簡易檢索 / 詳目顯示

研究生: 左昌立
CHANG-LI TSO
論文名稱: 應用於微波之Pin Diode主動式頻率選擇技術之研究
Experimental research of active frequency selective surface based on Pin Diode for microwave applications
指導教授: 周錫熙
Hsi-Hsir Chou
口試委員: 周錫熙
王蒼容
廖文聘
謝松年
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 74
中文關鍵詞: 頻率選擇面帶通濾波器角度穩定性極化不敏感開關二極體
外文關鍵詞: Frequency Selective Surface, Bandpass Filter, Angular Stability, Polarization Insensitivity, Pin Diode
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出三種頻率選擇面的設計,第一種為液晶頻率選擇面,採用雙層基板與三層金屬層加上一層液晶層的設計,金屬層設計使用耶路撒冷十字和帶有S形槽孔的矩形貼片。第二種為窄頻Pin Diode頻率選擇面設計,採用三層基板與四層金屬層的設計,金屬層設計分別是四個矩形貼片與十字型貼片,並透過對稱的圖案設計來達到極化不敏感特性。第三種為寬頻Pin Diode頻率選擇面設計,採用雙層基板與三層金屬層的設計,金屬層設計分別是上下矩形貼片和十字貼片,並採用類似的結構和較厚的基板以達到寬頻效果。
    在效能方面,第一種設計為液晶頻率選擇面。其中心頻率約為4.85 GHz,在正入射時S21插入損失約為0.86dB,頻寬約為9.27%。並且在施加偏壓後其中心頻率可偏移至4.19GHz,損耗約為0.82dB,以S21的3dB為參考點,其頻寬約為8.35%,偏移量約為13.6%。當電磁波在0°~ 60°入射時,其最大的頻率偏差約為0.23%。第二種設計為窄頻Pin Diode-FSS,其在施加逆偏電壓後,在正入射時中心頻率約為4.85 GHz, S21插入損失約為1.64dB,以S21的3dB為參考點,其頻寬約為14.1%。而在施加順偏電壓後,其中心頻率可偏移至5.65GHz,損耗約為1.42dB,頻寬為14.1%,而偏移量則為16.4%。第三種設計為寬頻Pin Diode-FSS,在此設計中,施加逆偏電壓後其可涵蓋之頻率包含2.9GHz~5.9 GHz,且在4.85GHz時有最小插入損失約為0.28dB,以S21的3dB為參考點,其頻寬約為67.5%。並且在施加順偏電壓時其在0 GHz~10GHz的頻率範圍內有屏蔽效果,在5.85GHz時有S21最大插入損失約為13.4dB,其頻寬約為225%。
    本論文透過實作來進行模擬效能之驗證,其中實作樣品大小約為12cm x 12 cm,由11x11個單元結構所組成,並將樣品放置於有10cm x 10cm開孔的防繞射板之中以防止電磁波繞射,量測時於無反射實驗室進行量測,其中發射天線距離滿足遠場條件,量測結果中顯示電磁波在TE極化正入射時,當施加逆偏電壓後,在4.85GHz時有S21插入損失最小約為0.3dB,頻寬約為67.3%,當施加順偏電壓後,在4.85GHz時有S21插入損失最小約為13.5dB。電磁波在TM極化正入射時,當施加逆偏電壓後,在4.85GHz時有S21插入損失最小約為0.3dB,頻寬約為67.2%,當施加順偏電壓後在4.85GHz時有S21插入損失最小約為16.8dB。


    This thesis proposes three frequency selective surface (FSS) designs. The first design is a liquid crystal frequency selective surface (LC-FSS), which adopts a design with two substrates, three layers of metal, and one layer of LC. The metal layers are composed of one Jerusalem Cross and two rectangular patches with S-shaped slots. The second design is a narrow-bandwidth Pin Diode-FSS, which adopts a design with three substrates and four metal layers. The metal layers are composed of four rectangular patches, one square patch, and one cross-shaped patch. This design uses symmetric patterns to achieve polarization insensitivity. The third design is a wide-bandwidth Pin Diode-FSS, which adopts a design with two substrates and three metal layers. The metal layers are composed of two rectangular patches and one cross patch. This design uses similar structures but with thicker substrates to achieve the wide-bandwidth effect.
    From the simulation results, the LC-FSS has a center frequency of about 4.85 GHz before applying a voltage. When electromagnetic (EM) waves are incident at 0 degree, the insertion loss of S21 is about 0.82 dB, and its bandwidth is about 9.27%. After applying a voltage, the center frequency has been shifted to 4.19 GHz. The insertion loss of S21 is about 0.86 dB, and its bandwidth is about 8.35%. The frequency tunability is about 13.6%. The second design is a narrow-bandwidth Pin Diode-FSS. In this design, when a reverse bias voltage has been applied and EM waves are incident at 0°, the center frequency is about 4.85 GHz with an insertion loss of 1.64 dB, and its bandwidth is approximately 14.1%. When a forward bias voltage has been applied, the center frequency has been shifted to 5.65 GHz with an insertion loss of 1.42 dB. The bandwidth is 14.1%, and the frequency tunability is about 16.4%. The third design is a broad-bandwidth Pin Diode-FSS. In this design, when a reverse bias voltage has been applied and EM waves are incident at 0°, its bandwidth is approximately between 2.9 GHz and 5.9 GHz, about 67.5% of the center frequency. The minimum insertion loss of S21 is about 0.28 dB at 4.85GHz. After applying a forward bias voltage, a shielding effect has also resulted between 0 GHz to 10 GHz. The minimum insertion loss of S21 is about 13.5 dB at 4.85GHz, and the shielding bandwidth is about 225%.
    The designs reported in this thesis have also been experimentally evaluated through a prototype implementation. The size of the prototype is approximately 12cm x 12 cm, composed of 11x11 unit cells, and the prototype was placed in an anti-diffraction plate to prevent EM waves diffraction. The measurement was performed in the anechoic chamber. The transmitting antenna distance satisfies the far field conditions, ensuring the incident wave remains a plane wave. From the measurement, when a reverse bias voltage has been applied and EM waves with TE polarization are incident at 0°, the minimum insertion loss of S21 is about 0.3 dB at 4.85GHz, and the bandwidth is about 67.3% of the center frequency. When a forward bias voltage has been applied, the minimum insertion loss of S21 is about 13.5 dB at 4.85GHz.
    When a reverse bias voltage has been applied and EM waves with TM polarization are incident at 0°, the minimum insertion loss of S21 is about 0.3 dB at 4.85GHz, and the bandwidth is about 67.2% of the center frequency. When a forward bias voltage has been applied, the minimum insertion loss of S21 is about 16.8 dB at 4.85GHz.

    摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 viii 表目錄 xi 第一章 序論 1 1.1前言 1 1.2論文動機 1 1.3論文架構 2 第二章 文獻回顧 4 2.1頻率選擇面介紹 4 2.2等效電路分析法 6 2.2.1等效電路模型 8 2.3 FSS設計方法介紹 9 2.3.1基板集成波導頻率選擇面 9 2.3.2三維樂高頻率選擇面 11 2.4主動式FSS文獻回顧 13 2.4.1溫度控制頻率選擇面 13 2.4.2液晶頻率選擇面 14 2.4.3 Pin Diode頻率選擇面 16 2.4.4 主動式FSS技術之比較 18 第三章 液晶頻率選擇面設計 19 3.1 前言 19 3.2 電磁模擬使用與介紹 20 3.3 液晶頻率選擇面設計 21 3.3.1 LC-FSS結構設計 22 3.3.2 LC-FSS等效電路圖 23 3.3.3 LC-FSS數值模擬結果 25 3.3.4 LC-FSS的S21角度穩定性 25 3.3.5 LC-FSS使用不同液晶材料模擬結果 27 第四章 Pin Diode頻率選擇面設計 28 4.1前言 28 4.2 PIN DIODE簡介 28 4.2.2 Pin Diode等效電路圖 30 4.2.3電磁模擬使用介紹 30 4.3 窄頻PIN DIODE頻率選擇面之設計 31 4.3.1 窄頻Pin Diode-FSS結構設計 31 4.3.2 窄頻Pin Diode-FSS等效電路圖 32 4.3.3 窄頻Pin Diode-FSS不同極化的模擬結果 34 4.3.4 窄頻Pin Diode-FSS的TM極化S21角度穩定性 35 4.3.5 窄頻Pin Diode-FSS的TE極化S21角度穩定性 36 4.4 寬頻PIN DIODE頻率選擇面之設計 38 4.4.1 寬頻Pin Diode-FSS結構設計 38 4.4.2 寬頻Pin Diode-FSS等效電路圖 39 4.4.3 寬頻Pin Diode-FSS不同極化的模擬結果 41 4.4.4 寬頻Pin Diode-FSS電流分佈圖 42 4.4.5 寬頻Pin Diode-FSS的TE極化S21角度穩定性 43 4.4.6 寬頻Pin Diode-FSS的TM極化S21角度穩定性 44 4.4.7 寬頻Pin Diode-FSS的參數模擬 46 4.4.8 寬頻Pin Diode-FSS與LC-FSS比較 47 4.4.9 寬頻Pin Diode-FSS與其它文獻的比較 48 第五章 Pin Diode寬頻頻率選擇面實作量測 50 5.1 寬頻PIN DIODE-FSS樣品 50 5.2 量測架構 51 5.3 寬頻PIN DIODE-FSS實作量測 53 5.3.1 寬頻Pin Diode-FSS的TE極化量測結果與比較 53 5.3.2 寬頻Pin Diode-FSS的TM極化量測結果與比較 57 5.3.3 寬頻Pin Diode-FSS的TE極化與TM極化比較 61 5.3.4 寬頻Pin Diode-FSS之TE極化角度穩定性量測結果 62 5.3.5 寬頻Pin Diode-FSS之TM極化角度穩定性量測結果 63 第六章 結論 65 6.1 結果與討論 65 6.2 未來研究工作 66 參考文獻 67

    [1] 5G頻譜資源特性與技術關聯,國家通訊傳播委員會 [Online].Available: https://www.ncc.gov.tw/chinese/files/18102/5056_40605_181022_1.pdf
    [2] 何謂5G專網? Accessed on January.22,2024. [Online].Available: https://www.arubanetworks.com/zh-hant/faq/what-is-5g/
    [3] 名稱現行可使用頻段修正/新增頻段增加頻寬相關器材,國家通訊傳播委員會 [Online].Available: https://www.ncc.gov.tw/chinese/files/16042/8_35490_160422_1_C.PDF
    [4] F. Hopkinson and David Rittenhouse, “An Optical Problem, Proposed by Mr. Hopkinson, and Solved by Mr. Rittenhouse”, p.201~p.206 ,1786.
    [5] Rana Sadaf Anwar, Lingfeng Mao and Huansheng Ning,“Frequency Selective Surfaces: A Review”, p.8, September 2018.
    [6] R. Dickie, R. Cahill, V. Fusco, H. S. Gamble and N. Mitchell, “THz Frequency Selective Surface Filters for Earth Observation Remote Sensing Instruments,” IEEE Transactions on Terahertz Science and Technology, pp. 450-461, 15 4 2011.
    [7] B. A. Munk, "Frequency Selective Surfaces: Theory and Design.", New York, NY, USA: Wiley, 2000.
    [8] Wu, T.-K., "Frequency Selective Surfaces", John Wiley & Sons, Inc., April, 2005.
    [9] R. Mittra, C. H. Chan and T. Cwik, "Techniques for analyzing frequency selective surfaces-a review," in Proceedings of the IEEE, vol. 76, no. 12, pp. 1593-1615, Dec. 1988.
    [10] R. F. Harrington, Field Computation by Moment Methods. New York, NY: Macmillan, 1968.
    [11] Chao-Chun Chen, "Transmission through a Conducting Screen Perforated Periodically with Apertures," in IEEE Transactions on Microwave Theory and Techniques, vol. 18, no. 9, pp. 627-632, September 1970.
    [12] P. Harms, R. Mittra and Wai Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," in IEEE Transactions on Antennas and Propagation, vol. 42, no. 9, pp. 1317-1324
    [13] I. Anderson, "On the theory of self-resonant grids," in The Bell System Technical Journal, vol. 54, no. 10, pp. 1725-1731, Dec. 1975, doi: 10.1002/j.1538-7305.1975.tb03551.x.
    [14] 王义富, “频率选择表面等效电路的计算与分析” in Journal of Terahertz Science and Electronic Information Technology, vol. 17, no. 2, Apr 2019.
    [15] K. Sarabandi and N. Behdad, "A Frequency Selective Surface With Miniaturized Elements," in IEEE Transactions on Antennas and Propagation, vol. 55, no. 5, pp. 1239-1245, May 2007.
    [16] N. Marcuvitz, Waveguide Handbook. Lexington, MA: Boston Technical Publishers, 1964.
    [17] V. K. Kanth and S. Raghavan, "3D Frequency Selective Surfaces based on Substrate Integrated Waveguide Technology," 2018 IEEE MTT-S International Microwave and RF Conference (IMaRC), Kolkata, India, 2018.
    [18] J. Xu, F. Xu, D. Li and S. Liu, "A Broadband Microstrip-to-Folded Substrate Integrated Waveguide Transition and In-phase Power Divider," 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Nanjing, China, 2019.
    [19] I. Mohamed and A. Sebak, "Broadband Transition of Substrate-Integrated Waveguide-to-Air-Filled Rectangular Waveguide," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 11, pp. 966-968, Nov. 2018.
    [20] K. Kumar, S. Priya and S. Dwari, "Half mode substrate integrated waveguide cavity backed antenna with low cross-polarization," 2018 3rd International Conference on Microwave and Photonics (ICMAP), Dhanbad, India, 2018.
    [21] A. Belenguer, H. Esteban and V. E. Boria, "Novel Empty Substrate Integrated Waveguide for High-Performance Microwave Integrated Circuits," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 4, pp. 832-839, April 2014.
    [22] Cho S-S, Hong I-P, "Design of assembly-type frequency selective surface structure using Lego-type blocks. " Microw Opt Technol Lett. 2022.

    [23] D. Z. Zhu, M. D. Gregory, P. L. Werner and D. H. Werner, "Fabrication and Characterization of Multiband Polarization Independent 3-D-Printed Frequency Selective Structures With UltraWide Fields of View," in IEEE Transactions on Antennas and Propagation, vol. 66, no. 11, pp. 6096-6105, Nov. 2018.
    [24] Azemi, S.N., Baum, T., Ghorbani, K. and Rowe, W.S.T. (2017), 3D-tapered resonators for FSSs with incident angle independence. IET Microw. Antennas Propag., 11: 2228-2234.
    [25] V. Sanphuang, N. Ghalichechian, N. K. Nahar and J. L. Volakis, "Reconfigurable THz filters with integrated micro-heater," 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, TN, USA, 2014.
    [26] J.-F. Lv et al., “Tunable liquid crystal frequency selective surface with the compact unit cell, large tuning range, and the passband of flat-top and sharp roll-off,” J. Phys. D: Appl. Phys., vol. 54, no. 31, 2021, Art. no. 315001.
    [27] Z. Wang et al., "Wideband and Wide-Angle Switchable Spatial Filter/Shielding With Polarization-Independent Response," in IEEE Antennas and Wireless Propagation Letters, vol. 22, no. 6, pp. 1421-1425, June 2023.
    [28] 柯冠州,「窄頻帶通與液晶複合式頻率選擇技術之研究」 國立臺灣科技大學電機資訊學院電子工程學系研究所碩士論文,2021。
    [29] V. Sanphuang, N. Ghalichechian, N. K. Nahar and J. L. Volakis, "Phase change materials for reconfigurable systems," 2014 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), Memphis, TN, USA, 2014, pp. 209-209.
    [30] V. Sanphuang, N. Ghalichechian, N. K. Nahar and J. L. Volakis, "Reconfigurable THz Filters Using Phase-Change Material and Integrated Heater," in IEEE Transactions on Terahertz Science and Technology, vol. 6, no. 4, pp. 583-591, July 2016.
    [31] J. Yeom, C.R. Field, B. Bae, R.I. Masel, M.A. Shannon, “The design, fabrication and characterization of a silicon microheater for an integrated MEMS gas preconcentrator”, J. Micro Microeng. 18 (2008).
    [32] J. -F. Lv, F. -Y. Meng, C. Ding, J. -Q. Han, Y. -H. Liu and Q. Wu, "Tunable Second-Order Bandpass Frequency Selective Surface Based on Liquid Crystal," 2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Zhuhai, China, 2021.
    [33] M. Tang, D. -F. Zhou, Q. -K. Liu, Z. -N. Yao and Q. Liu, "Low-Profile FSS-Based Polarization-Insensitive Rasorber With Switchable Transmission Band," in IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 6, pp. 1038-1042, June 2021.
    [34] W. Hu et al., "Liquid Crystal Tunable mm Wave Frequency Selective Surface," in IEEE Microwave and Wireless Components Letters, vol. 17, no. 9, pp. 667-669, Sept. 2007.
    [35] C. -C. Lin, G. -S. Lin, G. -J. Ke and H. -H. Chou, "Tunable Frequency Selective Surface (FSS) based on LC Material for mmWave Communications," 2021 International Symposium on Antennas and Propagation (ISAP), Taipei, Taiwan, 2021.
    [36] P. Megh Sainadh, A. Sharma and S. Ghosh, "Polarization-Insensitive Absorptive/Transmissive Reconfigurable Frequency Selective Surface With Embedded Biasing," in IEEE Antennas and Wireless Propagation Letters, vol. 22, no. 1, pp. 164-168, Jan. 2023.
    [37] D. Yang, Y. Xi, H. Zhai and C. Liu, "Multifunctional active reconfigurable frequency selective surface," 2020 9th Asia-Pacific Conference on Antennas and Propagation (APCAP), Xiamen, China, 2020.
    [38] M. Tang, D. -F. Zhou, Q. -K. Liu, Z. -N. Yao and Q. Liu, "Low-Profile FSS-Based Polarization-Insensitive Rasorber With Switchable Transmission Band," in IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 6, pp. 1038-1042, June 2021.
    [39] S. C. Bakshi, D. Mitra and F. L. Teixeira, "FSS-Based Fully Reconfigurable Rasorber With Enhanced Absorption Bandwidth and Simplified Bias Network," in IEEE Transactions on Antennas and Propagation, vol. 68, no. 11, pp. 7370-7381, Nov. 2020.

    [40] David K. Cheng, Field and Wave Electromagnetics, Second Edition. pp. 520-589, January 1, 1989.

    [41] Ansys Hfss: High Frequency Electromagnetic Field Simulation Software, Accessed on: July 28, 2022. [Online].Available: https://www.ansys.com/news-center/press-releases/7-28-22-ansys-2022-r2-ignites-engineering-innovation-with-greater-product-design-and-development-insights.
    [42] Keysight Technologies ADS: Advanced Design System, Accessed on June. 6, 2021. [Online].Available: https://www.keysight.com/us/en/products/software/pathwavedesignsoftware/pathwave-advanced-design-system.html.
    [43] 周錫熙、許峻浩、左昌立、蔡秉勳、王子冀、郭立委、張允豪。台灣電力股份有限公司綜合研究所Active Meta-materials空間濾波器研究1式 (5461100225),Decemer 2023。
    [44] 洪瑞呈、劉宇恆、廖文聘、左昌立、周錫熙,"PIN型二極體頻率選擇表面結構"中華民國專利申請第113102755號,2024/01/24,(台灣電力股份有限公司)。
    [45] 左昌立、周錫熙,"應用於多頻段之主動式頻率選擇表面結構"中華民國專利申請第113103017號,2024/01/25,(國立臺灣科技大學)。
    [46] NXP Semiconductors BAP65-02 Datasheet. 2019. [Online].Available: https://www.nxp.com/docs/en/data-sheet/BAP65-02.pdf
    [47] Skyworks SMP1345-079LF Datasheet. 2018. [Online].Available: https://www.skyworksinc.com/-/media/SkyWorks/Documents/Products/101-200/SMP1345_Series_200046U.pdf
    [48] Z. Wang, J. Zhang, Q. Zeng, M. Song, T. A. Denidni and L. Ran, "Novel Multifunctional Reconfigurable Wideband Frequency-Selective Filter/Shielding With Independently Controlled Operating Modes," in IEEE Transactions on Electromagnetic Compatibility, vol. 65, no. 4, pp. 1063-1071, Aug. 2023.
    [49] Q. H. Zhou, P. G. Liu, D.W. Yu, L. Bian, and C. X. Liu, “Field-controlled switchable frequency selective surface with broadband absorption characteristic,” Microw., Antennas Propag., vol. 12, pp. 1470–1476, 2018.
    [50] G. I. Kiani, K. L. Ford, L. G. Olsson, K. P. Esselle, and C. J. Panagamuwa,“Switchable frequency selective surface for reconfigurable electromagnetic architecture of buildings,” IEEE Trans. Antennas Propag., vol. 58, no. 2, pp. 581–584, Feb. 2010.
    [51] D. W. Yu, P. G. Liu, Y. F. Dong, Q. H. Zhou, and D. M. Zhou, “Active absorptive frequency selective surface,” Electron. Lett., vol. 53, no. 16, pp. 1087–1088, Aug. 2017.
    [52] B. Sanz-Izquierdo, E. A. Parker, and J. C. Batchelor, “Switchablefrequency-selective slot arrays,” IEEE Trans. Antennas Propag., vol. 59,no. 7, pp. 2728–2731, Jul. 2011.
    [53] A. Ebrahimi, Z. Shen, W. Withayachumnankul, S. F. Al-Sarawi, and D. Abbott, “Varactor-tunable second-order bandpass frequency selective surface with embedded bias network,” IEEE Trans. Antennas Propag., vol. 64, no. 5, pp. 1672–1680, May 2016.
    [54] H. -R. Cao, X. -H. Yang, Z. -Y. Zong and W. Wu, "A Novel Design of Wide-Band Dual-Polarization Reconfigurable Frequency Selective Surface," 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Singapore, Singapore, 2021.
    [55] H. Wang, X. Kong, X. Wang and W. Lin, "A Dual-polarization Reconfigurable Frequency Selective Rasorber with Wide Pass-band," 2022 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Harbin, China, 2022.
    [56] T. T. Shang, P. F. Gu, D. W. Song, J. X. Wang and D. Z. Ding, "Multifunctional Frequency Selective Rasorber with Switchable Transmission/Reflection Band," 2023 International Applied Computational Electromagnetics Society Symposium (ACES-China), Hangzhou, China, 2023.
    [57] R. Li, J. Tian, B. Jiang, Z. Lin, B. Chen and H. Hu, "A Switchable Frequency Selective Rasorber With Wide Passband," in IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 8, pp. 1567-1571, Aug. 2021.
    [58] Y. Han, W. Che, X. Xiu, W. Yang, and C. Christopoulos, “Switchable low-profile broadband frequency-selective rasorber/absorber based on slot arrays,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6998–7008, Dec. 2017.
    [59] S. C. Bakshi,D.Mitra, and S. Ghosh, “A frequency selective surface based reconfigurable rasorber with switchable transmission/reflection band,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 1, pp. 29–33, Jan. 2019.
    [60] X. Zeng, M. Gao, L. Zhang, G. Wan, and B. Hu, " Design of a tuneable and broadband absorberusing a switchable transmissive/reflectiveFSS," IET Microw. Antennas Propag., 12: 1211-1215.
    [61] TDK Electronics B82496C3159A000 Datasheet. 2019. [Online].Available: https://product.tdk.com/system/files/dam/doc/product/inductor/inductor/smd/data_sheet/30/db/ind_2008/b82496c.pdf
    [62] AGILENT N5230A PNA-L. [Online].Available: https://www.keysight.com/tw/zh/product/N5230A/2port-pnal-series.html
    [63] RF SPIN DRH20E Datasheet. [Online].Available: https://www.rfspin.com/product/drh20e/
    [64] Fei Teng Wireless Technology HA-08M18G-NF Datasheet. [Online].Available: https://www.keisokuten.jp/file.php?id=13123

    無法下載圖示 全文公開日期 2034/02/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE