簡易檢索 / 詳目顯示

研究生: 王尉羽
Wei-Yu Wang
論文名稱: 建立巨型纖維質體於釀酒酵母表面的應用與發展
The Application and Development of Building Huge-Cellulosome on the Saccharomyces Cerevisiae Cell Surface
指導教授: 蔡伸隆
Shen-Lone Tsai
口試委員: 朱一民
I-Ming Chu
李振綱
Cheng-Kang Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 109
中文關鍵詞: 酵母菌展示技術噬菌體展示技術纖維酒精協同纖維水解反應纖維素體
外文關鍵詞: Phage surface display, Synergistic hydrolysis, Cellulosome
相關次數: 點閱:234下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去幾年以來,響應綠色能源的熱潮,生質能源一直以來是環境工程上相當熱門的話題,將酒精及生物能源等替代燃料是替代能源中極具前瞻性及發展性的策略之一,將含有木質纖維素的農業廢棄物、木本植物、草本植物以及生質垃圾等,藉由醣化技術轉化可發酵的醣類,這過程結合三種纖維水解酵素,分別為內切葡聚醣酶(endoglucanse)、纖維二醣水解酶(cellobiohydrolase)及β-葡醣苷酶(β-glucosidase)去協同轉化成葡萄糖,接著讓釀酒酵母(Saccharomyces cerevisiae)在無氧條件下進行發酵反應,將葡萄糖轉變為酒精為目前最普遍的方法。
    迷你纖維素體(minicellulosome)系利用支架蛋白將纖維水解酵素固定於細胞表面以提升水解與發酵之速率。本研究以M13噬菌體作為奈米級的纖維素體,M13噬菌體約2700個外殼蛋白pVIII當作支架蛋白結合纖維水解酵素,噬菌體纖維素體固定於釀酒酵母表面時,葡萄糖產生的瞬間可被葡萄糖運轉子傳入酵母菌內,依據勒沙特列原理可提高水解速率。單酵素水解動力學的總催化能力皆有1.16倍以上的提升,協同水解動力學上以莫爾比2倍的纖維二醣水解酶有1.95倍的提升,並以2倍纖維二醣水解酶的莫爾比例發酵


    Nowadays, the world is faced with energy crisis, so people are looking for alternative energies. One of the alternative energies is fermentation by S.cerevisiae which produces bioethanol from agricultural waste. Recently, a paper showed that high-yield ethanol production was produced by yeast surface display of endoglucanase, cellobiohydrolase, and β-glucosidase. So it’s especially important for enhanced yield that utilize phage display for increasing copy number of cellulase. The functional display of M13 phage is as a scaffolding on S.cerevisiae cell surface. First, the cellulase is expressed from E.coli, individually. Every cellulase is fused with SH3 domain for binding coat protein Ⅷ which is already fused with SH3 ligand on phage surface. Second, surface display of PDZ domain on the yeast surface and phage display of PDZ ligand on coat protein III are linked to each other. This idea is based on M13 phage, which consists thousand copies a thousand copies of coat protein VIII. Before the cellulase binds to coat protein viii by SH3 protein interaction, the phage surface will have much cellulase. Finally, high-synergistic saccharification and fermentation of cellulose to ethanol should be efficiently accomplished. Although this system need to express in different system, but the part of phage will be combined with yeast system by lytic phage.

    摘要 i Abstract ii 誌謝 iii 總目錄 iv 圖表索引 vi 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究內容 2 第2章 文獻回顧 4 2.1 纖維素 4 2.2 纖維素水解 5 2.3 噬菌體 7 2.3.1 噬菌體展示技術 9 2.3.2 噬菌體纖維質體滴度值分析 11 2.4 釀酒酵母菌 13 2.4.1 酵母菌表面展示技術α-agglutinin系統 15 2.4.2 纖維質體 16 2.4.3 纖維酒精的發酵製程 17 2.5 蛋白質交互作用 19 2.6 酵素動力學 21 第3章 材料與方法 23 3.1 實驗流程 Scheme 23 3.2 儀器與材料 24 3.2.1 藥品 24 3.2.2 實驗設備 25 3.2.3 菌種來源 26 3.3 基因改殖技術 28 3.3.1 質體純化法 28 3.3.2 聚合酶鏈反應 29 3.3.3 瓊脂凝膠電泳與回收 30 3.3.4 限制酶酶切作用 32 3.3.5 核酸接合與化學轉殖法 33 3.3.6 電穿孔勝任細胞製備及電穿孔轉殖作用 34 3.4 纖維水解酵素之蛋白質表達 37 3.5 噬菌體展示技術 39 3.5.1 噬菌體融合蛋白表面表達及回收 39 3.5.2 噬菌體滴度測試 40 3.6 酵母菌表面展示技術 42 3.6.1 釀酒酵母菌醋酸鋰轉殖法 42 3.6.2 免疫螢光反應 43 3.7 分析方法 45 3.7.1 SDS-PAGE凝膠電泳 45 3.7.2 Image J 圖像分析法 46 3.7.3 Bradford 蛋白質定量法 48 3.7.4 DNS還原醣測定法 49 3.8 噬菌體纖維質體組裝測試 50 3.8.1 染色噬菌體結合於酵母表面之螢光反應 50 3.8.2 噬菌體纖維質體PDZ結合域測試 51 3.8.3 噬菌體纖維質體SH3結合域測試 52 3.8.4 纖維水解酵素組裝 54 3.9 纖維水解酶酵素動力學實驗 56 3.10 同時醣化發酵法 58 第4章 結果與討論 59 4.1 質體建立 59 4.1.1 改殖釀酒酵母菌質體 59 4.1.2 噬質體 61 4.1.3 纖維水解酶質體 66 4.2 纖維水解酶之表達 72 4.3 免疫螢光 73 4.4 噬菌體纖維質體組裝 74 4.4.1 重組噬菌體滴度分析 74 4.4.2 染色噬菌體之螢光反應 75 4.4.3 噬菌體纖維質體PDZ結合域 76 4.4.4 噬菌體纖維質體SH3結合域 77 4.4.5 定量纖維水解酶組裝於噬菌體纖維質體 78 4.5 纖維水解酵素動力學 80 4.5.1 各纖維水解酵素動力學 80 4.5.2 協同纖維水解酵素動力學 84 4.6 同時醣化發酵 87 第5章 結論 88 參考資料 89

    1. Teeri, T.T., Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends in Biotechnology, 1997. 15(5): p. 160-167.
    2. Fujita, Y., et al., Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Applied and environmental microbiology, 2004. 70(2): p. 1207-1212.
    3. Fujita, Y., et al., Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Applied and environmental microbiology, 2002. 68(10): p. 5136-5141.
    4. Sajjad, M., et al., Influence of positioning of carbohydrate binding module on the activity of endoglucanase CelA of Clostridium thermocellum. Journal of biotechnology, 2012. 161(3): p. 206-212.
    5. Sun, Y. and J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource technology, 2002. 83(1): p. 1-11.
    6. Hoogenboom, H.R., et al., Antibody phage display technology and its applications. Immunotechnology, 1998. 4(1): p. 1-20.
    7. Brigati, J., et al., Diagnostic probes for Bacillus anthracis spores selected from a landscape phage library. Clinical Chemistry, 2004. 50(10): p. 1899-1906.
    8. Mao, C., A. Liu, and B. Cao, Virus‐Based Chemical and Biological Sensing. Angewandte Chemie International Edition, 2009. 48(37): p. 6790-6810.
    9. Liu, A., G. Abbineni, and C. Mao, Nanocomposite Films Assembled from Genetically Engineered Filamentous Viruses and Gold Nanoparticles: Nanoarchitecture‐and Humidity‐Tunable Surface Plasmon Resonance Spectra. Advanced Materials, 2009. 21(9): p. 1001-1005.
    10. Barrow, P.A. and J.S. Soothill, Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends in microbiology, 1997. 5(7): p. 268-271.
    11. Smith, G.P. and J.K. Scott, Libraries of peptides and proteins displayed on filamentous phage. Methods in enzymology, 1993. 217: p. 228-257.
    12. Russell, S.J., Peptide-displaying phages for targeted gene delivery? Nature medicine, 1996. 2(3): p. 276-277.
    13. Qi, H., et al., Phagemid vectors for phage display: properties, characteristics and construction. Journal of molecular biology, 2012. 417(3): p. 129-143.
    14. Smith, G.P., Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985. 228(4705): p. 1315-1317.
    15. Yang, W.-J., et al., Epitope mapping of Mycoplasma hyopneumoniae using phage displayed peptide libraries and the immune responses of the selected phagotopes. Journal of immunological methods, 2005. 304(1): p. 15-29.
    16. Rodriguez, R.L. and D.T. Denhardt, Vectors: a survey of molecular cloning vectors and their uses. 2014: Butterworth-Heinemann.
    17. Pershad, K. and B.K. Kay, Generating thermal stable variants of protein domains through phage display. Methods, 2013. 60(1): p. 38-45.
    18. Koivunen, E., B. Wang, and E. Ruoslahti, Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Bio/technology (Nature Publishing Company), 1995. 13(3): p. 265-270.
    19. Iannolo, G., et al., Modifying filamentous phage capsid: limits in the size of the major capsid protein. Journal of molecular biology, 1995. 248(4): p. 835-844.
    20. Makowski, L., Structural constraints on the display of foreign peptides on filamentous bacteriophages. Gene, 1993. 128(1): p. 5-11.
    21. Smith, G.P. and A.-M. Fernández, Effect of DNA copy number on genetic stability of phage-displayed peptides. Biotechniques, 2004. 36(4): p. 610-617.
    22. Mozhaev, V.V., et al., High pressure effects on protein structure and function. Proteins-Structure Function and Genetics, 1996. 24(1): p. 81-91.
    23. Lowman, H.B., et al., Selecting high-affinity binding proteins by monovalent phage display. Biochemistry, 1991. 30(45): p. 10832-10838.
    24. Bass, S., R. Greene, and J.A. Wells, Hormone phage: an enrichment method for variant proteins with altered binding properties. Proteins: Structure, Function, and Bioinformatics, 1990. 8(4): p. 309-314.
    25. Breitling, F., et al., A surface expression vector for antibody screening. Gene, 1991. 104(2): p. 147-153.
    26. Weiss, G.A. and S.S. Sidhu, Design and evolution of artificial M13 coat proteins. Journal of molecular biology, 2000. 300(1): p. 213-219.
    27. Goyal, G., et al., Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microbial cell factories, 2011. 10(1): p. 1.
    28. Kondo, A. and M. Ueda, Yeast cell-surface display—applications of molecular display. Applied microbiology and biotechnology, 2004. 64(1): p. 28-40.
    29. Fernie, A.R., F. Carrari, and L.J. Sweetlove, Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Current opinion in plant biology, 2004. 7(3): p. 254-261.
    30. Ueda, M. and A. Tanaka, Genetic immobilization of proteins on the yeast cell surface. Biotechnology advances, 2000. 18(2): p. 121-140.
    31. Matano, Y., T. Hasunuma, and A. Kondo, Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresource technology, 2012. 108: p. 128-133.
    32. Nakamura, Y., et al., Development of novel whole-cell immunoadsorbents by yeast surface display of the IgG-binding domain. Applied microbiology and biotechnology, 2001. 57(4): p. 500-505.
    33. Kim, S. and J.-S. Hahn, Synthetic scaffold based on a cohesin–dockerin interaction for improved production of 2, 3-butanediol in Saccharomyces cerevisiae. Journal of biotechnology, 2014. 192: p. 192-196.
    34. Lamed, R., E. Setter, and E.A. Bayer, Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. Journal of Bacteriology, 1983. 156(2): p. 828-836.
    35. Johnson, E.A., et al., Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Applied and Environmental Microbiology, 1982. 43(5): p. 1125-1132.
    36. Tsai, S.-L., N.A. DaSilva, and W. Chen, Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS synthetic biology, 2012. 2(1): p. 14-21.
    37. Tsai, S.-L., G. Goyal, and W. Chen, Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Applied and environmental microbiology, 2010. 76(22): p. 7514-7520.
    38. Tsai, S.-L., et al., Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Applied and environmental microbiology, 2009. 75(19): p. 6087-6093.
    39. Demain, A.L., M. Newcomb, and J.D. Wu, Cellulase, clostridia, and ethanol. Microbiology and molecular biology reviews, 2005. 69(1): p. 124-154.
    40. van Maris, A.J., et al., Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek, 2006. 90(4): p. 391-418.
    41. Nevoigt, E., Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 2008. 72(3): p. 379-412.
    42. Waugh, D.F., Protein-protein interactions. Advances in protein chemistry, 1954. 9: p. 325-437.
    43. Pawson, T. and P. Nash, Assembly of cell regulatory systems through protein interaction domains. science, 2003. 300(5618): p. 445-452.
    44. Beuming, T., et al., PDZBase: a protein–protein interaction database for PDZ-domains. Bioinformatics, 2005. 21(6): p. 827-828.
    45. Wu, X., et al., Structural basis for the specific interaction of lysine-containing proline-rich peptides with the N-terminal SH3 domain of c-Crk. Structure, 1995. 3(2): p. 215-226.
    46. Rath, A., A.R. Davidson, and C.M. Deber, The structure of “unstructured” regions in peptides and proteins: role of the polyproline II helix in protein folding and recognition. Peptide Science, 2005. 80(2‐3): p. 179-185.
    47. Dueber, J.E., et al., Synthetic protein scaffolds provide modular control over metabolic flux. Nature biotechnology, 2009. 27(8): p. 753-759.
    48. Harris, B.Z. and W.A. Lim, Mechanism and role of PDZ domains in signaling complex assembly. Journal of cell science, 2001. 114(18): p. 3219-3231.

    QR CODE