簡易檢索 / 詳目顯示

研究生: 蘇恆磊
Heng-Lei SU
論文名稱: 超分歧雙馬來醯亞胺/巴比妥酸寡聚物之反應機制與動力學及其在有機-無機奈米混成材料之應用
Polymerization Mechanisms and Kinetics for Hyperbranched BMI/BTA Oligomers and Their Applications in Organic-Inorganic Hybrid Nanomaterials
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 邱文英
Wen-Yen Chiu
林金福
King-fu Lin
黃延吉
Yan-Jyi Huang
陳燿騰
Yaw-Terng Chern
潘金平
Jing-Pin Pan
許榮木
Jung-Mu Hsu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 156
中文關鍵詞: 雙馬來醯亞胺巴比妥酸反應機制奈米混成材料超分歧
外文關鍵詞: hybrid nanomaterial
相關次數: 點閱:292下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對不同鹼性溶劑系統對巴比妥酸引發之雙馬來醯亞胺聚合反應的影響、巴比妥酸引發之雙馬來醯亞胺聚合反應的動力學與結構及其在複合材料的應用進行探討。內容共分為三大部分。

    在第一部份的研究中,針對在130 ℃的溫度條件下,不同溶劑系統對巴比妥酸引發之雙馬來醯亞胺聚合反應的影響進行探討。含氮環狀溶劑系統,如N-甲基-2-吡咯烷酮充當催化劑,容易形成三維的網狀交聯結構。相反地,在一個不含氮環狀溶劑系統,如γ-丁內酯中則會導致凝膠含量為零。溶劑的鹼性愈強,愈易生成大量的不溶性高分子。巴比妥酸/雙馬來醯亞胺的莫耳比亦扮演了一個重要的角色。由反應所產生之高分子,具有一個超分歧結構,表現出比傳統自由基加成聚合反應合成所得之高分子更窄的分子量分佈。使用巴比妥酸引發的雙馬來醯亞胺聚合反應不能用傳統的自由基加成聚合反應加以描述。一個BTA分子與BMI分子間生成酮基對以及隨後的起始、成長與終結反應機制的假設被導入本研究中。而本研究亦可獲得「含氮原子的環狀結構溶劑能夠參與酮基對的形成過程,從而提高聚合物交聯反應程度」的結論。

    在第二部分,恆溫與非恆溫巴比妥酸/雙馬來醯亞胺聚合反應皆使用示差掃描量熱儀進行研究。實驗結果說明了巴比妥酸/雙馬來醯亞胺聚合反應受競爭的Michael加成反應與自由基加成聚合反應機制所主導。此外,當巴比妥酸的莫耳分率減少時,自由基加成聚合反應的貢獻變得更為重要。1H-NMR 以及 13C-NMR量測所得之結果亦是進一步支持Michael加成反應與自由基加成聚合反應是同時共存的機制之證據。因此,一個考慮到競爭之Michael加成反應與自由基加成聚合反應機制的初步動力學模式被發展出來。

    在第三部分,經vinyltriethoxysilane (VTES)改質之二氧化矽被合成出來並加以鑑定。VTES分子被成功地接枝到二氧化矽奈米粒子上。原始與矽烷偶合劑改質之二氧化矽,以總固含量1-6 wt%的比例分散在N-甲基-2-吡咯烷酮中表現出顯著不同的流動行為。在反應進行的同時,添加原始或經VTES改質之二氧化矽到溶劑為γ-丁內酯,並以巴比妥酸引發之雙馬來醯亞胺聚合反應中 (總固含量 = 20 %)。二氧化矽添加的量愈多,雙馬來醯亞胺/矽烷偶合劑/二氧化矽複合材料粒子的熱穩定性愈好。經矽烷偶合劑改質之二氧化矽粒子明顯地提高了其在雙馬來醯亞胺寡聚物材料中的分散性。
    此外,包含雙酚A二環氧甘油醚、4,4’-磺醯二苯胺、雙馬來醯亞胺與巴比妥酸的新型高分子複合材料亦被合成出來並加以鑑定。添加少量(以總重量基礎的5-20 %)的雙馬來醯亞胺/巴比妥酸到熱固性的雙酚A二環氧甘油醚/4,4’-磺醯二苯胺系統中表現出均勻的型態,提升了耐熱性與尺寸安定性和相當平衡的機械性質。這些結果歸因於在形成三維相互穿插網狀結構的同時產生了競爭激烈的固化反應機制,包含開環,Michael加成反應和自由基聚合反應。


    This research was divided into three parts to study the effect of solvent basicity, kinetics and structure studies, and application of N,N’-bismaleimide-4,4’- diphenylmethane (BMI) polymerization reacted with barbituric acid (BTA).

    In the first part, the polymerizations of BMI initiated by BTA carried out in a variety of solvents at 130 ℃ were studied. The nitrogen-containing cyclic solvents such as N-methyl-2-pyrrolidinone (NMP) acted as a catalyst to promote the formation of the three-dimensional crosslinked network structure. By contrast, the polymerization in a cyclic solvent that did not contain nitrogen such as γ-butyrolactone resulted in nil gel content. The higher the solvent basicity, the larger the amount of insoluble polymer species formed. The molar ratio of BTA to BMI also played an important role in the polymerizations. The resultant polymers, presumably having a hyper-branched structure, exhibited much narrower molecular weight distributions than those prepared by conventional free radical polymerizations. The BMI polymerizations using BTA as the initiator could not be adequately described by conventional free radical polymerization mechanisms. A polymerization mechanism that took into account the generation of a ketone radical pair between BTA and BMI and the subsequent initiation, propagation and termination reactions was proposed.

    In the second part, both the isothermal and non-isothermal polymerizations of BMI with BTA were investigated by the differential scanning calorimeter. The experimental results showed that the polymerizations of BMI with BTA were governed by the competitive Michael addition reaction and free radical polymerization mechanisms. Furthermore, the contribution of free radical polymerization becomes more important when the mole fraction of BTA decreases. 1H-NMR and 13C-NMR measurements further support the coexistence of the Michael addition reaction and free radical polymerization mechanisms. A preliminary kinetic model that took into account the competitive Michael addition reaction and free radical polymerization mechanisms was developed.

    Finally, synthesis and characterization of the vinyltriethoxysilane-modified silica nanoparticles were investigated. It was shown that the vinyltriethoxysilane molecules had been successfully grafted onto the silica nanoparticles. The native and silane-modified silica dispersions in NMP with the total solids contents in the range 1-6 wt% exhibited dramatically different flow behaviors. The polymerization of BMI initiated by BTA in the presence of the native or vinyltriethoxysilane-modified silica nanoparticles were then carried out inγ–butyrolactone (total solids content = 20%). The higher the level of silica, the better the thermal stability of the BMI/silane/silica composite particles. The silane-modified silica particles significantly improved their dispersion capability within the continuous BMI oligomer matrix. Furthermore, the degree of dispersion of the vinyltriethoxysilane-modified silica particles in the BMI oligomer matrix decreased with the weight percentage of silica based on total solids being increased from 20 to 40 wt%.

    In addition, preparation and characterization of novel polymeric composite materials comprising diglycidyl ether of a bisphenol A (DGEBA), 4,4’-diamino diphenylsulfone (DDS), BMI and BTA were investigated, too. Incorporation of a small level (5%-20% based on total weight) of BMI/BTA into the thermosetting system of DGEBA/DDS resulted in polymeric composite materials exhibiting a homogeneous morphology, enhanced heat resistance and dimensional stability, and rather balanced mechanical properties. These results were attributed to the competitive curing reaction mechanisms including the ring-opening, Michael addition and free radical polymer reactions simultaneously occurring during the formation of the three-dimensional intercrosslinked network structure.

    Contents Contents I List of Tables V List of Schemes VII List of Figures IX 摘要 XIV Abstract XVI Chapter 1 Introduction 1 1.1 Introduction to Bismaleimides (BMIs) 1 1.2 Introduction to Barbituric acid (BTA) 1.3 Effects of solvent basicity on N,N’-bismaleimide-4,4’-diphenylmethane polymerization initiated by barbituric acid 3 1.4 Kinetic and structure studies of N,N’-bismaleimide-4,4’ -diphenylmethane polymerization initiated by barbituric acid 4 1.5 N,N’-bismaleimide-4,4’-diphenylmethane based composite Application 4 1.6 References 6 Chapter 2 Effects of solvent basicity on free radical polymerizations of N,N’-bismaleimide-4,4’ -diphenylmethane initiated by barbituric acid 7 Abstract 7 2.1 Introduction 9 2.2 Experimental 11 2.2.1 Materials 11 2.2.2 Polymerization and characterization 11 2.3 Results and discussion 13 2.3.1 Polymerization and characterization 13 2.3.2 Polymerization mechanisms 17 2.4 Conclusions 20 2.5 References 22 Chapter 3 Kinetic and structural studies of the polymerization of N,N’-bismaleimide-4,4’ -diphenylmethane with barbituric acid 24 Abstract 24 3.1 Introduction 25 3.2 Experimental 27 3.2.1 Materials 27 3.2.2 Polymerization kinetics and characterization 27 3.3 Results and discussion 29 3.3.1 BMI/BTA polymerization kinetics 29 3.3.2 BMI/AIBN polymerization kinetics 30 3.3.3 Non-isothermal polymerization of BMI with BTA 32 3.3.4 1H-NMR and 13C-NMR characterization 33 3.4 Model development 35 3.4.1 Kinetic model for Michael addition reactions 35 3.4.2 Kinetic model for free radical polymerizations 36 3.5 Conclusions 39 3.6 References 41 Chapter 4 Silica Nanoparticles Modified with Vinyltriethoxysilane and Their Copolymerization with N,N’-Bismaleimide-4,4’ -diphenylmethane 42 Abstract 42 4.1 Introduction 43 4.2 Experimental 45 4.2.1 Materials 45 4.2.2 Experimental methods 45 4.3 Results and discussion 48 4.3.1 FTIR analysis 48 4.3.2 TGA analysis 48 4.3.3 Morphological Studies 50 4.3.4 Rheological Studies 52 4.4 Conclusions 55 4.5 References 57 Chapter 5 Synthesis and characterization of polymeric composite materials comprising diglycidyl ether of a bisphenol A, 4,4’-diamino diphenylsulfone, N,N’-bismaleimide-4,4’-diphenyl -methane and barbituric acid 58 Abstract 58 5.1 Introduction 59 5.2 Experimental 62 5.2.1 Materials 62 5.2.2 Synthesis and characterization 62 5.3 Results and discussion 65 5.4 Conclusions 73 5.5 References 75 Chapter 6 Conclusion and future work 77

    Chapter 1
    1. Pascal, T., Mercier, R., Sillion, B. Polymer 30, 739 (1989).
    2. Wang, C. S., Lin, C. H. Polymer 40, 5665 (1999).
    3. Woo, E. M.; Chen, L. B.; Seferis, J. C. J Mater Sci 22,3665 (1987).
    4. White, J. E., Snider, D. A. J. Appl. Polym. Sci. 29, 891 (1984).
    5. Varma, I. K., Sharma, S. Polymer 26, 1561 (1985).
    6. Hsiao, S. H., Yang, C. P., Chen, S. H. J. Polym. Res. 6, 141 (1999).
    7. Gu, A., Liang, G., Lan, L. J. Appl. Polym. Sci. 62, 799 (1996).
    8. Lin, R. H., Huang, R. Y., Yen, F. S., Chen, Y. H., Ho, T. H. J. Appl. Polym. Sci. 115, 935 (2009).
    9. Loustalot, M. F. G., Cunha, L. D. Eur. Polym. J. 34, 95 (1998).
    10. Liu, Y. L., Tsai, S. H., Wu, C. S., Jeng, R. J. J. Polym. Sci. Part A: Polym. Chem. 42, 5921 (2004).
    11. Sava, M., Grigoras, C. V. J. Macromolecular Sci Part A: Pure and Applied Chemistry 42, 1095 (2005).
    12. Grenier-Loustalot, M.-F., Chunha, L. D. Polymer 39, 1799 (1998).
    13. Pan, J. P., Shiau, G. Y., Lin, S. S., Chen, K. M. J. Appl. Polym. Sci. 45, 103 (1992).
    14. Dušek, K., Matějka, L., Špaček, P., Winter, H. Polymer 37, 2233 (1996).
    15. Liu, X., Chen, D., Yang, X., Lu, L., Wang, X. Eur. Polym. J. 36, 2291 (2000).
    16. Mijović, J., Andjelić, S. Macromolecules 29, 239 (1996).
    17. Lin, K. F., Chen, J. C. Polym. Eng. Sci. 36, 211 (1996).
    18. Premkumar, S., Chozhan, C. K., Alagar, M. Eur. Polym. J. 44, 2599 (2008).
    19. Wang, C. S., Leu, T. S., Hsu, K. R. Polymer 39, 2921 (1998).

    Chapter 2
    1. Mison, P.; Sillion, B. Adv. Polym. Sci. 140, 137 (1999).
    2. Xiang, Z. D.; Jones, F. R. Compos. Sci. Technol. 47, 209 (1993).
    3. Pater, R. H. SAMPE. J. 30, 29 (1994).
    4. Hariharan, R.; Sarojadevi, M. J. Appl. Polym. Sci. 108, 1126 (2008).
    5. Nagai, A.; Takahashi, A.; Wajima, M.; Tsukanishi, K. Polym. J. 20, 125 (1988).
    6. Pan, J. P.; Shiau, G. Y.; Chen, K. M. J. Appl. Polym. Sci. 44, 467 (1992).
    7. Su, H. L.; Hsu, J. M.; Pan, J. P.; Chern, C. S. J. Appl. Polym. Sci. 103, 3600 (2007).
    8. Lian, S. M.; Chen, K. M.; Lee, R. J.; Pan, J. P.; Hung, A. J. Appl. Polym. Sci. 58, 1577 (1995).
    9. Hsiao, S. H.; Yang, C. P.; Chen, S. H. J. Polym. Res. 6, 141 (1999).
    10. Pan, J. P.; Shiau, G. Y.; Lin, S. S.; Chen, K. M. J. Appl. Polym. Sci. 45, 103 (1992).
    11. Lokaj, L.; Hrabak, F. Eur. Polym. J. 14, 1039 (1978).
    12. Hill, D. J. T.; Shao, L. Y.; Pomery, P. J.; Whittaker, A. K. Polymer 42, 4791 (2001).
    13. Matsumoto, A.; Kubota, T.; Otsu, T. Macromolecules 23, 4508 (1990).
    14. Matsumoto, A.; Hiuke, R.; Doi, T. J. Polym. Sci. part A: Polym. Chem. 35, 1515 (1997).
    15. Oishi, T.; Sase, K.; Saeki, K.; Yao, S.; Ohdan, K. Polymer 36, 3935 (1995).
    16. Li, H. M.; Lin, S. A.; Chen, H. B.; Liu, P. S. J. Macromol. Sci. Pure Appl. Chem. 37, 1475 (2000).
    17. Dean, J. A. Handbook of Organic Chemistry; McGraw-Hill: New York, Section 8 (1987).
    18. Odian, G. Principles of Polymerization, 2nd ed.; Wiley-Interscience: New York, P.281 (1981).
    19. Tsubokawa, N.; Shibata, N.; Sone, Y. J. Polym. Sci. 21, 425 (1983).

    Chapter 3
    1. Dix, L. R., Ebdon, J. R., Flint, N. J., Hodge P., O’dell, R. Eur. Polym. J. 31, 647 (1995).
    2. Grenier-Loustalot, M.-F., Chunha, L. D. Polymer 39, 1799 (1998).
    3. Shen, Z., Schlup, J. R., Fan, L. T. J. Appl. Polym. Sci. 69, 1019 (1998).
    4. Zhang, X., Du, F. S., Li, Z. C., Li, F. M. Macromol. Rapid Commun. 22, 983 (2001).
    5. Liu, Y. L., Tsai, S. H., Wu, C. S., Jeng, R. J. J. Polym. Sci. Part A: Polym. Chem. 42, 5921 (2004).
    6. Sava, M., Grigoras, C. V. J. Macromol. Sci. Part A: Pure Appl. Chem. 42, 1095 (2005).
    7. Pan, J. P., Shiau, G. Y., Lin, S. S., Chen, K. M. J. Appl. Polym. Sci. 45, 103 (1992).
    8. Dušek, K., Matějka, L., Špaček, P., Winter, H. Polymer 37, 2233 (1996).
    9. Liu, X., Chen, D., Yang, X., Lu, L., Wang, X. Eur. Polym. J. 36, 2291 (2000).
    10. Su, H. L., Hsu, J. M., Pan, J. P., Wang, T. H., Chern, C. S. J. Appl. Polym. Sci. 117, 596 (2010).
    11. Chern, C. S., Poehlein, G. W. Polym.-Plast. Technol. Eng. 29, 577 (1990).
    12. Brandrup, J.; Immergut, E. H., Eds. Polymer Handbook, 3rd Ed.; Wiley: New York (1989).

    Chapter 4
    1. Vrancken, K. C.; Possemiers, K.;Van Der Voort, P.; Vansant, E. F. Colloids Surf. A: Physicochem. Eng. Aspects 98, 235 (1995).
    2. Goerl, U.; Hunsche, A.; Mueller, A.; Koban, H. G. Rubber Chem. Technol. 70, 608 (1997).
    3. Daniels, M. W.; Francis, L. F. J. Colloid Interface Sci. 205, 191 (1998).
    4. Li, Y.; Yu, J.; Guo, Z. X. J. Appl. Polym. Sci. 84, 827 (2002).
    5. Byers, J. T. Rubber Chem. Technol. 75, 527 (2002).
    6. Chen, H.; Zhou, S.; Gu, G..; Wu, L. J. Disper. Sci. Technol. 26, 27 (2005).
    7. Pere, E.; Cardy, H.; Latour, V.; Lacombe, S. J. Colloid Interface Sci. 281, 410 (2005).
    8. Tamaki, R.; Chujo, Y. Chem. Mater. 11, 1719 (1999).
    9. Hsiue, G. H.; Chen, J. K.; Liu, Y. L. J. Appl. Polym. Sci. 76, 1609 (2000).
    10. Sereda, L.; Gonzalez, M. M. L.;Visconte, L. L. Y.; Nunes, R. C. R.; Furtado, C. R. G.; Riande, E. Polymer 44, 3085 (2003).
    11. Liu, Y. L.; Hsu, C. Y.; Wei, W. L.; Jeng, R. J. Polymer 44, 5159 (2003).
    12. Yu, Y. Y.; Chen, C. Y.; Chen, W. C. Polymer 44, 593 (2004).
    13. Chen, B. K.; Chiu, T. M.; Tsay S. Y. J. Appl. Polym. Sci. 94, 382 (2004).
    14. Pan, J. P.; Shiau, G. Y.; Lin, S. S.; Chen, K. M. J. Appl. Polym. Sci. 45, 103 (1992).
    15. Barton, A. F. M. CRC Handbook of Solubility Parameter and Other Cohesion Parameters; CRC Press: Boca Raton, FL (1983).
    16. Brandrup, J.; Immergut, E. H., Eds. Polymer Handbook, 3rd Ed.; Wiley: New York (1989).

    Chapter 5
    1. Min, B. G., Stachurski, Z. H., Hodgkin, J. H. Polymer 34, 4908 (1993).
    2. Dix, L. R., Ebdon, J. R., Flint, N. J., Hodge P., O’dell, R. Eur. Polym. J. 31, 647 (1995).
    3. Grenier-Loustalot, M.-F., Chunha, L. D. Polymer 39, 1799 (1998).
    4. Shen, Z., Schlup, J. R., Fan, L. T. J. Appl. Polym. Sci. 69, 1019 (1998).
    5. Zhang, X., Du, F. S., Li, Z. C., Li, F. M. Macromol. Rapid Commun. 22, 983 (2001).
    6. Liu, Y. L., Tsai, S. H., Wu, C. S., Jeng, R. J. J. Polym. Sci. Part A: Polym. Chem. 42, 5921 (2004).
    7. Sava, M., Grigoras, C. V. J. Macromol. Sci. Part A: Pure Appl. Chem. 42, 1095 (2005).
    8. Pan, J. P., Shiau, G. Y., Lin, S. S., Chen, K. M. J. Appl. Polym. Sci. 45, 103 (1992).
    9. Dušek, K., Matějka, L., Špaček, P., Winter, H. Polymer 37, 2233 (1996).
    10. Liu, X., Chen, D., Yang, X., Lu, L., Wang, X. Eur. Polym. J. 36, 2291 (2000).
    11. Su, H. L., Hsu, J. M., Pan, J. P., Wang, T. H., Yu, F. E., Chern, C. S. Polym. Eng. Sci. 51, 1188 (2011).
    12. Woo, E. M., Chen, L. B., Seferis, J. C. J. Mater. Sci. 22, 3665 (1987).
    13. Lin, K. F., Chen, J. C. Polym. Eng. Sci. 36, 211 (1996).
    14. Vanaja, A., Rao, R. M. V. G. K. Eur. Polym. J. 38, 187 (2002).
    15. Wu, C. S., Liu, Y. L., Hsu, K. Y. Polymer 44, 565 (2003).
    16. Zhou, B. X., Huang, Y. J., Zhang, X. H., Fu, Z. S., Qu, G. R. Polym. Eng. Sci. 49, 1525 (2009).
    17. Fox, T. G. J. Appl. Bull. Am. Phys. Soc. 1, 123 (1956).
    18. West, A. R. Solid State Chemistry and its Applications; John Wiley and Sons: Singapore, p. 174 (1989).
    19. Nielsen, L. E. Mechanical Properties of Polymers and Composites, Vol. 1, Marcel Dekker: New York, p. 147 (1974).
    20. Dinakaran, K., Kumar, R. S., Alagar, M. J. Appl. Polym. Sci. 90, 1596 (2003).
    21. Kumar, R. S., Alagar, M. J. Appl. Polym. Sci. 101, 668 (2006).
    22. Premkumar, S., Chozhan, C. K., Alagar, M. Eur. Polym. J. 44, 2599 (2008).
    23. Chern, C. S., Poehlein, G. W. Polym. Eng. Sci. 27, 788 (1987).

    無法下載圖示 全文公開日期 2016/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE