簡易檢索 / 詳目顯示

研究生: 盧祈明
Nurul Ridho Al Amin
論文名稱: 透過全真空蒸鍍製程開發有機/無機鈣鈦礦材料和光電元件
Development of Organic/Inorganic Perovskite Materials and Optoelectronic Devices through Full Vacuum Deposition Processes.
指導教授: 李志堅
Chih-Chien Lee
劉舜維
Shun-Wei Liu
口試委員: 劉舜維
Shun-Wei Liu
張志豪
Chih-Hao Chang
黃炳綜
Ping-Tsung Huang
黃柏仁
Bohr-Ran Huang
范慶麟
Ching-Lin Fan
徐世祥
Shih-Hsiang Hsu
李志堅
Chih-Chien Lee
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 94
外文關鍵詞: organic light emitting diodes, perovskite material, photo detector, organic material, gas sensor
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • These studies are reporting the development of optoelectronic devices using full vacuum deposition process during the doctoral studies. The first part is the development of the efficient exciplex-based OLEDs device using different structure. At first we compared the interfacial- and bulk-exciplex system with performance exhibit EQE of 26.4% and 7.7%, respectively. The bulk-exciplex could optimize the exciton formation inside the device as more charge is distributed inside the emission layer. In the following phase, we demonstrate the optimal adjustment between donor and acceptor materials in the bulk-exciplex system by using synthesize phenylcarbazole-based material as the host material. The high EQE of 31.5% was obtained by utilizing the donor and acceptor intermolecular interaction to achieve higher triplet state, thus promote the exciton formation. The optical and electrical measurement is used to analyze the exciplex formation inside the system.
    The second part is optimizing the perovskite photodetecor (PPD) using three materials FAI, CsBr, and PbI2. Our optimize device has high on/off ratio of 107 order, specific detectivity (D*) recorded around 1013 order, and comparable photocurrent response with silicon-based PD (Newport 818-SL25). Our device can maintain 95% of their performance upon exposure to one sun illumination. The electrochemical impedance spectroscopy (EIS) measurement is utilized for examining device charge dynamics during varied exposure durations to understand the degradation mechanism.
    Third part is developing perovskite gas sensor using all vacuum deposition process. The FACsPbI2Br device shows response over 76% with response and recovery time 39s and 110s under 10 ppm concentrations of NO gases. Our device shows good selectivity toward other gases such as NH3, SO2 and CO2. We discovered that the CsBr additive could extend the bare film lifespan for three days when placed under ambient surrounding. The lower surface film roughness demonstrates the ability to restrain oxygen and moisture pathways, resulting in longer lifetime.

    Table of Contents Abstract iv Acknowledgement vi List of Figure x List of Table xiv Chapter 1 - Introduction 1 1.1 Background 1 1.2 Organic Material 2 1.2.1 Organic Light-Emitting Diodes (OLEDs) 6 1.3 Organic/Inorganic Halide Perovskite (OIHP) Material 9 1.3.1 Perovskite Photodetector (PPD) 14 Chapter 2 - Fabrication and Device Characterization 20 2.1 Vacuum Deposition Process 20 2.2 Characterization of Perovskite Thin Film 23 2.2.1 X-ray Diffraction (XRD) 23 2.2.2 UV-Visible Absorbance Spectroscopy 24 2.2.3 Atomic Force Microscopy (AFM) 25 2.2.4 Scanning Electron Microscopy (SEM) 26 2.3 Electrochemical Impedance Spectroscopy (EIS) 27 2.4 Characterization of Organic Light Emitting Diodes (OLEDs) 30 2.5 Characterization of Perovskite Photo-Detector (PPD) 31 2.6 Characterization of Perovskite Gas Sensor (PGS) 32 Chapter 3 – Organic Light Emitting Diodes 33 3.1 Strategy to understand the Exciplex-Forming System for Emission Layer on OLEDs 33 3.1.1 Background and Motivation 33 3.1.2 Device Performance 36 3.2 Strategy to achieve High Efficient Phosphorescence OLEDs using Series of Phenylcarbazol-Based Molecules on Exciplex-Forming System 42 3.2.1 Background and Motivation 42 Chapter 4 – Perovskite Photo Detector 52 4.1 Strategy to fabricate the Perovskite Photo Detector using All-Vacuum Deposition Process 52 4.1.1 Background and Motivation 52 4.1.2 Device Performance 54 Chapter 5 – Perovskite Gas Sensor 61 5.1 Background and Motivation 61 5.2 Device Performance 62 Chapter 6 – Conclusion and Outlook 69 6.1 Conclusion 69 6.2 Outlook 70 References 73 Appendix 91 A.1 Autobiography 91

    References

    [1] Semiconductor Materials, Kluwer Academic Publishers, Boston, 2003. https://doi.org/10.1007/b105378.
    [2] Y. Wei, Z. Cheng, J. Lin, An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs, Chem. Soc. Rev. 48 (2019) 310–350. https://doi.org/10.1039/C8CS00740C.
    [3] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole diffusion lengths > 175 μm in solution-grown CH 3 NH 3 PbI 3 single crystals, Science. 347 (2015) 967–970. https://doi.org/10.1126/science.aaa5760.
    [4] D.N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N.P. Stadie, M. V. Kovalenko, Harnessing Defect-Tolerance at the Nanoscale: Highly Luminescent Lead Halide Perovskite Nanocrystals in Mesoporous Silica Matrixes, Nano Lett. 16 (2016) 5866–5874. https://doi.org/10.1021/acs.nanolett.6b02688.
    [5] Z. Dechun, Chemical and photophysical properties of materials for OLEDs, in: Org. Light. Diodes, Elsevier, 2013: pp. 114–142. https://doi.org/10.1533/9780857098948.1.114.
    [6] H. Naarmann, Polymers, Electrically Conducting, in: Ullmann’s Encycl. Ind. Chem., Wiley, 2000. https://doi.org/10.1002/14356007.a21_429.
    [7] M. Pope, H.P. Kallmann, P. Magnante, Electroluminescence in Organic Crystals, J. Chem. Phys. 38 (1963) 2042–2043. https://doi.org/10.1063/1.1733929.
    [8] C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes, Appl. Phys. Lett. 51 (1987) 913–915. https://doi.org/10.1063/1.98799.
    [9] C. Adachi, M.A. Baldo, M.E. Thompson, S.R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, J. Appl. Phys. 90 (2001) 5048–5051. https://doi.org/10.1063/1.1409582.
    [10] K. Goushi, C. Adachi, Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes, Appl. Phys. Lett. 101 (2012). https://doi.org/10.1063/1.4737006.
    [11] Y.X. Wang, W.L. Zhong, C.L. Wang, P.L. Zhang, Electronic structure and properties in perovskite CaTiO 3 from first principle, Ferroelectrics. 259 (2001) 127–132. https://doi.org/10.1080/00150190108008728.
    [12] C.-M. Hsieh, Y.-L. Yu, C.-P. Chen, S.-C. Chuang, Effects of the additives n -propylammonium or n -butylammonium iodide on the performance of perovskite solar cells, RSC Adv. 7 (2017) 55986–55992. https://doi.org/10.1039/C7RA11286F.
    [13] I. Poli, S. Eslava, P. Cameron, Tetrabutylammonium cations for moisture-resistant and semitransparent perovskite solar cells, J. Mater. Chem. A. 5 (2017) 22325–22333. https://doi.org/10.1039/C7TA06735F.
    [14] J. Liang, Y.B. Qi, Recent progress on all-inorganic metal halide perovskite solar cells, Mater. Today Nano. 16 (2021) 100143. https://doi.org/10.1016/j.mtnano.2021.100143.
    [15] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc. 131 (2009) 6050–6051. https://doi.org/10.1021/ja809598r.
    [16] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Science. 338 (2012) 643–647. https://doi.org/10.1126/science.1228604.
    [17] W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, L. Han, Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers, Science. 350 (2015) 944–948. https://doi.org/10.1126/science.aad1015.
    [18] Z. Song, S.C. Watthage, A.B. Phillips, M.J. Heben, Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications, J. Photonics Energy. 6 (2016) 022001. https://doi.org/10.1117/1.JPE.6.022001.
    [19] N.-G. Park, M. Grätzel, T. Miyasaka, K. Zhu, K. Emery, Towards stable and commercially available perovskite solar cells, Nat. Energy. 1 (2016) 16152. https://doi.org/10.1038/nenergy.2016.152.
    [20] F.U. Kosasih, E. Erdenebileg, N. Mathews, S.G. Mhaisalkar, A. Bruno, Thermal evaporation and hybrid deposition of perovskite solar cells and mini-modules, Joule. 6 (2022) 2692–2734. https://doi.org/10.1016/j.joule.2022.11.004.
    [21] S.-R. Bae, D.Y. Heo, S.Y. Kim, Recent progress of perovskite devices fabricated using thermal evaporation method: Perspective and outlook, Mater. Today Adv. 14 (2022) 100232. https://doi.org/10.1016/j.mtadv.2022.100232.
    [22] X. Wu, B. Li, Z. Zhu, C.-C. Chueh, A.K.-Y. Jen, Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells, Chem. Soc. Rev. 50 (2021) 13090–13128. https://doi.org/10.1039/D1CS00841B.
    [23] S. Dhall, B.R. Mehta, A.K. Tyagi, K. Sood, A review on environmental gas sensors: Materials and technologies, Sensors Int. 2 (2021) 100116. https://doi.org/10.1016/j.sintl.2021.100116.
    [24] Y. Huang, Y. Feng, F. Li, F. Lin, Y. Wang, X. Chen, R. Xie, Sensing studies and applications based on metal halide perovskite materials: Current advances and future perspectives, TrAC Trends Anal. Chem. 134 (2021) 116127. https://doi.org/10.1016/j.trac.2020.116127.
    [25] J. Casanova-Cháfer, R. García-Aboal, P. Atienzar, E. Llobet, Gas Sensing Properties of Perovskite Decorated Graphene at Room Temperature, Sensors. 19 (2019) 4563. https://doi.org/10.3390/s19204563.
    [26] S. Kavadiya, J. Strzalka, D.M. Niedzwiedzki, P. Biswas, Crystal reorientation in methylammonium lead iodide perovskite thin film with thermal annealing, J. Mater. Chem. A. 7 (2019) 12790–12799. https://doi.org/10.1039/C9TA02358E.
    [27] H. Fan, F. Li, P. Wang, Z. Gu, J.-H. Huang, K.-J. Jiang, B. Guan, L.-M. Yang, X. Zhou, Y. Song, Methylamine-assisted growth of uniaxial-oriented perovskite thin films with millimeter-sized grains, Nat. Commun. 11 (2020) 5402. https://doi.org/10.1038/s41467-020-19199-6.
    [28] J. Zhao, Y. Deng, H. Wei, X. Zheng, Z. Yu, Y. Shao, J.E. Shield, J. Huang, Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells, Sci. Adv. 3 (2017). https://doi.org/10.1126/sciadv.aao5616.
    [29] D. Forgács, M. Sessolo, H.J. Bolink, Lead acetate precursor based p-i-n perovskite solar cells with enhanced reproducibility and low hysteresis, J. Mater. Chem. A. 3 (2015) 14121–14125. https://doi.org/10.1039/C5TA03169A.
    [30] A. Castro‐Méndez, J. Hidalgo, J. Correa‐Baena, The Role of Grain Boundaries in Perovskite Solar Cells, Adv. Energy Mater. 9 (2019). https://doi.org/10.1002/aenm.201901489.
    [31] F. Guo, S. Qiu, J. Hu, H. Wang, B. Cai, J. Li, X. Yuan, X. Liu, K. Forberich, C.J. Brabec, Y. Mai, A Generalized Crystallization Protocol for Scalable Deposition of High‐Quality Perovskite Thin Films for Photovoltaic Applications, Adv. Sci. 6 (2019). https://doi.org/10.1002/advs.201901067.
    [32] H. Park, H. Kim, S.K. Dhungel, J. Yi, S.Y. Sohn, D.G. Jung, Impedance Spectroscopy Analysis of Organic Light-Emitting Diodes Fabricated on Plasma-Treated Indium-Tin-Oxide surfaces, J. Korean Phys. Soc. 51 (2007) 1011. https://doi.org/10.3938/jkps.51.1011.
    [33] T. Okachi, T. Nagase, T. Kobayashi, H. Naito, Determination of Charge-Carrier Mobility in Organic Light-Emitting Diodes by Impedance Spectroscopy in Presence of Localized States, Jpn. J. Appl. Phys. 47 (2008) 8965. https://doi.org/10.1143/JJAP.47.8965.
    [34] R. Zheng, W.-B. Huang, W. Xu, Y. Cao, Analysis of Intrinsic Degradation Mechanism in Organic Light-Emitting Diodes by Impedance Spectroscopy, Chinese Phys. Lett. 31 (2014) 027703. https://doi.org/10.1088/0256-307X/31/2/027703.
    [35] S. Ryuzaki, J. Onoe, Influence of charge accumulation of photogenerated carriers in the vicinity of donor/acceptor interface on the open-circuit voltage of zinc-porphyrin/C 60 heterojunction organic photovoltaic cells, J. Phys. D. Appl. Phys. 44 (2011) 265102. https://doi.org/10.1088/0022-3727/44/26/265102.
    [36] D.C. Tripathi, S.K. Gupta, A. Kumar, S.K. Pathak, A. Garg, Impact of recombination mechanisms on the capacitance-voltage characteristics in bulk heterojunction organic solar cells, Synth. Met. 297 (2023) 117419. https://doi.org/10.1016/j.synthmet.2023.117419.
    [37] J. Bisquert, G. Garcia-Belmonte, A. Munar, M. Sessolo, A. Soriano, H.J. Bolink, Band unpinning and photovoltaic model for P3HT:PCBM organic bulk heterojunctions under illumination, Chem. Phys. Lett. 465 (2008) 57–62. https://doi.org/10.1016/j.cplett.2008.09.035.
    [38] S. Nowy, W. Ren, J. Wagner, J.A. Weber, W. Brütting, Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation, in: F. So, C. Adachi (Eds.), 2009: p. 74150G. https://doi.org/10.1117/12.824856.
    [39] H. Kaji, H. Suzuki, T. Fukushima, K. Shizu, K. Suzuki, S. Kubo, T. Komino, H. Oiwa, F. Suzuki, A. Wakamiya, Y. Murata, C. Adachi, Purely organic electroluminescent material realizing 100% conversion from electricity to light, Nat. Commun. 6 (2015) 8476. https://doi.org/10.1038/ncomms9476.
    [40] T. Lin, T. Chatterjee, W. Tsai, W. Lee, M. Wu, M. Jiao, K. Pan, C. Yi, C. Chung, K. Wong, C. Wu, Sky‐Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine‐Triazine Hybrid, Adv. Mater. 28 (2016) 6976–6983. https://doi.org/10.1002/adma.201601675.
    [41] D. Hall, S.M. Suresh, P.L. dos Santos, E. Duda, S. Bagnich, A. Pershin, P. Rajamalli, D.B. Cordes, A.M.Z. Slawin, D. Beljonne, A. Köhler, I.D.W. Samuel, Y. Olivier, E. Zysman‐Colman, Improving Processability and Efficiency of Resonant TADF Emitters: A Design Strategy, Adv. Opt. Mater. 8 (2020). https://doi.org/10.1002/adom.201901627.
    [42] D.H. Ahn, S.W. Kim, H. Lee, I.J. Ko, D. Karthik, J.Y. Lee, J.H. Kwon, Highly efficient blue thermally activated delayed fluorescence emitters based on symmetrical and rigid oxygen-bridged boron acceptors, Nat. Photonics. 13 (2019) 540–546. https://doi.org/10.1038/s41566-019-0415-5.
    [43] J. Kalinowski, M. Cocchi, D. Virgili, V. Fattori, J.A.G. Williams, Mixing of Excimer and Exciplex Emission: A New Way to Improve White Light Emitting Organic Electrophosphorescent Diodes, Adv. Mater. 19 (2007) 4000–4005. https://doi.org/10.1002/adma.200700655.
    [44] T.-L. Wu, S.-Y. Liao, P.-Y. Huang, Z.-S. Hong, M.-P. Huang, C.-C. Lin, M.-J. Cheng, C.-H. Cheng, Exciplex Organic Light-Emitting Diodes with Nearly 20% External Quantum Efficiency: Effect of Intermolecular Steric Hindrance between the Donor and Acceptor Pair, ACS Appl. Mater. Interfaces. 11 (2019) 19294–19300. https://doi.org/10.1021/acsami.9b04365.
    [45] B. Liang, J. Wang, Z. Cheng, J. Wei, Y. Wang, Exciplex-Based Electroluminescence: Over 21% External Quantum Efficiency and Approaching 100 lm/W Power Efficiency, J. Phys. Chem. Lett. 10 (2019) 2811–2816. https://doi.org/10.1021/acs.jpclett.9b01140.
    [46] W.-Y. Hung, G.-C. Fang, Y.-C. Chang, T.-Y. Kuo, P.-T. Chou, S.-W. Lin, K.-T. Wong, Highly Efficient Bilayer Interface Exciplex For Yellow Organic Light-Emitting Diode, ACS Appl. Mater. Interfaces. 5 (2013) 6826–6831. https://doi.org/10.1021/am402032z.
    [47] W.-Y. Hung, G.-C. Fang, S.-W. Lin, S.-H. Cheng, K.-T. Wong, T.-Y. Kuo, P.-T. Chou, The First Tandem, All-exciplex-based WOLED, Sci. Rep. 4 (2014) 5161. https://doi.org/10.1038/srep05161.
    [48] E. Skuodis, A. Tomkeviciene, R. Reghu, L. Peciulyte, K. Ivaniuk, D. Volyniuk, O. Bezvikonnyi, G. Bagdziunas, D. Gudeika, J. V. Grazulevicius, OLEDs based on the emission of interface and bulk exciplexes formed by cyano-substituted carbazole derivative, Dye. Pigment. 139 (2017) 795–807. https://doi.org/10.1016/j.dyepig.2017.01.016.
    [49] M. Wang, Y. Huang, K. Lin, T. Yeh, J. Duan, T. Ko, S. Liu, K. Wong, B. Hu, Revealing the Cooperative Relationship between Spin, Energy, and Polarization Parameters toward Developing High‐Efficiency Exciplex Light‐Emitting Diodes, Adv. Mater. 31 (2019). https://doi.org/10.1002/adma.201904114.
    [50] N.R. Al Amin, K.K. Kesavan, S. Biring, C.-C. Lee, T.-H. Yeh, T.-Y. Ko, S.-W. Liu, K.-T. Wong, A Comparative Study via Photophysical and Electrical Characterizations on Interfacial and Bulk Exciplex-Forming Systems for Efficient Organic Light-Emitting Diodes, ACS Appl. Electron. Mater. 2 (2020) 1011–1019. https://doi.org/10.1021/acsaelm.0c00062.
    [51] C.-J. Shih, C.-C. Lee, T.-H. Yeh, S. Biring, K.K. Kesavan, N.R. Al Amin, M.-H. Chen, W.-C. Tang, S.-W. Liu, K.-T. Wong, Versatile Exciplex-Forming Co-Host for Improving Efficiency and Lifetime of Fluorescent and Phosphorescent Organic Light-Emitting Diodes, ACS Appl. Mater. Interfaces. 10 (2018) 24090–24098. https://doi.org/10.1021/acsami.8b08281.
    [52] H. Sasabe, N. Toyota, H. Nakanishi, T. Ishizaka, Y. Pu, J. Kido, 3,3′‐Bicarbazole‐Based Host Materials for High‐Efficiency Blue Phosphorescent OLEDs with Extremely Low Driving Voltage, Adv. Mater. 24 (2012) 3212–3217. https://doi.org/10.1002/adma.201200848.
    [53] W.-Y. Hung, P.-Y. Chiang, S.-W. Lin, W.-C. Tang, Y.-T. Chen, S.-H. Liu, P.-T. Chou, Y.-T. Hung, K.-T. Wong, Balance the Carrier Mobility To Achieve High Performance Exciplex OLED Using a Triazine-Based Acceptor, ACS Appl. Mater. Interfaces. 8 (2016) 4811–4818. https://doi.org/10.1021/acsami.5b11895.
    [54] K. Masui, H. Nakanotani, C. Adachi, Analysis of exciton annihilation in high-efficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence, Org. Electron. 14 (2013) 2721–2726. https://doi.org/10.1016/j.orgel.2013.07.010.
    [55] W. Brütting, S. Berleb, A.G. Mückl, Device physics of organic light-emitting diodes based on molecular materials, Org. Electron. 2 (2001) 1–36. https://doi.org/10.1016/S1566-1199(01)00009-X.
    [56] S. Nowy, W. Ren, A. Elschner, W. Lövenich, W. Brütting, Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes, J. Appl. Phys. 107 (2010). https://doi.org/10.1063/1.3294642.
    [57] J. Bisquert, G. Garcia-Belmonte, Á. Pitarch, H.J. Bolink, Negative capacitance caused by electron injection through interfacial states in organic light-emitting diodes, Chem. Phys. Lett. 422 (2006) 184–191. https://doi.org/10.1016/j.cplett.2006.02.060.
    [58] M. Guan, L. Niu, Y. Zhang, X. Liu, Y. Li, Y. Zeng, Space charges and negative capacitance effect in organic light-emitting diodes by transient current response analysis, RSC Adv. 7 (2017) 50598–50602. https://doi.org/10.1039/C7RA07311A.
    [59] T.-H. Han, W. Song, T.-W. Lee, Elucidating the Crucial Role of Hole Injection Layer in Degradation of Organic Light-Emitting Diodes, ACS Appl. Mater. Interfaces. 7 (2015) 3117–3125. https://doi.org/10.1021/am5072628.
    [60] T.-H. Han, Y.-H. Kim, M.H. Kim, W. Song, T.-W. Lee, Synergetic Influences of Mixed-Host Emitting Layer Structures and Hole Injection Layers on Efficiency and Lifetime of Simplified Phosphorescent Organic Light-Emitting Diodes, ACS Appl. Mater. Interfaces. 8 (2016) 6152–6163. https://doi.org/10.1021/acsami.5b11791.
    [61] K.O. Cheon, J. Shinar, Electroluminescence spikes, turn-off dynamics, and charge traps in organic light-emitting devices, Phys. Rev. B. 69 (2004) 201306. https://doi.org/10.1103/PhysRevB.69.201306.
    [62] R. Liu, Z. Gan, R. Shinar, J. Shinar, Transient electroluminescence spikes in small molecular organic light-emitting diodes, Phys. Rev. B. 83 (2011) 245302. https://doi.org/10.1103/PhysRevB.83.245302.
    [63] H.-T. Mao, W.-L. Song, C.-X. Zang, G.-F. Li, G.-G. Shan, H.-Z. Sun, W.-F. Xie, Z.-M. Su, Manipulating charge carrier transporting of disubstituted phenylbenzoimidazole-based host materials for efficient full-color PhOLEDs, Org. Electron. 77 (2020) 105513. https://doi.org/10.1016/j.orgel.2019.105513.
    [64] Q.-S. Tian, X.-D. Zhu, L.-S. Liao, Highly efficient exciplex-based OLEDs incorporating a novel electron donor, Mater. Chem. Front. 4 (2020) 1648–1655. https://doi.org/10.1039/D0QM00116C.
    [65] L.-S. Cui, Y. Liu, X.-D. Yuan, Q. Li, Z.-Q. Jiang, L.-S. Liao, Bipolar host materials for high efficiency phosphorescent organic light emitting diodes: tuning the HOMO/LUMO levels without reducing the triplet energy in a linear system, J. Mater. Chem. C. 1 (2013) 8177. https://doi.org/10.1039/c3tc31675k.
    [66] Y. Wang, W. Song, Y. Chen, Y. Jiang, H. Mu, J. Huang, J. Su, A series of new bipolar CBP derivatives with introduction of a electron-deficient moiety for efficient green organic light-emitting diodes, Org. Electron. 61 (2018) 142–150. https://doi.org/10.1016/j.orgel.2018.04.040.
    [67] A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, C. Adachi, Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes, Appl. Phys. Lett. 98 (2011). https://doi.org/10.1063/1.3558906.
    [68] Z.B. Wang, M.G. Helander, J. Qiu, D.P. Puzzo, M.T. Greiner, Z.W. Liu, Z.H. Lu, Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10,000 cd/m2, Appl. Phys. Lett. 98 (2011). https://doi.org/10.1063/1.3532844.
    [69] H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi, High-efficiency organic light-emitting diodes with fluorescent emitters, Nat. Commun. 5 (2014) 4016. https://doi.org/10.1038/ncomms5016.
    [70] J. Yu, C. Zang, Z. Yu, H. Wang, S. Liu, L. Zhang, W. Xie, H. Zhao, 4, 6-Bis[3-(dibenzothiophen-2-yl)phenyl] pyrimidine bipolar host for bright, efficient and low efficiency roll-off phosphorescent organic light-emitting devices, Org. Electron. 38 (2016) 301–306. https://doi.org/10.1016/j.orgel.2016.09.002.
    [71] C.-C. Lee, N.R. Al Amin, J.-J. Xu, B.-C. Wang, D. Luo, K. Sutanto, S. Biring, S.-W. Liu, C.-H. Chen, Structural effect of phenylcarbazole-based molecules on the exciplex-forming co-host system to achieve highly efficient phosphorescent OLEDs with low efficiency roll-off, J. Mater. Chem. C. 9 (2021) 9453–9464. https://doi.org/10.1039/D1TC02290C.
    [72] Z.-J. Gao, T.-H. Yeh, J.-J. Xu, C.-C. Lee, A. Chowdhury, B.-C. Wang, S.-W. Liu, C.-H. Chen, Carbazole/Benzimidazole-Based Bipolar Molecules as the Hosts for Phosphorescent and Thermally Activated Delayed Fluorescence Emitters for Efficient OLEDs, ACS Omega. 5 (2020) 10553–10561. https://doi.org/10.1021/acsomega.0c00967.
    [73] X. Cao, X. Zhang, C. Duan, H. Xu, W. Yuan, Y. Tao, W. Huang, Simple phenyl bridge between cyano and pyridine units to weaken the electron-withdrawing property for blue-shifted emission in efficient blue TADF OLEDs, Org. Electron. 57 (2018) 247–254. https://doi.org/10.1016/j.orgel.2018.03.027.
    [74] J. Duan, D. Liu, W. Tian, L. Jiang, W. Jiang, Y. Sun, Elevating the triplet level of carbazolyl benzonitrile-based dendritic hosts by suppressing intramolecular charge transfer for solution-processed blue thermally activated delayed fluorescence OLEDs, Opt. Mater. (Amst). 104 (2020) 109941. https://doi.org/10.1016/j.optmat.2020.109941.
    [75] B. Saparov, D.B. Mitzi, Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design, Chem. Rev. 116 (2016) 4558–4596. https://doi.org/10.1021/acs.chemrev.5b00715.
    [76] V. Adinolfi, O. Ouellette, M.I. Saidaminov, G. Walters, A.L. Abdelhady, O.M. Bakr, E.H. Sargent, Fast and Sensitive Solution-Processed Visible-Blind Perovskite UV Photodetectors, Adv. Mater. 28 (2016) 7264–7268. https://doi.org/10.1002/adma.201601196.
    [77] W. Hu, H. Cong, W. Huang, Y. Huang, L. Chen, A. Pan, C. Xue, Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band, Light Sci. Appl. 8 (2019) 106. https://doi.org/10.1038/s41377-019-0218-y.
    [78] C. Li, H. Wang, F. Wang, T. Li, M. Xu, H. Wang, Z. Wang, X. Zhan, W. Hu, L. Shen, Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging, Light Sci. Appl. 9 (2020) 31. https://doi.org/10.1038/s41377-020-0264-5.
    [79] H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee, J. Kim, M.J. Paik, Y.K. Kim, K.S. Kim, M.G. Kim, T.J. Shin, S. Il Seok, Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes, Nature. 598 (2021) 444–450. https://doi.org/10.1038/s41586-021-03964-8.
    [80] N. Li, A. Feng, X. Guo, J. Wu, S. Xie, Q. Lin, X. Jiang, Y. Liu, Z. Chen, X. Tao, Engineering the Hole Extraction Interface Enables Single‐Crystal MAPbI 3 Perovskite Solar Cells with Efficiency Exceeding 22% and Superior Indoor Response, Adv. Energy Mater. 12 (2022) 2103241. https://doi.org/10.1002/aenm.202103241.
    [81] Y. Vaynzof, The Future of Perovskite Photovoltaics—Thermal Evaporation or Solution Processing?, Adv. Energy Mater. 10 (2020) 2003073. https://doi.org/10.1002/aenm.202003073.
    [82] L. Gil-Escrig, C. Momblona, M.-G. La-Placa, P.P. Boix, M. Sessolo, H.J. Bolink, Vacuum Deposited Triple-Cation Mixed-Halide Perovskite Solar Cells, Adv. Energy Mater. 8 (2018) 1703506. https://doi.org/10.1002/aenm.201703506.
    [83] S.-Y. Hsiao, H.-L. Lin, W.-H. Lee, W.-L. Tsai, K.-M. Chiang, W.-Y. Liao, C.-Z. Ren-Wu, C.-Y. Chen, H.-W. Lin, Efficient All-Vacuum Deposited Perovskite Solar Cells by Controlling Reagent Partial Pressure in High Vacuum, Adv. Mater. 28 (2016) 7013–7019. https://doi.org/10.1002/adma.201601505.
    [84] Y.-H. Chiang, M. Anaya, S.D. Stranks, Multisource Vacuum Deposition of Methylammonium-Free Perovskite Solar Cells, ACS Energy Lett. 5 (2020) 2498–2504. https://doi.org/10.1021/acsenergylett.0c00839.
    [85] C. Momblona, L. Gil-Escrig, E. Bandiello, E.M. Hutter, M. Sessolo, K. Lederer, J. Blochwitz-Nimoth, H.J. Bolink, Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers, Energy Environ. Sci. 9 (2016) 3456–3463. https://doi.org/10.1039/C6EE02100J.
    [86] J. Li, H. Wang, X.Y. Chin, H.A. Dewi, K. Vergeer, T.W. Goh, J.W.M. Lim, J.H. Lew, K.P. Loh, C. Soci, T.C. Sum, H.J. Bolink, N. Mathews, S. Mhaisalkar, A. Bruno, Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules, Joule. 4 (2020) 1035–1053. https://doi.org/10.1016/j.joule.2020.03.005.
    [87] J. Borchert, R.L. Milot, J.B. Patel, C.L. Davies, A.D. Wright, L. Martínez Maestro, H.J. Snaith, L.M. Herz, M.B. Johnston, Large-Area, Highly Uniform Evaporated Formamidinium Lead Triiodide Thin Films for Solar Cells, ACS Energy Lett. 2 (2017) 2799–2804. https://doi.org/10.1021/acsenergylett.7b00967.
    [88] T. Li, Y. Pan, Z. Wang, Y. Xia, Y. Chen, W. Huang, Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: recent advances and perspectives, J. Mater. Chem. A. 5 (2017) 12602–12652. https://doi.org/10.1039/C7TA01798G.
    [89] C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S.M. Zakeeruddin, U. Röthlisberger, M. Grätzel, Entropic stabilization of mixed A-cation ABX 3 metal halide perovskites for high performance perovskite solar cells, Energy Environ. Sci. 9 (2016) 656–662. https://doi.org/10.1039/C5EE03255E.
    [90] T. Liu, H. Lai, X. Wan, X. Zhang, Y. Liu, Y. Chen, Cesium Halides-Assisted Crystal Growth of Perovskite Films for Efficient Planar Heterojunction Solar Cells, Chem. Mater. 30 (2018) 5264–5271. https://doi.org/10.1021/acs.chemmater.8b02002.
    [91] N.R. Al Amin, C.-C. Lee, Y.-C. Huang, C.-J. Shih, R. Estrada, S. Biring, M.-H. Kuo, C.-F. Li, Y.-C. Huang, S.-W. Liu, Achieving a Highly Stable Perovskite Photodetector with a Long Lifetime Fabricated via an All-Vacuum Deposition Process, ACS Appl. Mater. Interfaces. 15 (2023) 21284–21295. https://doi.org/10.1021/acsami.3c00839.
    [92] A.J. Pearson, P.E. Hopkinson, E. Couderc, K. Domanski, M. Abdi-Jalebi, N.C. Greenham, Critical light instability in CB/DIO processed PBDTTT-EFT:PC 71 BM organic photovoltaic devices, Org. Electron. 30 (2016) 225–236. https://doi.org/10.1016/j.orgel.2015.12.024.
    [93] C.R. McNeill, I. Hwang, N.C. Greenham, Photocurrent transients in all-polymer solar cells: Trapping and detrapping effects, J. Appl. Phys. 106 (2009) 024507. https://doi.org/10.1063/1.3177337.
    [94] T. Wang, T. Fang, X. Li, L. Xu, J. Song, Controllable Transient Photocurrent in Photodetectors Based on Perovskite Nanocrystals via Doping and Interfacial Engineering, J. Phys. Chem. C. 125 (2021) 5475–5484. https://doi.org/10.1021/acs.jpcc.0c11036.
    [95] M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, F. Teng, High-Performance Photodiode-Type Photodetectors Based on Polycrystalline Formamidinium Lead Iodide Perovskite Thin Films, Sci. Rep. 8 (2018) 11157. https://doi.org/10.1038/s41598-018-29147-6.
    [96] R.K. Koech, R. Ichwani, J.L. Martin, D.O. Oyewole, O. V. Oyelade, Y.A. Olanrewaju, D.M. Sanni, S.A. Adeniji, R.L. Grimm, A. Bello, O.K. Oyewole, E. Ntsoenzok, W.O. Soboyejo, A study of the effects of a thermally evaporated nanoscale CsBr layer on the optoelectronic properties and stability of formamidinium-rich perovskite solar cells, AIP Adv. 11 (2021) 095112. https://doi.org/10.1063/5.0064398.
    [97] F.-X. Liang, J.-Z. Wang, Z.-X. Zhang, Y.-Y. Wang, Y. Gao, L.-B. Luo, Broadband, Ultrafast, Self-Driven Photodetector Based on Cs-Doped FAPbI 3 Perovskite Thin Film, Adv. Opt. Mater. 5 (2017) 1700654. https://doi.org/10.1002/adom.201700654.
    [98] S. Ma, G. Jang, S. Kim, H.-C. Kwon, S. Goh, H. Ban, J.H. Cho, J. Moon, Multifunctional Self-Combustion Additives Strategy to Fabricate Highly Responsive Hybrid Perovskite Photodetectors, ACS Appl. Mater. Interfaces. 12 (2020) 41674–41686. https://doi.org/10.1021/acsami.0c08485.
    [99] Z.-X. Zhang, Long-Hui Zeng, X.-W. Tong, Y. Gao, C. Xie, Y.H. Tsang, L.-B. Luo, Y.-C. Wu, Ultrafast, Self-Driven, and Air-Stable Photodetectors Based on Multilayer PtSe 2 /Perovskite Heterojunctions, J. Phys. Chem. Lett. 9 (2018) 1185–1194. https://doi.org/10.1021/acs.jpclett.8b00266.
    [100] Y. Wang, X. Zhang, D. Wang, X. Li, J. Meng, J. You, Z. Yin, J. Wu, Compositional Engineering of Mixed-Cation Lead Mixed-Halide Perovskites for High-Performance Photodetectors, ACS Appl. Mater. Interfaces. 11 (2019) 28005–28012. https://doi.org/10.1021/acsami.9b06780.
    [101] H. Zhou, Z. Song, C. Wang, C.R. Grice, Z. Song, D. Zhao, H. Wang, Y. Yan, Double Coating for the Enhancement of the Performance in a MA 0.7 FA 0.3 PbBr 3 Photodetector, ACS Photonics. 5 (2018) 2100–2105. https://doi.org/10.1021/acsphotonics.8b00562.
    [102] W. Wang, D. Zhao, F. Zhang, L. Li, M. Du, C. Wang, Y. Yu, Q. Huang, M. Zhang, L. Li, J. Miao, Z. Lou, G. Shen, Y. Fang, Y. Yan, Highly Sensitive Low‐Bandgap Perovskite Photodetectors with Response from Ultraviolet to the Near‐Infrared Region, Adv. Funct. Mater. 27 (2017) 1703953. https://doi.org/10.1002/adfm.201703953.
    [103] H.-S. Kim, N.-G. Park, Parameters Affecting I – V Hysteresis of CH 3 NH 3 PbI 3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO 2 Layer, J. Phys. Chem. Lett. 5 (2014) 2927–2934. https://doi.org/10.1021/jz501392m.
    [104] R.S. Sanchez, V. Gonzalez-Pedro, J.-W. Lee, N.-G. Park, Y.S. Kang, I. Mora-Sero, J. Bisquert, Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis, J. Phys. Chem. Lett. 5 (2014) 2357–2363. https://doi.org/10.1021/jz5011187.
    [105] Y. Rong, Y. Hu, S. Ravishankar, H. Liu, X. Hou, Y. Sheng, A. Mei, Q. Wang, D. Li, M. Xu, J. Bisquert, H. Han, Tunable hysteresis effect for perovskite solar cells, Energy Environ. Sci. 10 (2017) 2383–2391. https://doi.org/10.1039/C7EE02048A.
    [106] P. Liu, W. Wang, S. Liu, H. Yang, Z. Shao, Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells, Adv. Energy Mater. 9 (2019) 1803017. https://doi.org/10.1002/aenm.201803017.
    [107] X. Fu, S. Jiao, N. Dong, G. Lian, T. Zhao, S. Lv, Q. Wang, D. Cui, A CH 3 NH 3 PbI 3 film for a room-temperature NO 2 gas sensor with quick response and high selectivity, RSC Adv. 8 (2018) 390–395. https://doi.org/10.1039/C7RA11149E.
    [108] Z. Lu, C. Lou, A. Cheng, J. Zhang, J. Sun, A sensitive and ultrafast FA0.83Cs0.17PbI3 perovskite sensor for NO2 detection at room temperature, J. Alloys Compd. 919 (2022) 165831. https://doi.org/10.1016/j.jallcom.2022.165831.
    [109] X. Pang, J. Qi, Y. Zhang, Y. Ren, M. Su, B. Jia, Y. Wang, Q. Wei, B. Du, Ultrasensitive photoelectrochemical aptasensing of miR-155 using efficient and stable CH3NH3PbI3 quantum dots sensitized ZnO nanosheets as light harvester, Biosens. Bioelectron. 85 (2016) 142–150. https://doi.org/10.1016/j.bios.2016.04.099.
    [110] V. Calabrese, C. Mancuso, M. Calvani, E. Rizzarelli, D.A. Butterfield, A.M. Giuffrida Stella, Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity, Nat. Rev. Neurosci. 8 (2007) 766–775. https://doi.org/10.1038/nrn2214.
    [111] E. Goshi, G. Zhou, Q. He, Nitric oxide detection methods in vitro and in vivo, Med. Gas Res. 9 (2019) 192. https://doi.org/10.4103/2045-9912.273957.
    [112] K.J. Barrington, N. Finer, T. Pennaforte, G. Altit, Nitric oxide for respiratory failure in infants born at or near term, Cochrane Database Syst. Rev. 2017 (2017). https://doi.org/10.1002/14651858.CD000399.pub3.
    [113] F. Bagate, S. Tuffet, P. Masi, F. Perier, K. Razazi, N. de Prost, G. Carteaux, D. Payen, A. Mekontso Dessap, Rescue therapy with inhaled nitric oxide and almitrine in COVID-19 patients with severe acute respiratory distress syndrome, Ann. Intensive Care. 10 (2020) 151. https://doi.org/10.1186/s13613-020-00769-2.
    [114] P.-J. Wu, J.-T. Hung, C.-F. Hsieh, C.-R. Yang, C.-S. Yang, High-selectivity terahertz metamaterial nitric oxide sensor based on ZnTiO3 perovskite membrane, APL Photonics. 8 (2023). https://doi.org/10.1063/5.0156772.
    [115] A.A. Parfenov, O.R. Yamilova, L.G. Gutsev, D.K. Sagdullina, A. V. Novikov, B.R. Ramachandran, K.J. Stevenson, S.M. Aldoshin, P.A. Troshin, Highly sensitive and selective ammonia gas sensor based on FAPbCl 3 lead halide perovskites, J. Mater. Chem. C. 9 (2021) 2561–2568. https://doi.org/10.1039/D0TC03559A.
    [116] H. Dacres, R. Narayanaswamy, A new optical sensing reaction for nitric oxide, Sensors Actuators B Chem. 90 (2003) 222–229. https://doi.org/10.1016/S0925-4005(03)00032-7.
    [117] H. Miki, F. Matsubara, S. Nakashima, S. Ochi, K. Nakagawa, M. Matsuguchi, Y. Sadaoka, A fractional exhaled nitric oxide sensor based on optical absorption of cobalt tetraphenylporphyrin derivatives, Sensors Actuators B Chem. 231 (2016) 458–468. https://doi.org/10.1016/j.snb.2016.02.145.
    [118] W. Xuan, H. Shan, D. Hu, L. Zhu, T. Guan, Y. Zhao, Y. Qiang, J. Song, J. Zhang, M. Sui, X. Gu, S. Huang, In-situ synthesis of stable ZnO-coated CsPbBr3 nanocrystals for room-temperature heptanal sensors, Mater. Today Chem. 26 (2022) 101155. https://doi.org/10.1016/j.mtchem.2022.101155.
    [119] R. Mesin, C.-S. Chu, Optical Dual Gas Sensor for Simultaneous Detection of Nitric Oxide and Oxygen, Chemosensors. 11 (2023) 454. https://doi.org/10.3390/chemosensors11080454.
    [120] G. Jeong, S.Y. Shin, P. Kyokunzire, H.J. Cheon, E. Wi, M. Woo, M. Chang, High-Performance Nitric Oxide Gas Sensors Based on an Ultrathin Nanoporous Poly(3-hexylthiophene) Film, Biosensors. 13 (2023) 132. https://doi.org/10.3390/bios13010132.

    無法下載圖示 全文公開日期 2026/01/31 (校內網路)
    全文公開日期 2026/01/31 (校外網路)
    全文公開日期 2026/01/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE