簡易檢索 / 詳目顯示

研究生: 查喬
Chiao Zha
論文名稱: 基於地磁指紋與有向循環圖之室內定位演算法研究
Indoor Positioning Algorithm Research Based on Geomagnetic Fingerprint and Directed Cycle Graph
指導教授: 呂政修
Jenq-Shiou Leu
口試委員: 方文賢
Wen-Hsien Fang
陳郁堂
Yie-Tarng Chen
陳省隆
Hsing-Lung Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 40
中文關鍵詞: 室內定位磁場有向循環圖旋轉矩陣四元數均值去除慣性測量單元智慧型手機定位系統
外文關鍵詞: Indoor positioning, magnetic, directed graph, rotation matrix, quaternion, mean removal, inertial measurement unit, positioning system on smartphone
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為人熟知的GPS定位只適合用於戶外,倘若受到建築物遮蔽,GPS定位效果將大打折扣。然而室內環境是人們生活和工作的主要場所。統計數據[1]顯示,大多數人大約80%-90%的時間都在室內環境中度過。隨著室內環境越來越複雜,室內定位將為人們的生活提供極大的便利,尤其是在商場、停車場、車站、機場等複雜的室內環境中。此外,室內定位還可以為商業客戶提供大量數據、為人們提供更好的服務。
本論文提出基於地球磁場的定位系統,只需要靠智慧型行動裝置搭載之慣性測量單元(Inertial Measurement Unit, IMU)直接收集磁場資料以及方向,透過四元數旋轉矩陣校正後,將局部座標轉換成全局座標(local coordinate to global coordinate),接著把xyz三軸及合力(又稱磁場強度intensity)連接成磁指紋,再加入標準差作為特徵,存進資料庫;定位當下將收到的磁場資料即時計算成磁指紋後與資料庫比對,求餘弦相似性(cosine similarity)最高者為定位結果,搭配有向圖(Directed Acyclic Graph, DG)的概念限縮可能的定位範圍,以此進一步提升準確度、降低誤差。
室內定位系統最常面臨的問題與所提方法的應對彙整如下:
- 訊號不穩定:透過旋轉矩陣將局部座標轉換成全局座標。
- 需建置基礎設施:IMU即可收集資料,無需事先架設任何硬體設備。
- 高維護成本:磁場雖會隨著時間變化,但整體屬於相對穩定,大約每5年重新收一次資料即可。
- 需穩定的網路品質:因有建立磁指紋資料庫,使用者可以預先下載資料,之後即便網路不穩也不影響使用者端直接使用IMU收集資料,以及裝置運算、比對磁指紋。如果有穩定的網路,使用者也可以選擇全線上操作,後台記錄的資料會被發送到伺服器以獲得定位。
本論文於臺灣科技大學電資學院7、8樓進行測試,以點對點比對的方式定位,綜合所有實驗結果得出之最大誤差約5.35 m,最小誤差0.0 m,平均誤差約1 m以內。


The GPS positioning is only suitable for outdoor use, and its performance will be greatly reduced if it is obscured by buildings. However, the indoor environment is the main place where people live and work. Statistics show that most people spend about 80%-90% of their time in indoor environments (see literature). As indoor environments become more and more complex, indoor positioning will provide great convenience to people's lives, especially in complex indoor environments such as shopping malls, parking lots, stations, and airports.
In this paper, we propose a positioning system based on the earth's magnetic field, which only relies on the inertial measurement unit (IMU) to directly collect the magnetic field data and directions, and then converts the local coordinate to global coordinate by quaternion rotational matrix. Then, the magnetic field data are connected into magnetic fingerprints, and the standard deviation is added as a feature and stored in the database. When positioning, the received magnetic field data are calculated into magnetic fingerprints immediately and compared with the database to find the one that has the highest cosine similarity as the positioning result. With the concept of directed graph (DG), we could limit the possible positioning range, this is to further improve the accuracy and reduce the error.
The most common problems faced by indoor positioning systems and the proposed solutions are summarized as follows:
 Signal instability: Conversion of local coordinates to global coordinates by rotating the matrix.
 Need to build infrastructure in advance: IMU can collect data without setting up any hardware beforehand.
 High maintenance cost: Although the magnetic field changes over time, it is relatively stable overall, so it is sufficient to recollect every 5 years.
 Stable network quality: With the establishment of a magnetic fingerprint database, users can download data in advance, even if the network is unstable, users still can collect data using IMU directly, and then compute and compare magnetic fingerprints with the device. If there is a stable network, users can also choose to operate fully online, and the data recorded in the backend will be sent to the server for positioning.
The paper was tested on the 7th and 8th floors of the College Electrical Engineering and Computer Science (CEECS) of National Taiwan University of Science and Technology (NTUST) by point-to-point comparison, the maximum error of the experimental results is about 5.35 m, the minimum error is 0.0 m, and the average error is less than 1 m. 

摘要 I Abstract II 誌謝 III 目錄 IV 圖表索引 VI 第1章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 章節提要 4 第2章 相關文獻 5 2.1 室內定位相關技術 5 2.1.1 超寬頻Ultra-wideband, UWB 5 2.1.2 低功耗藍牙Bluetooth Low Energy, BLE 5 2.1.3 無線射頻辨識Radio Frequency Identification, RFID 6 2.1.4 無線網路Wi-Fi 6 2.1.5 行人航位推算Pedestrian Dead Reckoning, PDR 7 2.1.6 磁場Geomagnetic 7 2.2 實現磁場定位方式 8 2.2.1 指紋Fingerprint 8 2.2.2 濾波器Filter 10 2.2.3 機器學習/深度學習Machine/Deep Learning 11 2.3 有向循環圖Directed Cycle Graph, DCG 12 2.4 小結 13 第3章 室內定位系統設計 14 3.1 系統架構 14 3.2 資料收集與處理 15 3.2.1 資料收集與前處理 15 3.2.2 磁場校正 20 3.2.3 特徵擷取 22 3.3 磁場定位與結果校正 23 3.3.1 比對相似度 24 3.3.2 尋找初始點 25 3.3.3 提升定位準確度 25 3.3.4 卡住偵測與校正 25 3.4 算法統整 27 第4章 實驗測試與評估結果 28 4.1 實驗工具介紹 28 4.2 實驗環境介紹 29 4.3 結果評估 29 4.3.1 評估指標 29 4.3.2 單機雙向實驗 31 4.3.3 多機雙向實驗 33 第5章 結論 34 參考文獻 35  

[1] Roberts, T. 2016. "We Spend 90% of Our Time Indoors. Says Who?" BuildingGreen. Accessed December 21, 2022. https://www.buildinggreen.com/blog/we-spend-90-our-time-indoors-says-who
[2] Ouyang, G., and K. Abed-Meraim. 2022. "Analysis of Magnetic Field Measurements for Indoor Positioning." Sensors (Basel) 22 (11). doi: 10.3390/s22114014.
[3] Markets and Markets. 2022. "Global Indoor Location Market by Component (Hardware, Solutions, Services), Technology (BLE, UWB, Wi-Fi, RFID), Application (Emergency Response Management, Remote Monitoring), Organization Size, Vertical, and Region - Forecast to 2027." Research and Marekets. Accessed December 10, 2022. https://www.marketsandmarkets.com/Market-Reports/indoor-location-market-989.html
[4] Fan, Q., B. Sun, Y. Sun, and X. Zhuang. 2017. "Performance Enhancement of MEMS-Based INS/UWB Integration for Indoor Navigation Applications." IEEE Sensors Journal 17 (10):3116-30. doi: 10.1109/JSEN.2017.2689802.
[5] Yao, L., Y. W. A. Wu, L. Yao, and Z. Z. Liao. 2017. "An integrated IMU and UWB sensor based indoor positioning system." 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 18-21 Sept. 2017.
[6] Marquez, A., B. Tank, S. K. Meghani, S. Ahmed, and K. Tepe. 2017. "Accurate UWB and IMU based indoor localization for autonomous robots." 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), 30 April-3 May 2017.
[7] Che, F., A. Ahmed, Q. Z. Ahmed, S. A. R. Zaidi, and M. Z. Shakir. 2020. "Machine Learning Based Approach for Indoor Localization Using Ultra-Wide Bandwidth (UWB) System for Industrial Internet of Things (IIoT)." 2020 International Conference on UK-China Emerging Technologies (UCET), 20-21 Aug. 2020.
[8] Rana, S. P., M. Dey, H. U. Siddiqui, G. Tiberi, M. Ghavami, and S. Dudley. 2017. "UWB localization employing supervised learning method." 2017 IEEE 17th International Conference on Ubiquitous Wireless Broadband (ICUWB), 12-15 Sept. 2017.
[9] Karadeniz, C. G., F. Geyer, T. Multerer, and D. Schupke. 2020. "Precise UWB-Based Localization for Aircraft Sensor Nodes." 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), 11-15 Oct. 2020.
[10] Xiao, C., D. Yang, Z. Chen, and G. Tan. 2017. "3-D BLE Indoor Localization Based on Denoising Autoencoder." IEEE Access 5:12751-60. doi: 10.1109/ACCESS.2017.2720164.
[11] Spachos, P., and K. N. Plataniotis. 2020. "BLE Beacons for Indoor Positioning at an Interactive IoT-Based Smart Museum." IEEE Systems Journal 14 (3):3483-93. doi: 10.1109/JSYST.2020.2969088.
[12] Dinh, T. M. T., N. S. Duong, and K. Sandrasegaran. 2020. "Smartphone-Based Indoor Positioning Using BLE iBeacon and Reliable Lightweight Fingerprint Map." IEEE Sensors Journal 20 (17):10283-94. doi: 10.1109/JSEN.2020.2989411.
[13] Ma, Z., S. Poslad, J. Bigham, X. Zhang, and L. Men. 2017. "A BLE RSSI ranking based indoor positioning system for generic smartphones." 2017 Wireless Telecommunications Symposium (WTS), 26-28 April 2017.
[14] Bai, L., F. Ciravegna, R. Bond, and M. Mulvenna. 2020. "A Low Cost Indoor Positioning System Using Bluetooth Low Energy." IEEE Access 8:136858-71. doi: 10.1109/ACCESS.2020.3012342.
[15] Mathworks. 2022. "Comparison of Bluetooth BR/EDR and Bluetooth LE Specifications." Mathworks. Accessed December 16, 2022. https://www.mathworks.com/help/bluetooth/gs/comparison-of-bluetooth-bredr-and-bluetooth-le.html
[16] Xiao, F., Z. Wang, N. Ye, R. Wang, and X. Y. Li. 2018. "One More Tag Enables Fine-Grained RFID Localization and Tracking." IEEE/ACM Transactions on Networking 26 (1):161-74. doi: 10.1109/TNET.2017.2766526.
[17] El-Absi, M., A. Alhaj Abbas, A. Abuelhaija, F. Zheng, K. Solbach, and T. Kaiser. 2018. "High-Accuracy Indoor Localization Based on Chipless RFID Systems at THz Band." IEEE Access 6:54355-68. doi: 10.1109/ACCESS.2018.2871960.
[18] Ma, Y., B. Wang, S. Pei, Y. Zhang, S. Zhang, and J. Yu. 2018. "An Indoor Localization Method Based on AOA and PDOA Using Virtual Stations in Multipath and NLOS Environments for Passive UHF RFID." IEEE Access 6:31772-82. doi: 10.1109/ACCESS.2018.2838590.
[19] Motroni, A., A. Buffi, and P. Nepa. 2021. "A Survey on Indoor Vehicle Localization Through RFID Technology." IEEE Access 9:17921-42. doi: 10.1109/ACCESS.2021.3052316.
[20] Subedi, S., E. Pauls, and Y. D. Zhang. 2017. "Accurate Localization and Tracking of a Passive RFID Reader Based on RSSI Measurements." IEEE Journal of Radio Frequency Identification 1 (2):144-54. doi: 10.1109/JRFID.2017.2765618.
[21] Berz, E. L., D. A. Tesch, and F. P. Hessel. 2017. "A hybrid RFID and CV system for item-level localization of stationary objects. " 2017 18th International Symposium on Quality Electronic Design (ISQED), 14-15 March 2017.
[22] Centenaro, M., L. Vangelista, A. Zanella, and M. Zorzi. 2016. "Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios." IEEE Wireless Communications 23 (5):60-7. doi: 10.1109/MWC.2016.7721743.
[23] Adame, T., A. Bel, B. Bellalta, J. Barcelo, and M. Oliver. 2014. "IEEE 802.11AH: the WiFi approach for M2M communications." IEEE Wireless Communications 21 (6):144-52. doi: 10.1109/MWC.2014.7000982.
[24] Vasisht, D., Kumar, S., and Katabi, D. 2016. "Decimeter-Level Localization with a Single WiFi Access Point." NSDI'16: Proceedings of the 13th Usenix Conference on Networked Systems Design and Implementation, 16-18 March, 2016.
[25] Kumar, S., S. Gil, D. Katabi, and D. Rus. 2014. "Accurate indoor localization with zero start-up cost." Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM. doi: 10.1145/2639108.2639142.
[26] Xiong, J., and K. Jamieson. 2013. "ArrayTrack: A Fine-Grained Indoor Location System." nsdi'13:71–84.
[27] Kotaru, M., K. Joshi, D. Bharadia, and S. Katti. 2015. "SpotFi: Decimeter Level Localization Using WiFi." SIGCOMM Comput. Commun. Rev. 45 (4):269–82. doi: 10.1145/2829988.2787487.
[28] Xiao, J., K. Wu, Y. Yi, L. Wang, and L. M. Ni. 2013. "Pilot: Passive Device-Free Indoor Localization Using Channel State Information." 2013 IEEE 33rd International Conference on Distributed Computing Systems, 8-11 July 2013.
[29] Zou, H., H. Jiang, X. Lu, and L. Xie. 2014. "An Online Sequential Extreme Learning Machine Approach to Wifi Based Indoor Positioning." 2014 IEEE World Forum on Internet of Things (WF-IoT), 6-8 March 2014.
[30] Kang, W., S. Nam, Y. Han, and S. Lee. 2012. "Improved Heading Estimation for Smartphone-Based Indoor Positioning Systems." 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC), 9-12 Sept. 2012.
[31] Beauregard, S., Widyawan, and M. Klepal. 2008. "Indoor PDR performance enhancement using minimal map information and particle filters." 2008 IEEE/ION Position, Location and Navigation Symposium, 5-8 May 2008.
[32] Harle, R. 2013. "A Survey of Indoor Inertial Positioning Systems for Pedestrians." IEEE Communications Surveys & Tutorials 15 (3):1281-93. doi: 10.1109/SURV.2012.121912.00075.
[33] Li, B., T. Gallagher, A. G. Dempster, and C. Rizos. 2012. "How feasible is the use of magnetic field alone for indoor positioning?" 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 13-15 Nov. 2012.
[34] Du, Y., T. Arslan, and Q. Shen. 2019. "A Dynamic Feature Fusion Strategy for Magnetic Field and Wi-Fi Based Indoor Positioning." 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 30 Sept.-3 Oct. 2019.
[35] Zhang, W., R. Sengupta, J. Fodero, and X. Li. 2017. "DeepPositioning: Intelligent Fusion of Pervasive Magnetic Field and WiFi Fingerprinting for Smartphone Indoor Localization via Deep Learning." 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), 18-21 Dec. 2017.
[36] Gu, F., J. Niu, and L. Duan. 2017. "WAIPO: A Fusion-Based Collaborative Indoor Localization System on Smartphones." IEEE/ACM Transactions on Networking 25 (4):2267-80. doi: 10.1109/TNET.2017.2680448.
[37] Wang, X., Z. Yu, and S. Mao. 2018. "DeepML: Deep LSTM for Indoor Localization with Smartphone Magnetic and Light Sensors." 2018 IEEE International Conference on Communications (ICC), 20-24 May 2018.
[38] Wu, X., R. Shen, L. Fu, X. Tian, P. Liu, and X. Wang. 2017. "iBILL: Using iBeacon and Inertial Sensors for Accurate Indoor Localization in Large Open Areas." IEEE Access 5:14589-99. doi: 10.1109/ACCESS.2017.2726088.
[39] Li, P., X. Yang, Y. Yin, S. Gao, and Q. Niu. 2020. "Smartphone-Based Indoor Localization With Integrated Fingerprint Signal." IEEE Access 8:33178-87. doi: 10.1109/ACCESS.2020.2974038.
[40] Moloco. 2018. "Fingerprinting." Medium. Accessed December 10, 2022. https://medium.com/@moloco/fingerprinting-14862cd4baef
[41] Sanchez-Rodriguez, D., M. Quintana-Suárez, I. Alonso-González, C. Ley-Bosch, and J. Sanchez-Medina. 2020. "Remote Sensing Fusion of Channel State Information and Received Signal Strength for Indoor Localization Using a Single Access Point." Remote Sensing 12. doi: 10.3390/rs12121995.
[42] Shao, W., F. Zhao, C. Wang, H. Luo, T. M. Zahid, Q. Wang, and D. Li. 2016. "Location Fingerprint Extraction for Magnetic Field Magnitude Based Indoor Positioning." Journal of Sensors 2016:1945695. doi: 10.1155/2016/1945695.
[43] Chen, C.-H., P.-W. Chen, P.-J. Chen, and T.-H. Liu. 2021. "Indoor Positioning Using Magnetic Fingerprint Map Captured by Magnetic Sensor Array." Sensors 21 (17). doi: 10.3390/s21175707.
[44] Nikitin, A., C. Laoudias, G. Chatzimilioudis, P. Karras, and D. Zeinalipour-Yazti. 2017. "Indoor Localization Accuracy Estimation from Fingerprint Data." 2017 18th IEEE International Conference on Mobile Data Management (MDM), 29 May-1 June 2017.
[45] Son, W., and L. Choi. 2020. "Magnetic Vector Calibration for Real-Time Indoor Positioning." ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 7-11 June 2020.
[46] Grand, E. Le, and S. Thrun. 2012. "3-Axis magnetic field mapping and fusion for indoor localization." 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 13-15 Sept. 2012.
[47] Frassl, M., M. Angermann, M. Lichtenstern, P. Robertson, B. J. Julian, and M. Doniec. 2013. "Magnetic maps of indoor environments for precise localization of legged and non-legged locomotion." 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 3-7 Nov. 2013.
[48] Xie, H., T. Gu, X. Tao, H. Ye, and J. Lv. 2014. "MaLoc: A Practical Magnetic Fingerprinting Approach to Indoor Localization Using Smartphones." UbiComp '14:243–53. doi: 10.1145/2632048.2632057.
[49] Wang, G., X. Wang, J. Nie, and L. Lin. 2019. "Magnetic-Based Indoor Localization Using Smartphone via a Fusion Algorithm." IEEE Sensors Journal 19 (15):6477-85. doi: 10.1109/JSEN.2019.2909195.
[50] Nessa, A., B. Adhikari, F. Hussain, and X. N. Fernando. 2020. "A Survey of Machine Learning for Indoor Positioning." IEEE Access 8:214945-65. doi: 10.1109/ACCESS.2020.3039271.
[51] Hoang, M. T., B. Yuen, X. Dong, T. Lu, R. Westendorp, and K. Reddy. 2019. "Recurrent Neural Networks for Accurate RSSI Indoor Localization." IEEE Internet of Things Journal 6 (6):10639-51. doi: 10.1109/JIOT.2019.2940368.
[52] Jiang, C., J. Shen, S. Chen, Y. Chen, D. Liu, and Y. Bo. 2020. "UWB NLOS/LOS Classification Using Deep Learning Method." IEEE Communications Letters 24 (10):2226-30. doi: 10.1109/LCOMM.2020.2999904.
[53] Zhou, M., Y. Tang, Z. Tian, L. Xie, and W. Nie. 2018. "Robust Neighborhood Graphing for Semi-Supervised Indoor Localization With Light-Loaded Location Fingerprinting." IEEE Internet of Things Journal 5 (5):3378-87. doi: 10.1109/JIOT.2017.2775199.
[54] LeCun, Y., Y. Bengio, and G. Hinton. 2015. "Deep learning." Nature 521 (7553):436-44. doi: 10.1038/nature14539.
[55] Le, D. V., N. Meratnia, and P. J. M. Havinga. 2018. "Unsupervised Deep Feature Learning to Reduce the Collection of Fingerprints for Indoor Localization Using Deep Belief Networks." 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 Sept. 2018.
[56] Liu, K., H. Zhang, J. K. Y. Ng, Y. Xia, L. Feng, V. C. S. Lee, and S. H. Son. 2018. "Toward Low-Overhead Fingerprint-Based Indoor Localization via Transfer Learning: Design, Implementation, and Evaluation." IEEE Transactions on Industrial Informatics 14 (3):898-908. doi: 10.1109/TII.2017.2750240.
[57] Guo, X., L. Li, N. Ansari, and B. Liao. 2018. "KnowleDCGe Aided Adaptive Localization via Global Fusion Profile." IEEE Internet of Things Journal 5 (2):1081-9. doi: 10.1109/JIOT.2017.2787594.
[58] Guo, X., N. Ansari, F. Hu, Y. Shao, N. R. Elikplim, and L. Li. 2020. "A Survey on Fusion-Based Indoor Positioning." IEEE Communications Surveys & Tutorials 22 (1):566-94. doi: 10.1109/COMST.2019.2951036.
[59] AlHajri, M. I., N. T. Ali, and R. M. Shubair. 2019. "Indoor Localization for IoT Using Adaptive Feature Selection: A Cascaded Machine Learning Approach." IEEE Antennas and Wireless Propagation Letters 18 (11):2306-10. doi: 10.1109/LAWP.2019.2915047.
[60] Guo, X., S. Zhu, L. Li, F. Hu, and N. Ansari. 2019. "Accurate WiFi Localization by Unsupervised Fusion of Extended Candidate Location Set." IEEE Internet of Things Journal 6 (2):2476-85. doi: 10.1109/JIOT.2018.2870659.
[61] Jia, B., B. Huang, H. Gao, and W. Li. 2017. "On the Dimension Reduction of Radio Maps with a Supervised Approach." 2017 IEEE 42nd Conference on Local Computer Networks (LCN), 9-12 Oct. 2017.
[62] Salamah, A. H., M. Tamazin, M. A. Sharkas, and M. Khedr. 2016. "An enhanced WiFi indoor localization system based on machine learning." 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 4-7 Oct. 2016.
[63] Qin, Y., Z. Feng, N. Su, and D. Ma. 2020. "Interior Fusion Localization Method Based on Random Forest." 2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), 28-29 Feb. 2020.
[64] Khatab, Z. E., A. Hajihoseini, and S. A. Ghorashi. 2018. "A Fingerprint Method for Indoor Localization Using Autoencoder Based Deep Extreme Learning Machine." IEEE Sensors Letters 2 (1):1-4. doi: 10.1109/LSENS.2017.2787651.
[65] Wang, X., X. Wang, and S. Mao. 2020. "Deep Convolutional Neural Networks for Indoor Localization with CSI Images." IEEE Transactions on Network Science and Engineering 7 (1):316-27. doi: 10.1109/TNSE.2018.2871165.
[66] Gupta, I., M. S. Kumar, and P. K. Jana. 2016. "Task duplication-based workflow scheduling for heterogeneous cloud environment." 2016 Ninth International Conference on Contemporary Computing (IC3), 11-13 Aug. 2016.
[67] Chen, J., K. Li, Z. Tang, K. Bilal, S. Yu, C. Weng, and K. Li. 2017. "A Parallel Random Forest Algorithm for Big Data in a Spark Cloud Computing Environment." IEEE Transactions on Parallel and Distributed Systems 28 (4):919-33. doi: 10.1109/TPDS.2016.2603511.
[68] Lu, Y., X. Huang, K. Zhang, S. Maharjan, and Y. Zhang. 2020. "Blockchain Empowered Asynchronous Federated Learning for Secure Data Sharing in Internet of Vehicles." IEEE Transactions on Vehicular Technology 69 (4):4298-311. doi: 10.1109/TVT.2020.2973651.
[69] Zia, M. F., M. Benbouzid, E. Elbouchikhi, S. M. Muyeen, K. Techato, and J. M. Guerrero. 2020. "Microgrid Transactive Energy: Review, Architectures, Distributed LeDCGer Technologies, and Market Analysis." IEEE Access 8:19410-32. doi: 10.1109/ACCESS.2020.2968402.
[70] Yeow, K., A. Gani, R. W. Ahmad, J. J. P. C. Rodrigues, and K. Ko. 2018. "Decentralized Consensus for EDCGe-Centric Internet of Things: A Review, Taxonomy, and Research Issues." IEEE Access 6:1513-24. doi: 10.1109/ACCESS.2017.2779263.
[71] Huang, J., L. Kong, G. Chen, M. Y. Wu, X. Liu, and P. Zeng. 2019. "Towards Secure Industrial IoT: Blockchain System With Credit-Based Consensus Mechanism." IEEE Transactions on Industrial Informatics 15 (6):3680-9. doi: 10.1109/TII.2019.2903342.
[72] Huang, W., N. Zhang, J. Yang, Y. Wang, and C. Kang. 2019. "Optimal Configuration Planning of Multi-Energy Systems Considering Distributed Renewable Energy." IEEE Transactions on Smart Grid 10 (2):1452-64. doi: 10.1109/TSG.2017.2767860.
[73] Dong, X., and Y. Yang. 2019. "Searching for a Robust Neural Architecture in Four GPU Hours." 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 15-20 June 2019.
[74] Jiang, W., Y. Cao, and X. Deng. 2020. "A Novel Z-Network Model Based on Bayesian Network and Z-Number." IEEE Transactions on Fuzzy Systems 28 (8):1585-99. doi: 10.1109/TFUZZ.2019.2918999.
[75] Liu, M., J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. 2017. "Towards Better Analysis of Deep Convolutional Neural Networks." IEEE Transactions on Visualization and Computer Graphics 23 (1):91-100. doi: 10.1109/TVCG.2016.2598831.
[76] Li, J., X. Li, and D. He. 2019. "A Directed Acyclic Graph Network Combined With CNN and LSTM for Remaining Useful Life Prediction." IEEE Access 7:75464-75. doi: 10.1109/ACCESS.2019.2919566.
[77] Shi, L., Y. Zhang, J. Cheng, and H. Lu. 2019. "Skeleton-Based Action Recognition With Directed Graph Neural Networks." 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 15-20 June 2019.
[78] Casio. 2019. "校正羅盤讀數。" Casio使用手冊。Accessed December 17, 2022. https://support.casio.com/global/tw/wat/manual/5601_tw-zh/VPCVSYatbenxzu.html
[79] Taoest. 2010. "ST集成傳感器方案實現電子羅盤功能。" 維庫電子市場網。Accessed December 13, 2022. https://www.dzsc.com/data/2010-11-29/87454.html
[80] Ashraf, I., M. Kang, S. Hur, and Y. Park. 2020. "MINLOC:Magnetic Field Patterns-Based Indoor Localization Using Convolutional Neural Networks." IEEE Access 8:66213-27. doi: 10.1109/ACCESS.2020.2985384.
[81] 2mo. "二毛好小。" LINE Store. Accessed December 11. https://store.line.me/emojishop/product/6098ce5cedbb876b9efde7fc/zh-Hant
[82] Zafari, F., A. Gkelias, and K. K. Leung. 2019. "A Survey of Indoor Localization Systems and Technologies." IEEE Communications Surveys & Tutorials 21 (3):2568-99. doi: 10.1109/COMST.2019.2911558.

無法下載圖示 全文公開日期 2026/01/31 (校內網路)
全文公開日期 2026/01/31 (校外網路)
全文公開日期 2026/01/31 (國家圖書館:臺灣博碩士論文系統)
QR CODE