簡易檢索 / 詳目顯示

研究生: 戴世皇
Shih-huang Tai
論文名稱: 有機溶劑的分析與純化之研究
Study on Analysis and Purification of Organic Solvent
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 何郡軒
Jinn-Hsuan Ho
沈怡妏
none
賴萬豪
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 90
中文關鍵詞: 不純物有機場效電晶體變質分析方法
外文關鍵詞: impurity, OTFT, deterioration, analysis method
相關次數: 點閱:265下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

B溶劑及其衍生物因其特殊的化學活性而受到廣泛關注,其可用為重要的香料、醫藥及農藥中間體等,此溶劑可應用為製造有機場效電晶體的有機溶液,應用而用B溶劑將特殊高分子溶解蒸鍍或是塗佈時,不可避免地會導入溶劑與高分子中的不純物,使有機場效電晶體對於電壓控制電子元件的表現變差,因此,進一步瞭解不純物成分組成、生成速率、雜質去除的程序以及長期穩定的保存方法,此對於有機場效電晶體的產品良率有重要的影響,此部分即為本研究的重點。
本研究以氣相層析儀-火焰離子化偵檢器、氣相層析儀-質譜偵檢器、紫外光可見光吸收光譜儀以及離子層析儀分析雜質組成與生成速率,以加熱與曝光兩種方式分別探討B溶劑的熱變質與光催化反應,並探討其暴露環境對於不純物生成速率,以建立出合適的保存方法。研究中發現,以氮氣導入至B溶劑可以有效的隔離外界的空氣與水氣,進而達到減緩B溶劑變質的效果。在有機不純物部分,使用二氧化矽管柱純化B溶劑,可去除90%以上之不純物,而應用大孔型陰離子交換樹脂管柱可以有效減少B溶劑中之陰離子濃度,在高濃度或低濃度之陰離子含量都可去除至偵測極限以下(20 ppb),並進一步研究在應用離子層析儀中分析有機物質中離子的方法,並確認分析方法的可信度,成功地找出合適的分析方法。


Solvent B and its synthetic derivatives have been playing attention due to their distinct pharmaceutical activities and broad applications in synthetic perfumes and flavors. Solvent B is also applied as an effective solvent for the dissolution of polymer, which is used in the organic thin film transistors (OTFT) process. The impurities from solvent and polymer will be conducted into OTFT devices via spin coating and vapor deposition processes. It causes the shortening of lifetime and yield rate of OTFT device due to a shift in threshold voltage, hysteresis phenomenon, and so on. Therefore, this work focused on the analysis of impurity, yield rate of impurity, procedure for impurity removal, and storage method.
In this work, the gas chromatography equipped with flame ionization detector (GC-FID), gas chromatography equipped with mass spectrometer (GC-MS), UV/VIS spectrophotometer (UV/Vis), and ion exchange chromatography (IC) were applied to analyze the composition of impurities and the yield rate of impurities. Effects of UV illumination and heat on the deterioration of Solvent B and yield rate of impurity were investigated under variant atmospheres. The results indicated the N2-purge procedure can hinder water and oxygen from entering Solvent B, resulting in the retardation in the yield of impurity. 90% of organic impurities were able to be adsorbed by the silica gel column. For the treatment of anion impurities, we use the macroporous ion exchange resins to reduce anions concentration of Solvent B, such as chloride, phosphate and sulphate, less than the detection limits of IC (20 ppb). The different analysis methods for determination of anions in organic materials were further developed successfully. The reliability and uncertainty of these methods were studied in detail.

中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 §1.1 無機/有機半導體的發展 1 §1.2 軟性電子元件 3 §1.3 研究目的與動機 4 第二章 文獻回顧 5 §2.1 有機場效電晶體 5 §2.2 有機場效電晶體基本原理 9 §2.3 有機場效電晶體的重要參數 12 §2.3.1 載子遷移率 12 §2.3.2 起始電壓 13 §2.3.3 次臨界斜率 14 §2.3.4 電流開關比 14 §2.4 不純物與遲滯現象 14 第三章 研究方法 22 §3.1 實驗設計 22 §3.2 藥品與儀器設備 24 §3.2.1 實驗藥品 24 表3. 1實驗藥品 24 §3.2.2 實驗儀器設備 25 §3.3 實驗方法與操作步驟 26 §3.3.1 使用藥品配置與樣品前處理 26 §3.3.2 陰陽離子分析可行性評估 28 §3.3.3 光催化變質實驗 29 29 §3.3.4 熱變質實驗 30 §3.3.5 加壓管柱純化裝置 32 §3.3.6 離子交換樹脂管柱純化裝置 33 第四章 結果與討論 35 §4.1 二氧化矽管柱純化 35 §4.2 熱變質實驗 39 §4.2.1. 熱變質 39 §4.2.2. DO之反應活化能 43 §4.3 光催化變質 46 §4.3.1. 暴露環境分析 46 §4.3.2. 添加水氣之環境分析 49 §4.3.3. T含量對DO的影響 52 §4.3.4. 結論 54 §4.4 陰離子純化與樣品前處理可行性評估方法 55 §4.4.1. 陰離子純化 55 §4.4.2. 樣品前處理可行性評估方法 60 第五章 結論與未來展望 65 §5.1. 結論 65 5.1.1 二氧化矽管柱純化 65 5.1.2 B溶劑的熱變質與生成DO的活化能 65 5.1.3 光催化變質 66 5.1.4 陰離子純化 66 5.1.5 樣品前處理可行性評估方法 67 §5.2. 未來展望 68 參考文獻 69 附錄A—水中陰離子檢測方法-離子層析法 71 附錄B—水中金屬及微量元素檢測方法 82

[1]M. Pope, H. Kallmann, P. Magnante, “Electroluminescence in organic crystals”, The Journal of Chemical Physics, 38, pp. 202-2024 (1963).
[2]H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, Heeger, A. J. Heeger, ” Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x” Journal of the Chemical Society, Chemical Communications, 16, pp. 578-580 (1977).
[3]A. Tsumura, H. Koezuka, T. Ando, “Filed-effect transistor with polythiophene thin film”, Synthetic Metals, 18, pp. 699-704 (1987)
[4]F. Garnier, R. Hajlaoui, A. Yassar, P. Srivastava, “All-polymer field-effect transistor realized by printing techniques”, Science, 16, pp. 1684-1686 (1994)
[5]H. Klauk, “Organic thin-film transistors”, Chemical Society Reviews, 39, pp. 2643-2666 (2010)
[6]C. Reese, M. Roberts, M. Ling, Z. Bao, “Organic thin film transistors”, Materials today, 7, pp. 20-27 (2004)
[7]A .Facchetti, “Semiconductors for organic transistors”, Materials today, 10, pp. 28-37 (2007)
[8]R. A. Street, M. L. Chabinyc, F. Endicott, “Chemical impurity effects on transport in polymer transistors”, Physical Review B, 76, 045208 (2007)
[9]M. Egginger, S. Bauer, R. Schwodiauer, H. Neugebauer, N. S. Sariciftci, “Current versus gate voltage hysteresis in organic field effecttransistors”, Monatsh Chem, 140, pp. 735-750 (2009)
[10]A. Salleo1, R. A. Street, “Light-induced bias stress reversal in polyfluorene thin-film transistors”, Journal of Applied Physics, 94, pp. 471 (2003)
[11]D. K. Hwang, K. Lee,J. H. Kim, S. Im, J. H. Park, E. Kim, “Comparative studies on the stability of polymer versus SiO2 gate dielectrics for pentacene thin-film transistors” Applied Physics Letters, 89 , pp. 093507 (2006)
[12]M. B. Madec, D. Crouch, G. R. Llorente, T. J. Whittle, M. Geoghegan, S. G. Yeate, “Organic field effect transistors from ambient solution processed low molar mass semiconductor–insulator blends”, Journal of materials chemistry., 18, pp. 3230-3236 (2008)
[13]A. Benor, D. Knipp, J. Northrup, A.R. Volkel, R.A. Street, “ Influence of gap states on the electrical stability of pentacene thin film transistors”, Journal of Non-Crystalline Solids ,354, pp. 2875–2878 (2008)
[14]Q. D. Ling, D. J. Liaw, C. Zhu, Daniel S. H. Chan, E. T. Kang, K. G. Neoh, “Polymer electronic memories Materials, devices and mechanisms” Progress in Polymer Science, 33, pp. 917-978 (2008)
[15]J. L. Bredas, G. B. Street, “Polarons, bipolarons, and solitons in conducting polymers” , Accounts of Chemical Research, 18 , pp. 309-315 (1985)
[16]R. A. Street, A. Salleo, M. L. Chabinyc, “Bipolaron mechanism for bias-stress effects in polymer transistors”, Physical Review B, 68, pp. 085316 (2003)
[17]D.B.A. Rep, A. F. Morpurgo, W. G. Sloof, T. M. Klapwijk, “Mobile ionic impurities in organic semiconductors”, Journal of Applied Physics. , 93 ,pp. 2082-2290 (2003)
[18]I. P. Batra, P. Wurfel, B. D. Silverman, “Phase transition, stability, and depoladtion field in ferroelectric thin films”, Physical Review B, 8, pp. 3257-3265 (1973)
[19]S. Y. Park, M. Park, H. H. Lee, “Cooperative polymer gate dielectrics in organic thin-film transistors”, Applied Physics Letters, 85, pp. 3-2285 (2004)
[20]M. J. Panzer, C. R. Newman, C. D. Frisbie,“Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric” , Applied Physics Letters , 86, pp. 103503 (2005)
[21]S. Uemura, M. Yoshida, S. Hoshino, T. Kodzasa, T. Kamata, “Investigation for surface modification of polymer as an insulator layer of organic FET”, Thin Solid Films, 438-439, pp. 378-381 (2003)
[22]J.Veres, S.Ogier, G.Lloyd, “Gate insulators in organic field-effect transistors”, Chemistry of Materials, 16, pp 4543-4555 (2004)
[23]P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwodiauer, S. Bauer, H. P. Brezina, D. Bauerle, N.S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric”, Organic Electronics, 8, pp. 648-654 (2007)
[24]M. Egginger, M. I. Vladu, R. Schwodiauer, A. Tanda, I. Frischauf, S. Bauer, N.S. Sariciftci, “Mobile ionic impurities in poly(vinyl alcohol) gate dielectric: possible source of the hysteresis in organic field-effect transistors”, Advanced Materials, 20, pp. 1018-1022 (2008)
[25]D. K. Hwang, M. S. Oh, J. M. Hwang, J. H. Kim, S. Im, “Hysteresis mechanisms of pentacene thin-film transistors with polymer/oxide bilayer gate dielectrics”, Applied Physics Letters, 92, pp. 013304 (2008)

無法下載圖示 全文公開日期 2019/06/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE