簡易檢索 / 詳目顯示

研究生: 紀佩文
Pei-wen Chi
論文名稱: 通量平衡分析模式在葡萄糖與木糖雙基質下酒精發酵程序之應用
Application of Flux Balance Analysis on Ethanol Fermentation Process Utilizing both Glucose and Xylose
指導教授: 周宜雄
Yi-Shyong Chou
錢義隆
I-Lung Chien
口試委員: 李振綱
Cheng-Kang Lee
張德明
De-Ming Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 130
中文關鍵詞: 通量平衡分析釀酒酵母酒精發酵程序
外文關鍵詞: flux balance analysis, Saccharomyces cerevisiae, ethanol fermentation
相關次數: 點閱:211下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,通量平衡分析方法已廣泛應用在微生物系統中,可預測微生物的生長和產物的生成。以重建的基因尺寸新陳代謝網路為基礎,本研究建立了一個以電腦模擬釀酒酵母代謝的動態通量平衡分析模式。此動態平衡分析模式結合了細胞內微生物詳細的生化反應和細胞外主要代謝物的質量平衡方程式,真實地描述釀酒酵母的新陳代謝。此外,利用最適化條件搜尋,本研究亦求得雙基質饋料批次發酵下,最大的酒精生產速率,研究中發現利用高濃度葡萄糖進料,使發酵槽中維持低葡萄糖濃度,進而增加木糖的消耗速率,在無氧和通氧的環境下,可得到的酒精生產速率分別為1.3281 g ethanol/L/hr 和 1.9526 g ethanol/L/hr。由此可知,先利用通氧的環境使菌種有良好的生長,可以提升雙基質饋料批次發酵之酒精的生產速率。


    Flux balance analysis (FBA) is a popular approach which is used extensively for predicting cellular growth and product secretion patterns in microbial systems. A dynamic flux balance model based on a genome-scale metabolic network reconstruction is developed for in silico analysis of Saccharomyces cerevisiae fermentation. The model couples a detailed steady-state description of primary carbon metabolism with dynamic mass balances on key extracellular species. In addition, model-based dynamic optimization is performed to determine fed-batch operation policies that maximize ethanol productivity on glucose and xylose. Therefore, A optimized fed-batch process designed to maintain a low level of glucose throughout the course of xylose conversion provide ethanol productivity of 1.3281 g ethanol/L/hr and 1.9526 g ethanol/L/hr in anaerobic and aerobic conditions, respectively. The analysis results suggest that enhancements in biomass yield are most beneficial for the increase of fed-batch ethanol productivity in aerobic fermentation.

    致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1-1 引言 1 1-2 文獻回顧 4 1-2.1 新陳代謝工程 4 1.2.2 通量平衡分析 5 1-2.3 新陳代謝網路 6 1-2.4 動態通量平衡分析 9 1-2.5 低葡萄糖濃度對木糖攝取速率的影響 10 1-3 研究動機 12 1-4 組織章節 13 第二章 通量平衡分析 2-1 引言 14 2-2 通量平衡分析 15 2-2.1 重建新陳代謝網路 17 2-2.2 代謝物的質量守恆和限制條件的訂定 19 2-2.3 新陳代謝網路其系統的種類 22 2-2.4 目標函數 23 2-3 COBRA TOOLBOX的介紹 27 2-4 基因演算法(Genetic Algorithm) 30 2-4.1 前言 30 2-4.2 基因演算法的介紹 31 第三章 通量平衡分析模式的建立 3-1 引言 33 3-2 Sc_iND750模式的重建 34 3-2.1 Sc_iND750模式之胞器的劃分 35 3-2.2 Sc_iND750模式之元素和電荷的平衡 38 3-2.3 Sc_iND750模式之基因-蛋白質-反應的關係 39 3-2.4 Sc_iND750模式的新陳代謝網路 40 3-3 Sc_iND750模式的修改與其穩態模擬 44 3-3.1 固醇和脂肪酸反應的添加 44 3.3-2 木糖的代謝和輔酶在代謝中扮演的角色 45 3.3-3 添加以NADH為輔酶的木糖還原反應 48 3.3-4 為了產生甘油對模式的修改 50 3.3-5 加入限制條件 51 3-4 不同葡萄糖、木糖和氧氣攝取速率下的代謝物產率分佈圖 54 第四章 動態通量平衡分析模式 4-1 引言 62 4-2 動態通量平衡分析模式介紹 63 4-3 通量平衡分析模式的參數收尋 71 4-3.1 前言 71 4-3.2 參數收尋的方法 72 4-3.3 最適化參數的結果 73 4-4 修改前後之模式的比較 80 第五章 饋料批次發酵程序最佳化條件搜尋 5-1 前言 84 5-2 批次發酵程序模擬 85 5-3 無氧雙基質發酵之饋料批次最適化條件搜尋 92 5-4 通氧雙基質發酵之饋料批次最適化條件搜尋 98 第六章 結論 103 參考文獻 106 符號說明 110

    [中文]
    [1] 楊紹廣,「通量平衡分析模式在酒精發酵上的應用」,碩士論文,國立台灣科
    技大學,台北(2010)
    [2] 王子興,「以cybernetic模式建構Pichia stipitis菌之酒精發酵模式與
    操作策略分析」,碩士論文,國立台灣科技大學,台北(2009)

    [英文]
    [1] Bailey J. E.(1991) , Metabolic Engineering, retrieved from http://en.wikipedia.org/wiki/Metabolic_engineering

    [2] Becker, S. A., Feist, A. M., Mo, M. L., Hannum, G., Palsson, B. Ø., Herrgard, M. J., “Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox”, Nature Protocols, Vol. 2, Pp. 727-738 (2007)

    [3] Bro, C., Regenberg, B., Förster, J.,“In silico aided metabolic engineering of
    Saccharomyces cerevisiae for improved bioethanol production”, Metabolic
    Engineering, Vol. 8, Pp. 102-111 (2006)

    [4] Dickinson, J.R. and Schweizer, M., The metabolism and molecular physiology of Saccharomyces cerevisiae, Taylor & Francis,Philadelphia (1999)

    [5] Duarte, N. C., Herrgard, M. J., Palsson, B. Ø.,“ Reconstruction and Validation of Saccharomyces cerevisiae iND750, a Fully Compartmentalized Genome-Scale Metabolic Model”, Genome Research, Vol. 14, Pp. 1298-1309 (2004)
    [6] Förster, J., Famili, I., Fu, P., Palsson, B.Ø., Nielsen, J.,” Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network”, Genome Research,Vol. 13, Issue 2, Pp. 244-253(2003)

    [7] Hjersted, J. L., Henson, M. A.,“Optimization of Fed-Batch Saccharomyces cerewisiae Fermentation Using Dynamic Flux Balance Models”, Biotechnology Progress, Vol. 22, Pp. 1239-1248 (2006)
    [8] Hjersted, J. L., Henson, M. A., Mahadevan, R., “Genome-Scale Analysis of Saccharomyces cerevisiae Metabolism and Ethanol Production in Fed-Batch Culture”, Biotechnology and Bioengineering, Vol. 97, Pp. 1190-1204 (2007)

    [9] Jeffries, T.W.,“Engineering yeasts for xylose metabolism”, Current Opinion in Biotechnology , Vol. 17, Issue 3, Pp. 320-326 (2006)

    [10] Krahulec, S. , Petschacher, B. , Wallner, M. , Longus, K. , Klimacek, M. , Nidetzky, B., “Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: Role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization", Microbial Cell Factories, 9, art. no. 16., (2010)

    [11] Kuyper, M., Winkler, A.A., Van Dijken, J.P., Pronk, J.T. ,“Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: A proof of principle”,FEMS Yeast Research,Vol. 4, Issue 6, Pp.655-664 (2004)

    [12] Mahadevan, R., Edwards, J.S., Doyle III, F.J.,“Dynamic Flux Balance Analysis of diauxic growth in Escherichia coli”, Biophysical Journal ,Vol. 83 , Issue 3, Pp. 1331-1340 (2002)

    [13] Manisha, S., Venkateshb, K.V., Banerjeea, R.,“Metabolic flux analysis of biological hydrogen production by Escherichia coli”,International Journal of Hydrogen Energy,Vol.32, Pp.3820-3830 (2007)

    [14] Nissen, T. L., Schulze, U., Nielsen, J., Villadsen, J., “Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae”, Microbiology, Vol. 143, Pp. 203-218 (1997)
    [15] Noorman, H. J., Heijnen, J. J., Luyben, K. Ch. A. M. ,“Linear Relations in Microbial Reaction Systems: A General Overview of Their Origin, Form, and Use", Biotechnology and Bioengineering, Vol. 38, Pp. 603-618 (1991)
    [16] Papagianni, M., Boonpooh, Y., Mattey, M., Kristiansen, B,“Substrate inhibition kinetics of Saccharomyces cerevisiae in fed-batch cultures operated at constant glucose and maltose concentration levels”, Journal of Industrial Microbiology and Biotechnology , Vol. 34, Issue 4, Pp. 301-309 (2007)

    [17] Pitkanen, J.-P., Aristidou, A., Salusjarvi, L., Ruohonen, L., Penttila, M., “Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture”, Metabolic Engineering , Vol. 5, Issue 1, Pp. 16-31(2003)

    [18] Schilling, C.H., Letscher, D., Palsson, B.O.,“Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective”, Journal of Theoretical Biology Vol. 203 , Issue 3, Pp. 229-248 (2000)

    [19] Stephanopouls G.(1998) , Metabolic Engineering, retrieved from http://en.wikipedia.org/wiki/Metabolic_engineering

    [20] Van Gulik, W.M., Heijnen, J.J.,“A Metabolic Network Stoichiometry Analysis of Microbial Growth and Product Formation", Biotechnology and Bioengineering, Vol. 48, Pp. 681-698 (1995)

    [21] Vanrolleghem, P.A., De Jong-Gubbels, P., Van Gulik, W.M., Pronk, J.T., Van Dijken, J.P., Heijnen, S., “Validation of a metabolic network for Saccharomyces cerevisiae using mixed substrate studies”,Biotechnology Progress, 12 (4), Pp. 434-448(1996)

    [22] Varma, A., Palsson, B. Ø.,“Stoichiometric Flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110”, Applied and Environmental Microbiology, Vol. 60, Pp. 3724-3731 (1994)

    [23] Walker, G.M., Yeast physiology and biotechnology, J. Wiley & Sons, Chichester, NY.(1998)

    QR CODE