞之影響」,國立台灣科技大學機械工程系研究所碩士論文。
[20] Z. Li, X. Gu, S. Lou, Y. Zheng,“The development of binary Mg–Ca alloys for use as biodegradable materials within bone,” Biomaterials, vol. 29, no. 10, pp. 1329-1344, Apr. 2008.
[21] T. Hosaka, S. Yoshihara, I. Amanina, B. J. MacDonald,“Influence of Grain Refinement and Residual Stress on Corrosion Behavior of AZ31 Magnesium Alloy Processed by ECAP in RPMI-1640 Medium,” Procedia Engineering, vol. 184, pp. 432-441, 2017.
[22] M. Perona, P. C. Skaret, A. Fabrizi, A. Varone, R. Montanari, H. J. Roven, P. Ferro, F. Berto, J. Torgersen,“The effect of Equal Channel Angular Pressing on the stress corrosion cracking susceptibility of AZ31 alloy in simulated body fluid,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 106, 103724, Jun. 2020.
[23] D. Song, A. B. Ma, J. H. Jiang, P. H. Lin, D. H. Yang, J. F. Fan,“Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing,” Corrosion Science, vol. 53, no. 1, pp. 362-373, Jan. 2011.
[24] J. Jiang, Q. Xie, M. Qianga, A. Ma, E.-K. Taylor, Y. Li, D. Song, J. Chen,“Stress corrosion cracking behaviors of RE-containing ME21 magnesium alloy processed by equal-channel angular pressing,” Journal of Rare Earths, vol. 37, no. 1, pp. 88-94, Jan. 2019.
[25] S. Koleini, M. H. Idris, H. Jafari,“Influence of hot rolling parameters on microstructure and biodegradability of Mg–1Ca alloy in simulated body fluid,” Materials & Design, vol. 33, pp. 20-25, Jan. 2012.
[26] S.-Y. He, Y. Sun, M.-F. Chen, D.-B. Liu, X.-Y. Ye,“Microstructure and properties of biodegradable β-TCP reinforced Mg-Zn-Zr composites,”Transactions of Nonferrous Metals Society of China, vol. 21, no. 4, pp. 814-819, Apr. 2011.
[27] N. Ikeo, H. Kawasaki, H. Watanabe, T. Mukai,“Fabrication and characterization of Mg–0.2 at% Ca/α-tricalcium phosphate composites,” Materials Letters, vol. 241, pp. 96-99, Apr. 2019.
[28] G. Lin, D. Liu, M. Chen, C. You, Z. Li, Y. Wang, W. Li,“Preparation and characterization of biodegradable Mg-Zn-Ca/MgO nanocomposites for biomedical applications,” Materials Characterization, vol. 144, pp. 120-130, Oct. 2018.
[29] D.-B. Liu, Y. Huang, P. B. Prangnell,“Microstructure and performance of a biodegradable Mg–1Ca–2Zn–1TCP composite fabricated by combined solidification and deformation processing,” Materials Letters, vol. 82, pp. 7-9, Sep. 2012.
[30] S.-J. Huang, A. N. Ali,“Experimental investigations of effects of SiC contents and severe plastic deformation on the microstructure and mechanical properties of SiCp/AZ61 magnesium metal matrix composites,” Journal of Materials Processing Technology, vol. 272, pp. 28-39, Oct. 2019.
[31] 林穎志 (2018),「鎂基複合材料機械性質及其熱傳導性之研究」,國立台灣科技大學機械工程系研究所碩士論文。
[32] S. V. S. Prasad, S. B. Prasad, K. Verma, R. K. Mishra, V. Kumar, S. Singh,“The role and significance of Magnesium in modern day research-A review,” Journal of Magnesium and Alloys, vol. 10, no. 1, pp. 1-61, Jan. 2022.
[33] R. Radha, D. Sreekanth,“Insight of magnesium alloys and composites for orthopedic implant applications – a review,” Journal of Magnesium and Alloys, vol. 5, no. 3, pp. 286-312, Sep. 2017.
[34] M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias,“Magnesium and its alloys as orthopedic biomaterials: A review,” Biomaterials, vol. 27, no. 9, pp. 1728-1734, Mar. 2006.
[35] R. C. Zeng, L.Y. Cui, W. Ke,“Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion,” Acta Metallurgica Sinica, vol. 54, no. 9, pp. 1215-1235, 2018.
[36] Y. Zhao, L. Zeng, T. Liang,“Development in Biocompatibility of Biodegradable Magnesium-Based Metals,” Acta Metallurgica Sinica, vol. 53, no. 10, pp. 1181-1196, 2017.
[37] L. A. Villegas-Armenta, R. A. L. Drew, M. O. Pekguleryuz,“The Ignition Behavior of Mg–Ca Binary Alloys: The Role of Heating Rate,” Oxidation of Metals, vol. 93, no. 5-6, pp. 545-558, Apr. 2020.
[38] Branko N. Popov,“Chapter 1 - Evaluation of Corrosion,”Corrosion Engineering-Principles and Solved Problems , pp. 1-28, 2015.
[39] 丁國華, 趙健祥, 方春樹, 蕭俊德 (1989),「新標準課程鑄造學」, 高立圖書有限公司,五版。
[40] 張晉昌 (2008),「鑄造學」,全華圖書股份有限公司,二版。
[41] 李智堯 (2018),「不同轉角及道次之等徑轉角擠製對AZ31/WS2 INT鎂基複合材料微觀結構及機械性質影響之研究」,國立台灣科技大學機械工程系研究所碩士論文。
[42] V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe, R. Z. Valiev,“Influence of ECAP routes on the microstructure and properties of pure Ti,”Materials Science and Engineering: A, vol. 299, no. 1-2, pp. 59-67, Feb. 2001.
[43] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T. G. Langdon,“The shearing characteristics associated with equal-channel angular pressing,”Materials Science and Engineering: A, vol. 257, no. 2, pp. 328-332, Dec. 1998.
[44] Y. Jia, M. Zhao, S. Cheng, B. Wang, S. Wang, L. Sheng, D. Xu,“Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid,” Journal of Chinese Society for Corrosion and Protection, vol. 39, no. 6, pp. 463-468, 2019.
[45] Z. Shi, A. Atrens,“An innovative specimen configuration for the study of Mg corrosion,” Corrosion Science, vol. 53, no. 1, pp. 226-246, Jan. 2011.
[46] N. Birbilis, K. D. Ralston, S. Virtanen, H. L. Fraser, C. H. J. Davies, “Grain character influences on corrosion of ECAPed pure magnesium,”Corrosion Engineering, Science and Technology, vol. 45, no. 3, pp. 224-230, 2010.
[47] N. Birbilis, K. D. Ralston, S. Virtanen, H. L. Fraser, C. H. J. Davies, “Grain character influences on corrosion of ECAPed pure magnesium,”Corrosion Engineering, Science and Technology, vol. 45, no. 3, pp. 224-230, 2010..
[48] D. Orlov, K. D. Ralston, N. Birbilis, Y. Estrin,“Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing,”Acta Materialia, vol. 59, no. 15, pp. 6176-6186, Sep. 2011.
[49] K. D. Ralston, N. Birbilis, C. H. J. Davies,“Revealing the relationship between grain size and corrosion rate of metals,”Scripta Materialia, vol. 63, no. 12, pp. 1201-1204, Dec. 2010.
[50] C. Xu, J. Wang, C. Chen, C. Wang, Y. Sun, S. Zhu, S. Guan,“Initial micro-galvanic corrosion behavior between Mg2Ca and α-Mg via quasi-in situ SEM approach and first-principles calculation,” Journal of Magnesium and Alloys, Jul. 2021.
[51] M. Laleh, F. Kargar,“Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy,”Journal of Alloys and Compounds, vol. 509, no. 37, pp. 9150-9156, Sep. 2011.
[52] Z. Yang, A. Ma, B. Xu, J. Jiang, J. Sun,“Corrosion behavior of AZ91 Mg alloy with a heterogeneous structure produced by ECAP,” Corrosion Science, vol. 187, 109517, Jul. 2021.
[53] J. Sun, Z. Yang, J. Han, T. Yuan, D. Song, Y. Wu, Y. Yuan, X. Zhuo, H. Liua, A. Ma,“Enhanced quasi-isotropic ductility in bi-textured AZ91 Mg alloy processed by up-scaled RD-ECAP processing,”Journal of Alloys and Compounds, vol. 780, pp. 443-451, Apr. 2019.
[54] C. Wang, A. Ma J. Sun, H. Liu, H. Huang, Z. Yang, J. Jiang,“Effect of ECAP process on as-cast and as-homogenized Mg-Al-Ca-Mn alloys with different Mg2Ca morphologies,” Journal of Alloys and Compounds, vol. 793, pp. 259-270, Jul. 2019.
[55] Y. S. Jeong, W. J. Kim,“Enhancement of mechanical properties and corrosion resistance of Mg–Ca alloys through microstructural refinement by indirect extrusion,” Corrosion Science, vol. 82, pp. 392-403, May. 2014.
[56] S. W. Xu, S. Kamado, T. Honma,“Effect of homogenization on microstructures and mechanical properties of hot compressed Mg–9Al–1Zn alloy,”Materials Science and Engineering: A, vol. 528, no. 6, pp. 2385-2393, Mar. 2011.
[57] Y. Jin, C. Blawert, F. Feyerabend, J. Bohlen, M. S. Campos, S. Gavras, B. Wiese, D. Mei, M. Deng, H. Yang, R. Willumeit-Römer,“Time-sequential corrosion behaviour observation of micro-alloyed Mg-0.5Zn-0.2Ca alloy via a quasi-in situ approach,”Corrosion Science, vol. 158, 108096, Sep. 2019.
[58] Y. Chino, M. Kobata, H. Iwasaki, and M. Mabuchi,“Tensile Properties from Room Temperature to 673 K of Mg–0.9 mass% Ca Alloy Containing Lamella Mg2Ca,”Materials Transactions, vol. 43, no. 10, pp. 2643-2646, 2002.
[59] Y. Chen, Z. Xu, C. Smith, J. Sankar,“Recent advances on the development of magnesium alloys for biodegradable implants,”Acta Biomaterialia, vol. 10, no. 11, pp. 4561-4573, Nov. 2014.
[60] Z. Zhang, D. L. Chen,“Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength,”Scripta Materialia, vol. 54, no. 7, pp. 1321-1326, Apr. 2006.
[61] C. S. Goh, M. Gupta, J. Wei, and L. C. Lee“Characterization of High Performance Mg/MgO Nanocomposites,”Journal of Composite Materials, vol. 41 , no. 19, pp. 2325–2335, 2007.
[62] Y. Xu, Z. Zhang, D. Liu, Y. Zhao, X. Sun,“Microstructure and properties of β-TCP / Zn - 1Mg composites processed by hot extrusion combination of multi-pass ECAP,” Journal of Alloys and Compounds, vol. 903, 163988, May. 2022.
[63] X. G. Qiao ,T. Ying, M. Y. Zheng, E. D. Wei, K. Wu, X. S. Hu, W. M. Gan, H. G. Brokmeier, I. S. Golovin,“Microstructure evolution and mechanical properties of nano-SiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP),”Materials Characterization, vol. 121, pp. 222-230, Nov. 2016.
[64] D. J. Lloyd,“Aspects of fracture in particulate reinforced metal matrix composites,” Acta Metallurgica et Materialia, vol. 39, no. 1, pp. 59-71, Jan. 1991.
[65] J. Ye, X. Chen, H. Luo, J. Zhao, J. Li, J. Tan, H. Yang, B. Feng, K. Zheng, F. Pan,“Microstructure, mechanical properties and wear resistance of Ti particles reinforced AZ31 magnesium matrix composites,”Journal of Magnesium and Alloys, vol. 10, no. 8, pp. 2266-2279, Aug. 2022.
[66] S. V. S. Prasad, S. B. Prasad, K. Verma, R. K. Mishra, V. Kumar, S. Singh,“The role and significance of Magnesium in modern day research-A review,” Journal of Magnesium and Alloys, vol. 10, no. 1, pp. 1-61, Jan. 2022.
[67] G. Chandra, A. Pandey,“Preparation Strategies for Mg-Alloys for Biodegradable Orthopaedic Implants and Other Biomedical Applications: A Review,”IRBM, vol. 43, no. 3, pp. 229-249, Jun. 2022.
[68] 蘇士銘 (2018),「不同溫度及道次等通道轉角擠製(ECAP)對AZ61/Al2O3鎂基複合材料機械性質及腐蝕之影響」,國立台灣科技大學機械工程系研究所碩士論文。
[69] 楊輝其,宋秉煒,李芷娟 (1998),「全自動維氏硬度基準的研製」,現代計量測試,第5期,7-13頁。
[70] 張新,張奎 (2015),「鎂合金腐蝕行為及機理研究進展」,第27卷,第1期,78-84頁。
[71] S.-J. Huang, M. Subramani, K. Borodianskiy,“Strength and ductility enhancement of AZ61/Al2O3/SiC hybrid composite by ECAP processing,”Materialstoday Communications, vol. 31, 103261, Jun. 2022.
[72] 劉福雄 (1999),「防蝕技術」,全華科技圖書公司。
[73] J. Telegdi, A. Shaban, G. Vastag,“Encyclopedia of Interfacial Chemistry,” Surface Science and Electrochemistry, pp.38, Jun. 2018.
[74] R. A. Buchanan, E. E. Stansbury, “Handbook of Environmental Degradation of Materials ,” Elsevier, pp. 119, (2012)
[75] A. Nigam, S. Saini, A. K. Rai , S.J. Pawar, “Structural, optical, cytotoxicity, and antimicrobial properties of MgO, ZnO and MgO/ZnO nanocomposite for biomedical applications,” Ceramics International, vol. 47, pp. 19515-19525, Jul. 2021.

無法下載圖示 全文公開日期 2025/03/07 (校內網路)
全文公開日期 2025/03/07 (校外網路)
全文公開日期 2025/03/07 (國家圖書館:臺灣博碩士論文系統)
QR CODE