簡易檢索 / 詳目顯示

研究生: 廖家樑
Jia-Liang Liao
論文名稱: 利用機械剝離方式製備高產率且高品質石墨烯及異原子摻雜石墨烯
Scalable Production of Graphene Nanosheets with High Yield and Low Defect and Heteroatom-Doped Graphene Nanosheets by Mechanochemical Exfoliation
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 江志強
Jyh-Chiang Jiang
劉沂欣
Yi-Hsin Liu
江偉宏
Wei-Hung Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 98
中文關鍵詞: 液相剝離石墨烯異質摻雜球磨機
外文關鍵詞: Liquid phase exfoliation, Graphene nanosheets, Heteroatom-doped, Ball milling
相關次數: 點閱:315下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

石墨烯具有優異的材料特性可應用於許多產業應用。目前已知利用化學氣相沉積生產高品質奈米材料但產率非常低,液相剝離法雖然可提高產率但產物品質不佳。因此開發石墨烯大规模、低成本、可控制的製備方法為落實石墨烯產業應用的一大關鍵。一般而言,液相機械剝離法(超音波震盪)顯然不能滿足未来工業化的需求,因為其反應容器不宜太大,否則震盪效果將大幅下降,導致產率的降低;氧化石墨還原法雖然能夠以相對较低的成本製備出大量的石墨烯,然而石墨烯的電子結構以及晶體的完整性均受到强氧化劑嚴重的破壞,使其電子性質受到影響,一定程度上限制了其在微電子器件方面的應用,因此,如何大量、低成本製備出高質量的石墨烯材料仍然是研究的一個重點。
此研究結合高效率的物理製程及高分散能力的化學配方達到高產率及高品質的石墨烯生產,本論文利用球磨機為主要物理作用力合成奈米材料,並在物理剪應力製程之前導入其他物理作用力(超音波震盪、高速攪拌)增加產率表現,同時藉由具高分散能力的化學配方(共溶劑效應)來降低石墨烯的缺陷。此生產技術具有簡易的操作程序,生產速率快以及純化步驟簡單性等優點,因此可以大量化生產高產率高品質的奈米材料。並且,異質摻雜奈米碳材能提升奈米碳材許多特性,譬如物理、化學、光學、結構特性,使奈米碳材能廣泛應用在電子元件、催化劑、除能裝置、複合材料及生醫方面等應用。然而,現今的摻雜方法通常需要複雜的真空系統,造成成本極高且無法量產,因此,能發展出在常溫常壓下且可控制的異質摻雜奈米碳材技術不僅可提升科學研究水準且更能廣泛應用在不同需求上。本研究使用一簡單的球磨裝置在常溫常壓下發展出異質摻雜奈米碳材的合成方法,並成功摻雜氮元素於石墨烯中。


Graphene is a two-dimensional carbon nanomaterials with superior electronic, thermal, and mechanical properties and currently explored in advanced electronics, transparent protective coating, energy storage devices and polymer composites. It is highly desirable to economically produce high-quality graphene in industrial quantities to commercially realize its applications; however, no scalable method exists. Mechanochemical approaches to graphene nanosheets synthesis offer the promise of improved yields, new reaction pathways, and greener and more efficient syntheses, making them potential approaches for low cost production of graphene nanosheets.
Here we report the scalable production of single- and few-layer graphene nanosheets with low defect densities by an efficient water-assisted mechanochemical exfoliation of graphite in N-methylpyrrolidinone (NMP). The mechanochemical exfoliation could be further improved by applying high speed homogenization and ultrasonication as pretreatments. It is found that the former step homogenized the graphite-solvent solution while the latter provided sufficient energy to weaken the van der Waals interactions and promoted the intercalation of solvent molecules into the graphene sheets within bulk graphite. Significantly, when NMP with water was employed as the cosolvent in the mechanochemical exfoliation, it was found to be possible to produce graphene nanosheets with fewer defects. Detailed materials characterization including transmission electron microscopy, Raman spectroscopy, and UV-Vis absorbance spectroscopy suggest that single- and few-layer graphene nanosheets were successfully prepared with the concentration and yield up to 21.9 mg/mL and 43.8%, respectively. The yield may be further improved by optimizing the process conditions. Our work provides a guide of rational design of a solvent system to improve the yield and stability of the exfoliated materials.
Furthermore, the mechanochemical cracking of graphitic C=C bonds generated active carbon species that react directly with melamine to form C-N bonding at the broken edges, leading to edge-nitrogenated graphene nanoplatelets (NGnPs) with superb catalytic performance in both dye-sensitized solar cells and fuel cells to replace conventional Pt-based catalysts for energy conversion.
Heteroatom doping can endow carbon nanomaterials with various enhanced optical, structural, and physicochemical properties, making carbon nanomaterials become a promising material in various applications including nano-electronics, catalysis, energy storage, functional composites, and biomedical applications. However, current synthesis methods usually involve complicated vacuum systems, making it difficult to enable industrial-scale production. Consequently, the development of a controllable synthesis of heteroatom-doped carbon nanomaterials at atmospheric pressure will lead to important advances on both scientific studies and innovation applications. Therefore, this study demonstrates a simple ball milling method to produce heteroatom-doped carbon nanomaterial with heteroatoms nitrogen (N), which is under atmospheric pressure.

Abstract I 摘要 III Acknowledgements IV 致謝 V Table of content VI List of figure VIII List of table XIII 1. Introduction 1 1.1 Introduction of graphene 1 1.2 Synthesis of graphene 4 1.2.1 Bottom-up method 6 1.2.1.1 Chemical vapor deposition (CVD)26 6 1.2.2 Top-down method 8 1.2.2.1 Micro-mechanical cleavage1 8 1.2.3 Reduction of exfoliated graphite oxide 18 1.3 Introduction of doped-graphene 23 1.4 Synthesis of doped-graphene 25 2. Experimental methods and process 31 2.1 Experimental chemical 31 2.2 Experimental process. 31 2.2.1 Sonication process . 31 2.2.2 Homogenizer process 32 2.2.3 Ball milling process 32 2.2.4 Complex liquid phase exfoliation process 32 2.2.5 Synthesis of heteroatoms-doped graphene nanosheets 33 2.2.6 Sheet measurement 34 2.3 Characterization 35 2.3.1 X-ray photoelectron spectroscopy (XPS) 35 2.3.2 Raman spectroscopy 35 2.3.3 Scanning electron microscope (SEM) 35 2.3.4 Transmission electron microscopy (TEM) 36 2.3.5 Ultraviolet-visible spectroscopy (UV-vis) 36 2.3.6 Fourier-transform infrared spectroscopy (FTIR) 36 2.3.7 Atomic force microscopy (AFM) 37 2.3.8 High-resolution X-ray diffraction (XRD) 37 3. Result and discussion 38 3.1 Ball Milling for graphene nanosheets in NMP 38 3.1.1 Physical parameter (Size, speed, and time) 38 3.1.2 Complex method system/Physical effect 53 3.2 Complex method system with Co-solvent effect 58 3.3 Nitrogen Doped Graphene and 65 3.3.1 XPS characterization 65 3.3.2 Raman spectroscopy characterization 71 4. Conclusion 75 5. References 76

1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669.
2. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K., Two-Dimensional Atomic Crystals. Proceedings of the National Academy of Sciences of the United States of America 2005, 102, 10451-10453.
3. Geim, A. K.; Novoselov, K. S., The Rise of Graphene. Nat Mater 2007, 6, 183-191.
4. Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K., A Roadmap for Graphene. Nature 2012, 490, 192-200.
5. Geim, A. K., Graphene: Status and Prospects. Science 2009, 324, 1530-1534.
6. Mayorov, A. S., et al., Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Letters 2011, 11, 2396-2399.
7. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385.
8. Balandin, A. A., Thermal Properties of Graphene and Nanostructured Carbon Materials. Nat Mater 2011, 10, 569-581.
9. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N., Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters 2008, 8, 902-907.
10. Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L., Impermeable Atomic Membranes from Graphene Sheets. Nano Letters 2008, 8, 2458-2462.
11. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308.
12. Stankovich, S.; Dikin, D. A.; Dommett, G. H.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-Based Composite Materials. Nature 2006, 442, 282-286.
13. Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H., Pegylated Nano-Graphene Oxide for Delivery of Water Insoluble Cancer Drugs. Journal of the American Chemical Society 2008, 130, 10876.
14. Kamat, P. V., Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support. The Journal of Physical Chemistry Letters 2009, 1, 520-527.
15. Zhang, Y.; Zhang, L.; Zhou, C., Review of Chemical Vapor Deposition of Graphene and Related Applications. Accounts of chemical research 2013, 46, 2329-2339.
16. Strupinski, W.; Grodecki, K.; Wysmolek, A.; Stepniewski, R.; Szkopek, T.; Gaskell, P.; Gruneis, A.; Haberer, D.; Bozek, R.; Krupka, J., Graphene Epitaxy by Chemical Vapor Deposition on Sic. Nano letters 2011, 11, 1786-1791.
17. Ago, H.; Ito, Y.; Mizuta, N.; Yoshida, K.; Hu, B.; Orofeo, C. M.; Tsuji, M.; Ikeda, K.-i.; Mizuno, S., Epitaxial Chemical Vapor Deposition Growth of Single-Layer Graphene over Cobalt Film Crystallized on Sapphire. Acs Nano 2010, 4, 7407-7414.
18. Hernandez, Y., et al., High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nature nanotechnology 2008, 3, 563-8.
19. Zhong, Y. L.; Tian, Z.; Simon, G. P.; Li, D., Scalable Production of Graphene Via Wet Chemistry: Progress and Challenges. Materials Today 2015, 18, 73-78.
20. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The Chemistry of Graphene Oxide. Chemical Society reviews 2010, 39, 228-240.
21. Cai, M.; Thorpe, D.; Adamson, D. H.; Schniepp, H. C., Methods of Graphite Exfoliation. Journal of Materials Chemistry 2012, 22, 24992-25002.
22. Yi, M.; Shen, Z., A Review on Mechanical Exfoliation for the Scalable Production of Graphene. J. Mater. Chem. A 2015, 3, 11700-11715.
23. Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V., Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage. Science 2015, 347.
24. Jang, B. Z.; Liu, C.; Neff, D.; Yu, Z.; Wang, M. C.; Xiong, W.; Zhamu, A., Graphene Surface-Enabled Lithium Ion-Exchanging Cells: Next-Generation High-Power Energy Storage Devices. Nano letters 2011, 11, 3785-3791.
25. Eigler, S.; Hirsch, A., Chemistry with Graphene and Graphene Oxide—Challenges for Synthetic Chemists. Angewandte Chemie International Edition 2014, 53, 7720-7738.
26. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters 2009, 9, 30-35.
27. Wei, D.; Wu, B.; Guo, Y.; Yu, G.; Liu, Y., Controllable Chemical Vapor Deposition Growth of Few Layer Graphene for Electronic Devices. Accounts of Chemical Research 2013, 46, 106-115.
28. Manna, K.; Huang, H.-N.; Li, W.-T.; Ho, Y.-H.; Chiang, W.-H., Toward Understanding the Efficient Exfoliation of Layered Materials by Water-Assisted Cosolvent Liquid-Phase Exfoliation. Chemistry of Materials 2016, 28, 7586-7593.
29. Manna, K.; Hsieh, C.-Y.; Lo, S.-C.; Li, Y.-S.; Huang, H.-N.; Chiang, W.-H., Graphene and Graphene-Analogue Nanosheets Produced by Efficient Water-Assisted Liquid Exfoliation of Layered Materials. Carbon 2016, 105, 551-555.
30. Paton, K. R., et al., Scalable Production of Large Quantities of Defect-Free Few-Layer Graphene by Shear Exfoliation in Liquids. Nat Mater 2014, 13, 624-630.
31. Varrla, E.; Paton, K. R.; Backes, C.; Harvey, A.; Smith, R. J.; McCauley, J.; Coleman, J. N., Turbulence-Assisted Shear Exfoliation of Graphene Using Household Detergent and a Kitchen Blender. Nanoscale 2014, 6, 11810-11819.
32. Zhao, W.; Fang, M.; Wu, F.; Wu, H.; Wang, L.; Chen, G., Preparation of Graphene by Exfoliation of Graphite Using Wet Ball Milling. Journal of Materials Chemistry 2010, 20, 5817-5819.
33. Damm, C.; Nacken, T. J.; Peukert, W., Quantitative Evaluation of Delamination of Graphite by Wet Media Milling. Carbon 2015, 81, 284-294.
34. Jeon, I.-Y.; Choi, H.-J.; Jung, S.-M.; Seo, J.-M.; Kim, M.-J.; Dai, L.; Baek, J.-B., Large-Scale Production of Edge-Selectively Functionalized Graphene Nanoplatelets Via Ball Milling and Their Use as Metal-Free Electrocatalysts for Oxygen Reduction Reaction. Journal of the American Chemical Society 2013, 135, 1386-1393.
35. Nacken, T.; Damm, C.; Walter, J.; Rüger, A.; Peukert, W., Delamination of Graphite in a High Pressure Homogenizer. RSC Advances 2015, 5, 57328-57338.
36. Shen, Z.; Li, J.; Yi, M.; Zhang, X.; Ma, S., Preparation of Graphene by Jet Cavitation. Nanotechnology 2011, 22, 365306.
37. Chua, C. K.; Pumera, M., Chemical Reduction of Graphene Oxide: A Synthetic Chemistry Viewpoint. Chemical Society reviews 2014, 43, 291-312.
38. Halbig, C. E.; Nacken, T. J.; Walter, J.; Damm, C.; Eigler, S.; Peukert, W., Quantitative Investigation of the Fragmentation Process and Defect Density Evolution of Oxo-Functionalized Graphene Due to Ultrasonication and Milling. Carbon 2016, 96, 897-903.
39. Whelan, P. R.; Jessen, B. S.; Wang, R.; Luo, B.; Stoot, A. C.; Mackenzie, D. M.; Braeuninger-Weimer, P.; Jouvray, A.; Prager, L.; Camilli, L., Raman Spectral Indicators of Catalyst Decoupling for Transfer of Cvd Grown 2d Materials. Carbon 2017, 117, 75-81.
40. Niu, L.; Coleman, J. N.; Zhang, H.; Shin, H.; Chhowalla, M.; Zheng, Z., Production of Two-Dimensional Nanomaterials Via Liquid-Based Direct Exfoliation. Small 2016, 12, 272-93.
41. Backes, C.; Higgins, T. M.; Kelly, A.; Boland, C.; Harvey, A.; Hanlon, D.; Coleman, J. N., Guidelines for Exfoliation, Characterization and Processing of Layered Materials Produced by Liquid Exfoliation. Chemistry of Materials 2017, 29, 243-255.
42. Ciesielski, A.; Samorì, P., Graphene Via Sonication Assisted Liquid-Phase Exfoliation. Chemical Society reviews 2014, 43, 381-398.
43. Coleman, J. N., et al., Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331, 568-571.
44. Smith, R. J., et al., Large-Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions. Advanced materials 2011, 23, 3944-8.
45. May, P.; Khan, U.; Hughes, J. M.; Coleman, J. N., Role of Solubility Parameters in Understanding the Steric Stabilization of Exfoliated Two-Dimensional Nanosheets by Adsorbed Polymers. The Journal of Physical Chemistry C 2012, 116, 11393-11400.
46. Coleman, J. N., Liquid Exfoliation of Defect-Free Graphene. Accounts of Chemical Research 2013, 46, 14-22.
47. Hamilton, C. E.; Lomeda, J. R.; Sun, Z.; Tour, J. M.; Barron, A. R., High-Yield Organic Dispersions of Unfunctionalized Graphene. Nano letters 2009, 9, 3460-3462.
48. Bourlinos, A. B.; Georgakilas, V.; Zboril, R.; Steriotis, T. A.; Stubos, A. K., Liquid‐Phase Exfoliation of Graphite Towards Solubilized Graphenes. small 2009, 5, 1841-1845.
49. O’Neill, A.; Khan, U.; Nirmalraj, P. N.; Boland, J.; Coleman, J. N., Graphene Dispersion and Exfoliation in Low Boiling Point Solvents. The Journal of Physical Chemistry C 2011, 115, 5422-5428.
50. Qian, W.; Hao, R.; Hou, Y.; Tian, Y.; Shen, C.; Gao, H.; Liang, X., Solvothermal-Assisted Exfoliation Process to Produce Graphene with High Yield and High Quality. Nano Research 2009, 2, 706-712.
51. Wang, M.; Xu, X.; Ge, Y.; Dong, P.; Baines, R.; Ajayan, P. M.; Ye, M.; Shen, J., Surface Tension Components Ratio: An Efficient Parameter for Direct Liquid Phase Exfoliation. ACS applied materials & interfaces 2017.
52. Schlierf, A., et al., Nanoscale Insight into the Exfoliation Mechanism of Graphene with Organic Dyes: Effect of Charge, Dipole and Molecular Structure. Nanoscale 2013, 5, 4205-4216.
53. Chen, J., et al., A Binary Solvent System for Improved Liquid Phase Exfoliation of Pristine Graphene Materials. Carbon 2015, 94, 405-411.
54. Halim, U.; Zheng, C. R.; Chen, Y.; Lin, Z.; Jiang, S.; Cheng, R.; Huang, Y.; Duan, X., A Rational Design of Cosolvent Exfoliation of Layered Materials by Directly Probing Liquid–Solid Interaction. Nature communications 2013, 4.
55. Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S., Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. Nano Letters 2009, 9, 1593-1597.
56. Liu, L.; Shen, Z.; Yi, M.; Zhang, X.; Ma, S., A Green, Rapid and Size-Controlled Production of High-Quality Graphene Sheets by Hydrodynamic Forces. RSC Advances 2014, 4, 36464-36470.
57. Fan, X.; Chang, D. W.; Chen, X.; Baek, J.-B.; Dai, L., Functionalized Graphene Nanoplatelets from Ball Milling for Energy Applications. Current Opinion in Chemical Engineering 2016, 11, 52-58.
58. Jeon, I.-Y., et al., Edge-Carboxylated Graphene Nanosheets Via Ball Milling. Proceedings of the National Academy of Sciences 2012, 109, 5588-5593.
59. Zhao, W.; Wu, F.; Wu, H.; Chen, G., Preparation of Colloidal Dispersions of Graphene Sheets in Organic Solvents by Using Ball Milling. Journal of Nanomaterials 2010, 2010, 6.
60. Lin, J.; Chen, D.; Dong, J.; Chen, G., Preparation of Polyvinylpyrrolidone-Decorated Hydrophilic Graphene Via in Situ Ball Milling. Journal of Materials Science 2015, 50, 8057-8063.
61. Brodie, B., Sur Le Poids Atomique Du Graphite. Ann. Chim. Phys 1860, 59, e472.
62. Staudenmaier, L., Verfahren Zur Darstellung Der Graphitsäure. European Journal of Inorganic Chemistry 1898, 31, 1481-1487.
63. Hummers Jr, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958, 80, 1339-1339.
64. Treossi, E.; Melucci, M.; Liscio, A.; Gazzano, M.; Samorì, P.; Palermo, V., High-Contrast Visualization of Graphene Oxide on Dye-Sensitized Glass, Quartz, and Silicon by Fluorescence Quenching. Journal of the American Chemical Society 2009, 131, 15576-15577.
65. Liscio, A.; Veronese, G. P.; Treossi, E.; Suriano, F.; Rossella, F.; Bellani, V.; Rizzoli, R.; Samorì, P.; Palermo, V., Charge Transport in Graphene–Polythiophene Blends as Studied by Kelvin Probe Force Microscopy and Transistor Characterization. Journal of Materials Chemistry 2011, 21, 2924-2931.
66. Melucci, M.; Treossi, E.; Ortolani, L.; Giambastiani, G.; Morandi, V.; Klar, P.; Casiraghi, C.; Samorì, P.; Palermo, V., Facile Covalent Functionalization of Graphene Oxide Using Microwaves: Bottom-up Development of Functional Graphitic Materials. Journal of Materials Chemistry 2010, 20, 9052-9060.
67. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of Graphene-Based Nanosheets Via Chemical Reduction of Exfoliated Graphite Oxide. carbon 2007, 45, 1558-1565.
68. Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A., Chemical Analysis of Graphene Oxide Films after Heat and Chemical Treatments by X-Ray Photoelectron and Micro-Raman Spectroscopy. Carbon 2009, 47, 145-152.
69. Khan, U.; O'Neill, A.; Lotya, M.; De, S.; Coleman, J. N., High‐Concentration Solvent Exfoliation of Graphene. Small 2010, 6, 864-871.
70. Khan, U.; Porwal, H.; O’Neill, A.; Nawaz, K.; May, P.; Coleman, J. N., Solvent-Exfoliated Graphene at Extremely High Concentration. Langmuir 2011, 27, 9077-9082.
71. Nacken, T. J.; Damm, C.; Xing, H.; Rüger, A.; Peukert, W., Determination of Quantitative Structure-Property and Structure-Process Relationships for Graphene Production in Water. Nano Research 2015, 8, 1865.
72. Yao, Y.; Lin, Z.; Li, Z.; Song, X.; Moon, K.-S.; Wong, C.-p., Large-Scale Production of Two-Dimensional Nanosheets. Journal of Materials Chemistry 2012, 22, 13494-13499.
73. Liu, W.; Tanna, V. A.; Yavitt, B. M.; Dimitrakopoulos, C.; Winter, H. H., Fast Production of High-Quality Graphene Via Sequential Liquid Exfoliation. ACS applied materials & interfaces 2015, 7, 27027-27030.
74. Guan, G.; Lu, J.; Jiang, H., Preparation, Characterization, and Physical Properties of Graphene Nanosheets and Films Obtained from Low-Temperature Expandable Graphite. Journal of materials science 2016, 51, 926-936.
75. Lherbier, A.; Blase, X.; Niquet, Y.-M.; Triozon, F.; Roche, S., Charge Transport in Chemically Doped 2d Graphene. Physical Review Letters 2008, 101, 036808.
76. Chen, P.; Xiao, T.-Y.; Qian, Y.-H.; Li, S.-S.; Yu, S.-H., A Nitrogen-Doped Graphene/Carbon Nanotube Nanocomposite with Synergistically Enhanced Electrochemical Activity. Advanced materials 2013, 25, 3192-3196.
77. Ju, M. J.; Kim, J. C.; Choi, H.-J.; Choi, I. T.; Kim, S. G.; Lim, K.; Ko, J.; Lee, J.-J.; Jeon, I.-Y.; Baek, J.-B., N-Doped Graphene Nanoplatelets as Superior Metal-Free Counter Electrodes for Organic Dye-Sensitized Solar Cells. ACS nano 2013, 7, 5243-5250.
78. Ju, M. J.; Jeon, I. Y.; Kim, J. C.; Lim, K.; Choi, H. J.; Jung, S. M.; Choi, I. T.; Eom, Y. K.; Kwon, Y. J.; Ko, J., Graphene Nanoplatelets Doped with N at Its Edges as Metal‐Free Cathodes for Organic Dye‐Sensitized Solar Cells. Advanced materials 2014, 26, 3055-3062.
79. Fang, H.; Yu, C.; Ma, T.; Qiu, J., Boron-Doped Graphene as a High-Efficiency Counter Electrode for Dye-Sensitized Solar Cells. Chemical Communications 2014, 50, 3328-3330.
80. Wang, Z.; Li, P.; Chen, Y.; He, J.; Liu, J.; Zhang, W.; Li, Y., Phosphorus-Doped Reduced Graphene Oxide as an Electrocatalyst Counter Electrode in Dye-Sensitized Solar Cells. Journal of Power Sources 2014, 263, 246-251.
81. Leenaerts, O.; Partoens, B.; Peeters, F., Adsorption of H 2 O, N H 3, Co, N O 2, and No on Graphene: A First-Principles Study. Physical Review B 2008, 77, 125416.
82. Adam, S.; Hwang, E.; Galitski, V.; Sarma, S. D., A Self-Consistent Theory for Graphene Transport. Proceedings of the National Academy of Sciences 2007, 104, 18392-18397.
83. Gierz, I.; Riedl, C.; Starke, U.; Ast, C. R.; Kern, K., Atomic Hole Doping of Graphene. arXiv preprint arXiv:0808.0621 2008.
84. Liu, H.; Liu, Y.; Zhu, D., Chemical Doping of Graphene. Journal of materials chemistry 2011, 21, 3335-3345.
85. Bitounis, D.; Ali‐Boucetta, H.; Hong, B. H.; Min, D. H.; Kostarelos, K., Prospects and Challenges of Graphene in Biomedical Applications. Advanced materials 2013, 25, 2258-2268.
86. Park, S.; Hu, Y.; Hwang, J. O.; Lee, E.-S.; Casabianca, L. B.; Cai, W.; Potts, J. R.; Ha, H.-W.; Chen, S.; Oh, J., Chemical Structures of Hydrazine-Treated Graphene Oxide and Generation of Aromatic Nitrogen Doping. Nature communications 2012, 3, 638.
87. Sui, Y.; Zhu, B.; Zhang, H.; Shu, H.; Chen, Z.; Zhang, Y.; Zhang, Y.; Wang, B.; Tang, C.; Xie, X., Temperature-Dependent Nitrogen Configuration of N-Doped Graphene by Chemical Vapor Deposition. Carbon 2015, 81, 814-820.
88. Yu, C.; Liu, Z.; Meng, X.; Lu, B.; Cui, D.; Qiu, J., Nitrogen and Phosphorus Dual-Doped Graphene as a Metal-Free High-Efficiency Electrocatalyst for Triiodide Reduction. Nanoscale 2016, 8, 17458-17464.
89. Geng, D.; Hu, Y.; Li, Y.; Li, R.; Sun, X., One-Pot Solvothermal Synthesis of Doped Graphene with the Designed Nitrogen Type Used as a Pt Support for Fuel Cells. Electrochemistry Communications 2012, 22, 65-68.
90. Tao, H.; Yan, C.; Robertson, A. W.; Gao, Y.; Ding, J.; Zhang, Y.; Ma, T.; Sun, Z., N-Doping of Graphene Oxide at Low Temperature for the Oxygen Reduction Reaction. Chemical Communications 2017, 53, 873-876.
91. Wang, C.; Kang, J.; Sun, H.; Ang, H.; Tadé, M. O.; Wang, S., One-Pot Synthesis of N-Doped Graphene for Metal-Free Advanced Oxidation Processes. Carbon 2016, 102, 279-287.
92. Wang, C.; Zhou, Y.; He, L.; Ng, T.-W.; Hong, G.; Wu, Q.-H.; Gao, F.; Lee, C.-S.; Zhang, W., In Situ Nitrogen-Doped Graphene Grown from Polydimethylsiloxane by Plasma Enhanced Chemical Vapor Deposition. Nanoscale 2013, 5, 600-605.
93. Li, N.; Wang, Z.; Zhao, K.; Shi, Z.; Gu, Z.; Xu, S., Large Scale Synthesis of N-Doped Multi-Layered Graphene Sheets by Simple Arc-Discharge Method. Carbon 2010, 48, 255-259.
94. Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G., Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano lett 2009, 9, 1752-1758.
95. Xing, Z.; Ju, Z.; Zhao, Y.; Wan, J.; Zhu, Y.; Qiang, Y.; Qian, Y., One-Pot Hydrothermal Synthesis of Nitrogen-Doped Graphene as High-Performance Anode Materials for Lithium Ion Batteries. Scientific reports 2016, 6.
96. Terrones, M.; Redlich, P.; Grobert, N.; Trasobares, S.; Hsu, W. K.; Terrones, H.; Zhu, Y. Q.; Hare, J. P.; Reeves, C. L.; Cheetham, A. K., Carbon Nitride Nanocomposites: Formation of Aligned Cxny Nanofibers. Advanced materials 1999, 11, 655-658.
97. Terrones, M.; Grobert, N.; Olivares, J.; Zhang, J.; Terrones, H.; Kordatos, K.; Hsu, W.; Hare, J.; Townsend, P.; Prassides, K., Controlled Production of Aligned-Nanotube Bundles. Nature 1997, 388, 52-55.
98. Imamura, G.; Saiki, K., Synthesis of Nitrogen-Doped Graphene on Pt (111) by Chemical Vapor Deposition. The Journal of Physical Chemistry C 2011, 115, 10000-10005.
99. Wu, G.; Mack, N. H.; Gao, W.; Ma, S.; Zhong, R.; Han, J.; Baldwin, J. K.; Zelenay, P., Nitrogen-Doped Graphene-Rich Catalysts Derived from Heteroatom Polymers for Oxygen Reduction in Nonaqueous Lithium–O2 Battery Cathodes. ACS nano 2012, 6, 9764-9776.
100. Jeon, I.-Y.; Choi, H.-J.; Ju, M. J.; Choi, I. T.; Lim, K.; Ko, J.; Kim, H. K.; Kim, J. C.; Lee, J.-J.; Shin, D., Direct Nitrogen Fixation at the Edges of Graphene Nanoplatelets as Efficient Electrocatalysts for Energy Conversion. Scientific reports 2013, 3, 2260.
101. Xu, J.; Jeon, I. Y.; Seo, J. M.; Dou, S.; Dai, L.; Baek, J. B., Edge‐Selectively Halogenated Graphene Nanoplatelets (Xgnps, X= Cl, Br, or I) Prepared by Ball‐Milling and Used as Anode Materials for Lithium‐Ion Batteries. Advanced materials 2014, 26, 7317-7323.
102. Björk, J.; Hanke, F.; Palma, C.-A.; Samori, P.; Cecchini, M.; Persson, M., Adsorption of Aromatic and Anti-Aromatic Systems on Graphene through Π− Π Stacking. The Journal of Physical Chemistry Letters 2010, 1, 3407-3412.
103. Buzaglo, M.; Bar, I. P.; Varenik, M.; Shunak, L.; Pevzner, S.; Regev, O., Graphite‐to‐Graphene: Total Conversion. Advanced materials 2016.
104. Ferrari, A.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.; Roth, S., Raman Spectrum of Graphene and Graphene Layers. Physical review letters 2006, 97, 187401.
105. Memon, N. K.; Stephen, D. T.; Al-Sharab, J. F.; Yamaguchi, H.; Goncalves, A.-M. B.; Kear, B. H.; Jaluria, Y.; Andrei, E. Y.; Chhowalla, M., Flame Synthesis of Graphene Films in Open Environments. Carbon 2011, 49, 5064-5070.
106. Ferrari, A. C.; Basko, D. M., Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nature nanotechnology 2013, 8, 235-246.
107. Yuan, W.; Zhou, Y.; Li, Y.; Li, C.; Peng, H.; Zhang, J.; Liu, Z.; Dai, L.; Shi, G., The Edge-and Basal-Plane-Specific Electrochemistry of a Single-Layer Graphene Sheet. Scientific reports 2013, 3, 2248.
108. Wasim Akhtar, M.; Park, C. W.; Kim, Y. S.; Kim, J. S., Facile Large Scale Production of Few-Layer Graphene Sheets by Shear Exfoliation in Volatile Solvent. Journal of nanoscience and nanotechnology 2015, 15, 9624-9629.
109. Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C., Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Letters 2012, 12, 3925-3930.
110. Barnes, A., Blue-Shifting Hydrogen Bonds—Are They Improper or Proper? Journal of molecular structure 2004, 704, 3-9.
111. Walrafen, G. E.; Chu, Y.-C., Nature of Collagen–Water Hydration Forces: A Problem in Water Structure. Chemical Physics 2000, 258, 427-446.
112. Panchakarla, L.; Govindaraj, A.; Rao, C., Nitrogen-and Boron-Doped Double-Walled Carbon Nanotubes. ACS nano 2007, 1, 494-500.
113. DasA, et al., Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor. Nat Nano 2008, 3, 210-215.
114. Sheng, Z.-H.; Gao, H.-L.; Bao, W.-J.; Wang, F.-B.; Xia, X.-H., Synthesis of Boron Doped Graphene for Oxygen Reduction Reaction in Fuel Cells. Journal of Materials Chemistry 2012, 22, 390-395.
115. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A., Raman Spectroscopy of Carbon Nanotubes. Physics reports 2005, 409, 47-99.
116. Qi, C.; Ma, X.; Ning, G.; Song, X.; Chen, B.; Lan, X.; Li, Y.; Zhang, X.; Gao, J., Aqueous Slurry of S-Doped Carbon Nanotubes as Conductive Additive for Lithium Ion Batteries. Carbon 2015, 92, 245-253.

無法下載圖示 全文公開日期 2022/07/31 (校內網路)
全文公開日期 2027/07/31 (校外網路)
全文公開日期 2027/07/31 (國家圖書館:臺灣博碩士論文系統)
QR CODE