簡易檢索 / 詳目顯示

研究生: 陳正中
Zheng-Zhong Chen
論文名稱: 利用不同的輸入光信號偏振態來評估 DWDM光網路中非線性四波混頻的性能
Performance Evaluation of the Nonlinear Four Wave Mixing Effect in DWDM Optical Networks by under Different Polarization States of the Input Light Signals
指導教授: 譚昌文
Chen-Wen Tarn
口試委員: 譚昌文
Chen-Wen Tarn
黃柏仁
Bohr-Ran Huang
陳鴻興
Hung-Shing Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 55
中文關鍵詞: 四波混頻偏振DWDM光網路
外文關鍵詞: Four-Wave Mixing, Polarization, DWDM Optical Networks
相關次數: 點閱:183下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用針對在光纖系統中,改變輸入雷射光的偏振狀態來降低因為非線性效應造成的四波混頻現象,此現象所造成的串擾(crosstalk)會惡化光纖的傳輸品質,對於一個10Gbps的六通道光纖通訊,可以發現在不同的輸入光源功率下,輸入雷射光源的偏振態相互線性正交化下,比起輸入光源皆為同一線性偏振態,平均下來可以降低接近10 dB的串擾並提升了傳輸品質。
    另外,當輸入雷射光源偏振態依序相互正交圓偏振下,抗噪能力(降低6 dB串擾)也比皆為同一圓偏振態來的好。對於通道數量為三十二個時,也得到類似的結果。另外在考慮光纖雙折射現象和輸入光功率後,給定了一個最佳化的光纖參數設計。


    This paper aims to reduce the crosstalk between the communication channels in a DWDM optical fiber system caused by the four wave mixing phenomenon of nonlinear optics effects by changing the polarization state of the laser input light. For a six channels (10 Gbps) fiber optic system, it can be found that compared to the input light are all with same linear polarization, when the polarization states of input light are linear mutually orthogonal, the crosstalk can be reduce almost 10 dB on average under different input powers. In addition, when the polarization states of input light are circular orthogonal (clock-wise vs. counter-clock wise, the noise immunity (reduce 6 dB) is better than when the input lights are all circular polarization. Similar results can be found for a thirty-two channels DWDM system. After considering the fiber birefringence and optical power, a set of optimized fiber design parameters are given.

    摘要 i Abstract ii 致謝 iii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 第二章 理論背景 2 2.1偏振 2 2.1.1 線性偏振 3 2.1.2 圓偏振 4 2.1.3 橢圓偏振 4 2.1.4 瓊斯向量 6 2.1.5 斯托克斯參數 7 2.1.6 邦加球 9 2.1.7 偏振控制器 10 2.2色散 11 2.2.1 模態色散 11 2.2.2 極化模色散 11 2.2.3 材料色散 12 2.2.4 波導色散 12 2.3非線性光學 14 2.3.1 三階非線性光學 15 2.3.2 四波混頻 17 2.3.3 引入偏振的四波混頻 19 第三章 光纖傳輸理論 22 3.1 數位光纖傳輸原理簡介 22 3.1.1 發射端 22 3.1.2 光的調變 25 3.1.3 接收端 25 第四章 模擬架設 28 4.1 光纖參數設定及架構圖 28 4.2 加入偏振控制器的多工傳輸 31 4.3單雙通道WDM 31 第五章 模擬分析 33 5.1 雷射光源為-5 dBm,信號通道六個 33 5.1.1 輸入光皆為x軸線性偏振光 33 5.1.2 輸入光為正交線偏(奇數通道為y線偏 , 偶數通道為x線偏) 35 5.1.3 輸入光皆為y軸線性偏振光 36 5.1.4 輸入光為正交線偏(奇數通道為x線偏 , 偶數通道為y線偏) 37 5.1.5 輸入光皆為 線性偏振光 37 5.1.6 輸入光為正交線偏(奇數通道為 線偏 , 偶數通道為 偏振) 38 5.1.7 輸入光皆為右圓偏振光 39 5.1.8 輸入光為正交圓偏振(奇數通道為右圓偏 , 偶數通道為左圓偏) 40 5.1.9 輸入光皆為 線性偏振光 41 5.1.10輸入光為正交線偏(奇數通道為 線偏 , 偶數通道為 線偏) 41 5.2 雷射光源功率(-2.5、0、2.5、5、10 dBm),信號通道六個 41 5.3 品質因子和光纖雙折射的關係 45 5.4 品質因子和輸入光偏振正交/非正交的關係 46 5.5 多通道系統 48 第六章 結論與未來展望 51 6.1結論 51 6.2 未來展望 51 參考資料 52

    [1] T. Sabapathi and S. Sundaravadivelu, "Analysis of bottlenecks in DWDM fiber optic communication system," Optik, Vol. 122, pp. 1453–1457, (2011).
    [2] H. Rohde, E. Gottwald, P.Alves, C. Oliveria, I. Dedic,and T. Drenski, "Digital mult-wavelength generation and real time video transmission in a coherent ultra dense WDM, " in IEEE/OSA Optical fiber communication conference(OFC), (2013).
    [3] G. P. Agrawal, Nonlinear Fiber Optics, 4th Edition, Elsevier Inc., 2007.
    [4] T. Shimizu, K. Nakajima, K. Shiraki, K. Ieda, and I. Sankawa, "Evaluation methods and requirements for the stimulated Brillion scattering threshold in a single-mode fiber, " Optic fiber technology, Vol. 14, pp.10-15, (2008).
    [5] A. J. Lowery, L. B. Du, and J. Armstrong, "Performance of Optical OFDM in Ultralong-Haul WDM Lightwave Systems," in Journal of Lightwave Technology, vol. 25, no. 1, pp. 131-138, Jan. (2007).
    [6] P. P. Mitra and J. B. Stark, "Nonlinear limits to the information capacity of optical fibre communications, " Nature, vol.411, pp.1027-1030 , 28 June (2001).
    [7]F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, "WDM systems with unequally spaced channels," in Journal of Lightwave Technology, vol. 13, no. 5, pp. 889-897, May (1995).
    [8] K. Inoue and H. Toba, "Wavelength conversion experiment using fiber four-wave mixing," in IEEE Photonics Technology Letters, vol. 4, no. 1, pp. 69-72, Jan. (1992).
    [9] A. Khyzniak, V. Kondilenko, Y. Kucherov, S. Lesnik, S. Odoulov, and M. Soskin, "Phase conjugation by degenerate forward four-wave mixing," J. Opt. Soc. Am. A ,vol.1 no. 2, pp. 169-175 (1984)
    [10] A.Yariv and D. M. Pepper, "Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing," Opt. Lett. 1, pp.16-18 (1977)
    [11] J. Ahmed, A. Hussain, M. Siyal, H. Manzoor, and A. Masood, "Para-metric analysis of four wave mixing in DWDM systems, " Optik, vol.125, no. 7, pp. 1853–1859, (2014).
    [12] F. Forghieri, R. W. Tkach, A. R. Chraplyvy , and D. Marcuse, "Reduction of four-wave mixing crosstalk in WDM systems using unequally spaced channels," in IEEE Photonics Technology Letters, vol. 6, no. 6, pp. 754-756, June (1994).
    [13] B. K. A. ElRazak and M. H. Aly, "Suppression of four-wave mixing crosstalk in four 10 Gbps channels over 50 km of dispersion-shifted fiber using unequal channel spacing, " in Proc. 19th Int. Conf. Computer Theory and Applications, ICCTA, pp. 228–233, (2009)
    [14] M. Jamshidifar, A. Vedadi, and M. E. Marhic, "Reduction of Four-Wave-Mixing Crosstalk in a Short Fiber-Optical Parametric Amplifier," in IEEE Photonics Technology Letters, vol. 21, no. 17, pp. 1244-1246, (2009).
    [15]M. Hayee and A. Willner, " NRZ versus RZ in 10-40-Gb/s dispersion-managed WDM transmission systems, " IEEE Photonics Technol. Lett.,vol. 11, no. 8, pp. 991–993, (1999).
    [16] H. J. Abed, N. M. Din, M. H. Mansoori, F. Abdullah, and H. A. Fadhil, “Comparison among different types of advanced modulation formats under four wave mixing effects,” Ukrainian Journal of Physics, pp.326–334, (2013).
    [17] K. Inoue, "Polarization effect on four-wave mixing efficiency in a single-mode fiber," in IEEE Journal of Quantum Electronics, vol. 28, no. 4, pp. 883-894, April (1992).
    [18] S. K. Huang, “The effect of Polarization of Four Wave Mixing in a zero Dispersion Optical Fiber “National Taiwan University of Science and Technology, Taiwan, 2017.
    [19] D. K. Cheng, Fundamentals of Engineering Electronics , Pearson College, November 1991.
    [20] A.Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communication, Santa Barbara: Oxford University Press, 2007.
    [21] 圖2-7 邦加球.Available from:
    https://www.researchgate.net/figure/Geometrical-representation-of-SoP-on-the-Poincare-sphere-PS-formed-by-the-three-Stokes_fig1_319568839
    [21] M. Born, E. Wolf , Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge Univ Pr, 1999.
    [22] 葛春风 杨秀峰 关柏鸥 刘云启 董孝义, "全光纤通信系统中的偏振激光器, 光子学报, " Vo1. 27, No . 10, (1998).
    [23] K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region," in Journal of Lightwave Technology, vol. 10, no. 11, pp. 1553-1561, (1992).
    [24] P.B. Harboe, E.d. Silva, and J.R. Souza, " Analysis of FWM Penalties in DWDM Systems Based on G.652, G.653, and G.655 Optical Fibers” International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering Vol.2, no.12, (2008).
    [25] R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, and R. M. Derosier, "Four-photon mixing and high-speed WDM systems," in Journal of Lightwave Technology, vol. 13, no. 5, pp. 841-849, May (1995).
    [26] Z. Y. Huang, "時域量測法監控線上光纖色散" july (2015).
    [27] R. K. Jain and R. C. Lind, "Degenerate four-wave mixing in semiconductor-doped glasses," J. Opt. Soc. Am, vol.73, pp.647-653 ,(1983).
    [28] G. S. He, Nonlinear Optics and Photonics, New York, Oxford University Press, 2014.
    [29] I. T. Lima, A. O. Lima, J. Zweck and C. R. Menyuk, "Computation of the Q-factor in optical fiber systems using an accurate receiver model," OFC 2003 Optical Fiber Communications Conference, vol.1 pp. 100-101, (2003).
    [30] A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, "Statistical characterization of fiber random birefringence," Opt. Lett. 25, pp.1322-1324, (2000).
    [31]https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf
    [32] 張安華 ,光纖通訊及實習(第二版),新文京, September, 2014.
    [33]https://optiwave.com/resources/applications-resources/optical-system-effects-of-pmd-on-pulse-propagation/
    [34] C. Francia, F. Bruyere, D. Penninckx, and M. Chbat, " PMD Second-Order Effects on Pulse Propagation in Single-Model Optical Fibers, " IEEE Photonics Technology Letters, vol.10, no.12, pp.1739-1741, (1998).

    無法下載圖示 全文公開日期 2024/08/05 (校內網路)
    全文公開日期 2024/08/05 (校外網路)
    全文公開日期 2024/08/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE