簡易檢索 / 詳目顯示

研究生: 陳昱丞
Yu-Cheng Chen
論文名稱: 大面積LCD自然光光固化積層製造系統機構開發設計與製作研究
Research on the development, design and manufacture of large-area LCD natural light curing multilayer manufacturing system
指導教授: 鄭正元
Jeng-Ywan Jeng
林鼎晸
Ding-Zheng Lin
口試委員: 鄭逸琳
Yih-Lin Cheng
劉福興
Fwu-Hsing Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 92
中文關鍵詞: 光固化3D列印樹脂回流力真空吸附力高速列印拉拔力大面積光固化工業型3D列印機
外文關鍵詞: light curing 3D printing, resin reflow force, vacuum adsorption force, high-speed printing, drawing force, large area light curing, industrial 3D printer
相關次數: 點閱:341下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文為研發32吋可見光型下照式3D列印機機構之研發設計,並且對該3D列印系統之大面積列印進行研究,研究目的為評估此3D列印系統的生產能力,及在大面積列印下,分析大面積拉拔力以及成形物與膜分離時間。機台以32吋列印面積為主軸,設計一大型結構件做為主板,主板之上搭載Z軸模組、成型平台、樹脂槽、液晶螢幕、玻璃、快拆板等,由主板承受主要的重量,主板之下放置光源模組負責提供能量使樹脂固化,樹脂則使用本實驗室開發之高速可見光樹脂。控制與面板圖形顯示方面以電腦搭配Arduino程式做Z軸傳輸及遮罩控制,此外安裝應力應變規量測樹脂回流力及真空吸附力。
通過32吋全面積曝光列印測試,測試樹脂黏附在成型平台的黏附力及列印物脫離鐵氟龍膜的能力,分析機台生產大型件及大量物件是否可以穩定的黏附在成型平台上而不掉落以及何種列印參數設定可穩定生產,另外通過應力應變規回饋之分離力,說明拉拔力、分離時間、分離高度與分離速度之關係。
本研究最後發現所開發的機台可進行大型零件列印以及大量生產,並且生產效率高於現有機種。


This thesis is to develop the research and development design of the 32-inch visible light type 3D printer mechanism, and to study the large-area printing of the 3D printing system. The purpose of the research is to evaluate the production capacity of the 3D printing system. Under large-area printing, analyze the large-area drawing force and the separation time of the formed product and the film. The machine uses a 32-inch printing area as the main axis, and a large structural part is designed as the main board. The main board is equipped with Z-axis module, molding platform, resin tank, LCD screen, glass, quick release board, etc. The main board bears the main Weight, a light source module placed under the main board is responsible for providing energy to cure the resin, and the resin uses the high-speed visible light resin developed by our laboratory. In terms of control and panel graphic display, a computer is used with an Arduino program for Z-axis transmission and mask control. In addition, a stress strain gauge is installed to measure the resin reflow force and vacuum adsorption force.
Through the 32-inch full-area exposure printing test, test the adhesion of the resin to the molding platform and the ability of the printed material to separate from the Teflon film, and analyze whether the machine produces large parts and a large number of objects that can be stably adhered to the molding platform and No drop and which printing parameter settings can stabilize production. In addition, the separation force fed back by the stress strain gauge shows the relationship between the drawing force, the separation time, the separation height and the separation speed.
The research finally found that the developed machine can print large parts and mass production, and its production efficiency is higher than that of existing machines.

摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 5 2.1 積層製造 5 2.2 光聚合固化 (Vat Photopolymerization)技術 7 2.2.1 上照式及下照式光固化技術 7 2.2.2 固化成型方式 9 2.3 樹脂光聚合固化原理 18 2.4 分離力 21 2.4.1 物理方式降低分離力技術 22 2.4.2 化學方式降低分離力技術 24 2.4.3 分離力模型 28 2.5 連續列印 31 2.5.1 非接觸連續列印 31 2.5.2 接觸式連續列印 32 2.6 高速3D列印 33 2.6.1 DLP/LCD光固化3D列印技術 33 2.6.2 Multi Jet Fusion(MJF) [29] 33 2.6.3 Single Pass Jetting(SPJ) [30] 34 2.6.4 High Speed Sintering(HSS) [31] 34 第三章 系統架構 36 3.1 機構 36 3.1.1 Z軸傳動機構 36 3.1.2 成型平台模組 39 3.1.3 主板、快拆板及玻璃 41 3.1.4 樹脂槽 43 3.1.5 其他機構設計 44 3.2 光源模組 45 3.3 軟體 47 3.1.6 切層軟體 47 3.1.7 列印軟體 48 3.4 樹脂 49 第四章 實驗內容 50 4.1 大面積拉拔力 50 4.1.1 拉拔力圖形分析 50 4.1.2 排除膜張力產生的影響 52 4.1.3 平台黏附力 52 4.1.4 樹脂回流力 54 4.1.5 拉拔力測試 56 4.2 大面積列印失敗因素分析 60 4.2.1 底筏脫落/夾雜氣泡 60 4.2.2 列印過程中斷裂 66 4.3 大面積列印解決方案 69 4.4 成品列印 69 4.5 高速列印應用 71 第五章 結論與展望 73 5.1 研究結果 73 5.2 未來展望 74 參考文獻 75

[1] Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, New York: Springer, 2015.
[2] P. Ribin VarghesePazhamannil, “Current state and future scope of additive manufacturing technologies via vat photopolymerization,” Materials Today: Proceedings provides, p. 130~136, 19 January 2021.
[3] D. S. N. E. R. J. A. R. J. D. K. K. C. R. P. J. P. R. A. E. E. T. S. J. M. D. John R. Tumbleston, “Continuous liquid interface production of 3D objects,” Science, pp. 1349-1352, 20 Mar 2015.
[4] 連帝皓, 透析式高速光固化3D列印成型技術之研究, 臺北市: 國立台灣科技大學 機械工程系 碩士學位論文, 2017.
[5] ASTM, “F2792, Standard Terminology for Additive Manufacturing Technologies,” ASTM, 2012.
[6] A. Group, “The 7 Categories of Additive Manufacturing,” Loughborough University , [線上]. Available: https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/. [存取日期: 9 7 2021].
[7] J. W. M. Hongyi Yao, “Photo Processing for Biomedical Hydrogels Design and Functionality: A Review,” Polymers, 12 2017.
[8] formlabs, “SLA vs. DLP: Guide to Resin 3D Printers,” formlabs, [線上]. Available: https://formlabs.com/blog/resin-3d-printer-comparison-sla-vs-dlp/. [存取日期: 09 07 2021].
[9] 葉怡昌, 使用線掃描可見光之新式快速光罩樹枝硬化系統研發, 台北市: 國立台灣科技大學, 1999.
[10] Z. Z. Z. C. Chao Peng, “A high-speed exposure method for digital micromirror device based scanning maskless lithography system,” Optik, 第 冊185, pp. 1036-1044, 2019.
[11] 汪. 沈. 鄭正元, “動態光罩模組”. 中華民國/美國 專利: 594437/US7320946B2, 16 10 2003.
[12] J. A.Bertsch, “Study of the spatial resolution of a new 3D microfabrication process: the microstereophotolithography using a dynamic mask-generator technique,” Journal of Photochemistry and Photobiology A: Chemistry, 第 冊107, 編號 1-3, pp. 275-281, 1997.
[13] 許興仁, 光罩式樹脂成型快速原型機之研發, 台北市: 國立台灣科技大學, 2000.
[14] D. I. K. C. a. G. J. G. Asish Malas, “Fabrication of High Permittivity Resin Composite for Vat Photopolymerization 3D Printing: Morphology, Thermal, Dynamic Mechanical and Dielectric Properties,” material, 20 11 2019.
[15] 張富騰, 智慧型手機式3D列印系統開發之研究, 台北市: 國立台灣科技大學, 2014.
[16] 巫昆達, 高速UV LCD光固化3D列印系統開發之研究, 台北市: 國立台灣科技大學, 2019.
[17] 張浩威, 大面積高速光固化3D列印成型技術之分離力研究, 台北市: 國立台灣科技大學, 2019.
[18] D. C. P. J. C. T. A. H. A. P. S. D. DHANANJAY DENDUKURI, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nature Materials, pp. 365-369, 9 4 2006.
[19] Y. C. C. Z. Yayue Pan, Fast Recoating Methods for the Projection-based Stereolithography Process in Micro- and Macro-Scales, Southern California: ms Engineering, 2012.
[20] J. Y. M. C. Jie Jin, “A vibration-assisted method to reduce separation force for stereolithography,” Journal of Manufacturing Processes, pp. 793-801, 8 2018.
[21] Q. L. L. J. Xiangquan Wua, “Tilting separation analysis of bottom-up mask projection stereolithography based on cohesive zone model,” Journal of Materials Processing Technology, pp. 184-196, 5 2017.
[22] C. 3D, “Carbon 3D,” Carbon 3D, [線上]. Available: https://www.carbon3d.com/. [存取日期: 12 07 2021].
[23] EnvisionTEC, “The Ultimate Guide to 3D Printing with High Speed Continuous Technology,” EnvisionTEC, Detroit, Michigan.
[24] 黃冠騰, 快速光固化懸浮式3D列印成型技術之研究, 台北市: 國立台灣科技大學, 2016.
[25] Nexa3D, “Method and apparatus for photo-curing with displaceable self-lubricating substratum for the formation of three-dimensional objects”. USA 專利: US20170129175A1, 2 10 2015.
[26] Nexa3D, “NX1. The First Fast 3D Printer,” Nexa3D , 20 11 2015. [線上]. Available: https://www.kickstarter.com/projects/nx1/nx1-the-first-fast-3d-printer. [存取日期: 13 7 2021].
[27] C.-P. You-MinHuang, “On-line force monitoring of platform ascending rapid prototyping system,” Journal of Materials Processing Technology, 第 冊159, 編號 2, pp. 257-264, 2005.
[28] S. FarzadLiravi, “Separation force analysis and prediction based on cohesive element model for constrained-surface Stereolithography processes,” 於 Computer-Aided Design, 2015, pp. 134-142.
[29] H. H. ,. J. X. ,. A. F. Yayue Pan, “Study of separation force in constrained surface projection stereolithography,” Rapid Prototyping Journal, 20 3 2017.
[30] N. A. C. S. H. C. B. Hongtao Song, “Development of a variable tensioning system to reduce separation force in large scale stereolithography,” Additive Manufacturing, 30 12 2021.
[31] C. W. L. C. S. C. Z. Peng, “Peeling behavior of a viscoelastic thin-film on a rigid substrate,” International Journal of Solids and Structures, pp. 4596-4603, 12 2014.
[32] D. L. D. Y. J. Du, “Modeling the peel performance of pressure-sensitive adhesives,” The Journal of Adhesion , pp. 601-612, 3 2004.
[33] Y. T. N. P. H. Z. J. W. Y. M. S. W. M. Zhou, “The extended peel zone model: effect of peeling velocity,” Journal of Adhesion, pp. 1045-1058, 2011.
[34] NewPro3D, “EFFECTS OF PRINT WINDOW MATERIAL ON SEPARATION FORCE OF 3D PRINTED OBJECTS IN DLP SLA PRINTING PROCESSES,” Forcast Research & Development Corp, 2018.
[35] Carbon3D, “DLS 3D Printing Technology | Carbon (carbon3d.com),” Carbon3D, [線上]. Available: https://www.carbon3d.com/our-technology/. [存取日期: 14 7 2021].
[36] J.-Y. J. Aamer Nazir, “A high-speed additive manufacturing approach for achieving high printing speed and accuracy,” Journal of Mechanical Engineering Science, 第 %1/ %2 冊203-210, 2019.
[37] HP, “HP Multi Jet Fusion,” HP, Palo Alto, 2018.
[38] D. Metal, “What is Single Pass Jetting™? | Desktop Metal,” Desktop Metal, [線上]. Available: https://www.desktopmetal.com/resources/what-is-single-pass-jetting. [存取日期: 14 7 2021].
[39] A. E. A. S. M. P. a. T. L. Neil Hopkinson, “High Speed Sintering for 3D printing applications,” Xaar, Cambridge.
[40] Sculpteo, “The State of 3D Printing 2021,” Sculpteo, San Leandro,Paris, 2021.

無法下載圖示 全文公開日期 2031/09/13 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE