簡易檢索 / 詳目顯示

研究生: 林伯聰
Bo-Chong Lin
論文名稱: 不同石膏含量對超硫酸鹽水泥混凝土新拌及硬固性質影響之研究
Study on Influences of Gypsum Content on Fresh and Hardened Properties of Supersulfated Cement Concrete
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 蕭添進
Tian-Jin Xiao
徐輝明
Hui-ming Syu
施正元
Zhehg-Yuan Shi
陳君弢
Jun-Tao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 174
中文關鍵詞: FGD石膏水淬高爐石粉超硫酸鹽混凝土
外文關鍵詞: FGD gypsum, blast furnace slag, supersulfated cement concrete
相關次數: 點閱:248下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究為探討不同石膏含量之SSC 超硫酸鹽混凝土,試驗變數包含三種
水膠比(W/B=0.35、0.40、0.45)、四種齡期(7、28、56、91 天)、FGD 排煙脫硫
石膏含量(14、24、34 wt %)、OPC 卜特蘭第一型水泥(1 wt %),並與對照組
OPC 進行比較,也針對兩種養護方式(石灰水與硫酸鈉)之新拌性質(坍度、單
位重、凝結時間)、硬固性質(抗壓及劈裂強度、彈性模數、卜松比、重量變化、
超音波波速、熱傳導係數、長度變化、電阻抗),作為互相比較之依據。
研究結果顯示:(1)當水膠比固定FGD 石膏重量百分比14 增加34 %時,
SSC 混凝土單位重2384 下降2354 ??/?3降低1.25 %,終凝時間429 提升1336
分鐘延長211 %,坍度35 下降18 毫米降低49 %,嚴重缺乏工作性。(2)當水
膠比固定FGD 石膏重量百分比14 增加34 %時,SSC 混凝土石灰水養護之91
天抗壓強度63 下降54 MPa 降低約14 %。當養護條件為硫酸鈉侵蝕時,SSC
混凝土早期強度高於石灰水養護之SSC 混凝土,7 天抗壓強度24 提升35 MPa
約47 %,但在91 天後,硫酸鈉侵蝕之SSC 強度開始略低於養護石灰水強度。
(3)當水膠比固定FGD 石膏重量百分比14 增加34 %時,SSC 混凝石灰水養護
之91天長度變化0.0229提升0.0453 ??⁄?增加約98 %。當養護條件為硫酸鈉
侵蝕時,SSC 混凝土水膠比0.4 石膏含量14 %之配比,長度變化低於OPC 混
凝土,91天長度變化0.0107提升0.0440 ??⁄?增加約311 %。


The test variables include three water-to-binder ratios (W/B=0.35, 0.40, 0.45),
four ages (7, 28, 56, 91 days), and FGD gypsum content (14, 24, 34 wt%), Portland
first type cement (1 wt%), and compare it with the control group OPC. It also aims at
the fersh properties (slump, unit weight, setting time) and hardness properties
(compressive strength, splitting strength, youngs modulus, poissons ratio, weight
change, ultrasonic pulse velocity, thermal conductivity, shrinkage, electrical
resistivity), of the two curing methods (lime water curing and sodium sulfate attack).
as a basis for comparison.
The results of the study show that: (1) When the weight ratio of water-binder to
fixed FGD gypsum is increased 14 by 34 %, the unit weight of SSC concrete
decreases from 2384 to 2354 Kg/m3 The decreases is about 1.25 %.the final setting
time 429 increases by 1336 minutes The increase is about 211 %. The slump decreases
from 35 to 18 millimeters The decreases are about 49 %. has bad workability. (2)
When the weight ratio of water-binder to fixed FGD gypsum is increased 14 by 34
%, the 91-day compressive strength of SSC concrete lime water curing 63 decreased
by 54 MPa and decreased by about 14%. When the curing condition is sodium sulfate
attack, the early strength of SSC concrete is higher than that of lime water cured SSC
concrete. The 7-day compressive strength 24 increases by 35 MPa The increases is
about 47 %, but after 91 days, the sodium sulfate attack SSC strength begins to be
slightly lower for curing lime water strength. (3) When the weight ratio of water binder to fixed FGD gypsum is increased 14 by 34%, the 91-day length Change of
SSC concrete lime water curing is increased 0.0229 by 0.0453 ??⁄? The increase
is about 98%. When the curing condition is sodium sulfate attack, the ratio of SSC
concrete water binder to 0.4 gypsum content is 14%, the length Change is lower than
OPC concrete, the 91-day length Change is 0.0107 increased by 0.0440 ??⁄?
increased by about 311%.

摘要 i Abstract iii 致謝 v 目錄 vii 表目錄 xi 圖目錄 xv 第一章 緒論 1 1.1研究動機 1 1.2研究目的 2 1.3研究項目與流程 3 第二章 文獻回顧 5 2.1水淬高爐石粉 5 2.1.1 爐石粉簡介 5 2.1.2 水淬高爐石粉物理性質 5 2.2.3 水淬高爐石粉化學性質 5 2.2 排煙脫硫石膏(Flue-gas Desulfurization Gypsum, FGD) 6 2.2.1 排煙脫硫技術 6 2.2.2 FGD石膏物理性質 8 2.2.3 FGD石膏化學性質 8 2.3 FGD石膏反應機制 9 2.4 超硫酸鹽水泥SSC之相關研究 10 第三章 試驗計畫 19 3.1 試驗內容與流程 19 3.2 試驗材料 20 3.3 試驗儀器設備 22 3.4 試驗變數與項目 27 3.4.1 試驗內容範圍 27 3.4.2 試體編號說明 28 3.5 配比設計概念 28 3.6 試體拌合步驟 30 3.7 試驗方法 32 3.7.1 新拌性質試驗 32 3.7.2 新拌性質試驗 33 3.7.3 硬固性質試驗 36 3.7.4 非破壞試驗 40 第四章 試驗結果與分析 71 4.1 SSC漿體之新拌性質 71 4.1.1 凝結時間 71 4.1.2 迷你坍流度 73 4.2 SSC漿體之硬固性質 74 4.2.1抗壓強度 74 4.3 SSC漿體之非破壞性檢測 76 4.3.1 超音波波速 76 4.3.2 熱傳導係數 77 4.3.3 長度變化 79 4.4 SSC混凝土之新拌性質 80 4.4.1 單位重 80 4.4.2 凝結時間 81 4.4.3 坍流度 82 4.5 SSC混凝土之硬固性質 83 4.5.1 抗壓強度 83 4.5.2 劈裂強度 85 4.5.3 彈性模數與蒲松比 86 4.6 SSC混凝土之非破壞性檢測 88 4.6.1 重量增加 88 4.6.2 超音波波速 89 4.6.3 熱傳導係數 91 4.6.4 長度變化 93 4.6.5 電阻抗 95 第五章 結論與建議 137 5.1結論 137 5.2建議 140 第六章 參考文獻 141

[1] AASHTO-T-358-Standard Method of Test for Surface Resistivity Indication of Concretes Ability to Resist Chloride Ion Penetration.
[2] ASTM C469-Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression
[3] ASTM C597-Standard Test Method for Pulse Velocity Through Concrete.
[4] ASTM C1012 Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution.
[5] ASTM D5334-Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure.
[6] 中華民國國家標準,CNS786 水硬性水泥凝結時間檢驗法.
[7] 中華民國國家標準,CNS1010 水硬性水泥墁料抗壓強度檢驗法.
[8] 中華民國國家標準,CNS1176 混凝土坍度試驗法.
[9] 中華民國國家標準,CNS1232 混凝土圓柱試體抗壓強度檢驗法.
[10] 中華民國國家標準,CNS3801 混凝土圓柱試體劈裂抗張強度試驗法.
[11] 中華民國國家標準,CNS11056 卜特蘭水泥砂漿乾燥收縮量測定法.
[12] 中華民國國家標準,CNS11151 混凝土單位重、拌合體積及含氣量試驗法.
[13] 中華民國國家標準,CNS11272 水硬性水泥密度試驗法.
[14] 中華民國國家標準,CNS14220 混凝土凝結時間試驗法.
[15] 中華民國國家標準,CNS14603 硬固水泥砂漿及混凝土長度變化試驗法.
[16] Abubaker, F., C. Lynsdale, and J. Cripps, Investigation of concrete–clay interaction with regards to the thaumasite form of sulfate attack. Construction and Building Materials. 67: p. 88-94. (2014)
[17] Angulski da Luz, C. and R. D. Hooton, Influence of curing temperature on the process of hydration of supersulfated cements at early age. Cement and Concrete Research. 77: p. 69-75. (2015)
[18] Bijen, J. and E. Niël, Supersulphated cement from blastfurnace slag and chemical gypsum available in the Netherlands and neighbouring countries. Cement and Concrete Research. 11(3): p. 307-322. (1981)
[19] Dutta, D. K and P. C. Borthakur, Activation of low lime high alumina granulated blast furnace slag by anhydrite. Cement and Concrete Research. 20(5): p. 711-722. (1990)
[20] García-Maté, M., G. Angeles, L. L. Reina, A. G. Miguel, R. L. Enrique, and S. Isabel, Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement. Cement and Concrete Composites. 55: p. 53-61. (2015)
[21] Gruskovnjak, A, B. Lothenbach, F. Winnefeld, R. Figi, S.-C. Ko, M. Adler, and U. Mäder. Hydration mechanisms of super sulphated slag cement. Cement and Concrete Research. 38(7): p. 983-992. (2008)
[22] Gruskovnjak, A., B. Lothenbach, F. Winnefeld, R. Figi, S.-C. Ko, M. Adler, and U. Mäder, Quantification of hydration phases in supersulfated cements: review and new approaches. Advances in Cement Research. 23(6): p. 265-275. (2011)
[23] Herrera-Mesen, C., R.P. Salvador, S.H.P. Cavalaro, and A. Aguado, Effect of gypsum content in sprayed cementitious matrices: Early age hydration and mechanical properties. Cement and Concrete Composites. 95: p. 81-91. (2019)
[24] Lam, N.N., A study on super-sulfated cement using Dinh Vu phosphogypsum. IOP Conference Series. Earth and Environmental Science. 143: p. 012-016. (2018)
[25] Liao, K.-X., Y.-P. Zhanga, W.-P. Zhanga, W.-g. Ying, and. R.-L. Zhang, Modeling constitutive relationship of sulfate-attacked concrete. Construction and Building Materials. 260: p. 119902. (2020)
[26] Liu, P., Y. Chen, W. Wang, and Z. Yua, Effect of physical and chemical sulfate attack on performance degradation of concrete under different conditions. Chemical Physics Letters. 745: p. 137254. (2020)
[27] Liu, S., J. Ouyang, and J. Ren, Mechanism of calcination modification of phosphogypsum and its effect on the hydration properties of phosphogypsum-based supersulfated cement. Construction and Building Materials. 243: p. 118226. (2020)
[28] Liu, S., L. Wang, X-. Y. Yu, B-. Y. Yu, and T. Wan, Influence of fineness on hydration kinetics of supersulfated cement. Thermochimica Acta. 605: p. 37-42. (2015)
[29] Liu, S., L. Wang, and B-. Y. Yu, Effect of modified phosphogypsum on the hydration properties of the phosphogypsum-based supersulfated cement. Construction and Building Materials. 214: p. 9-16. (2019)
[30] Mun, K. J., W. K. Hyoung, C. W. Lee, S. Y. So and Y. S. Soh, Basic properties of non-sintering cement using phosphogypsum and waste lime as activator. Construction and Building Materials. 21(6): p. 1342-1350. (2007).
[31] Masoudi, R. and R.D. Hooton, Examining the hydration mechanism of supersulfated cements made with high and low-alumina slags. Cement and Concrete Composites. 103: p. 193-203. (2019)
[32] Nehrorra, V. P., A. S. R. Sai, and P. C. Kapur, PLASTER OF PARIS ACTIVATED SUPERSULFATED SLAG CEMENT. Cement and Concrete Research. 12: p. 463-473. (1982)
[33] Nguyen, H.-A., T.-P Chang, J.-Y Shih, and C.-T Chen, Influence of low calcium fly ash on compressive strength and hydration product of low energy super sulfated cement paste. Cement and Concrete Composites. 99: p. 40-48. (2019)
[34] Sajedi, F. and H. A. Razak, The effect of chemical activators on early strength of ordinary Portland cement-slag mortars. Construction and Building Materials. 24(10): p. 1944-1951. (2010)
[35] Taher, M.A., Influence of thermally treated phosphogypsum on the properties of Portland slag cement. Resources. Conservation and Recycling. 52(1): p. 28-38. (2007)
[36] Tzouvalas, G., N. Dermatas, and S. Tsimas, Alternative calcium sulfate-bearing materials as cement retarders. Cement and Concrete Research. 34(11): p. 2113-2118. (2004)
[37] Wu, Q., H.-N Ma, Q.-J Chen, Z.-C Huang, C.-S Zhang, and T. Yang, Preparation of waterproof block by silicate clinker modified FGD gypsum. Construction and Building Materials. 214: p. 318-325. (2019)
[38] Xia, J., Q. Su, and D. Liu, Optimal gypsum-lime content of high water material. Materials Letters. 215: p. 284-287. (2018)
[39] Yang, Y.-G, B.-G Zhan, J.-F Wang, Y.-S Zhang, and W.-H Duanb, Damage evolution of cement mortar with high volume slag exposed to sulfate attack. Construction and Building Materials. 247: p. 118626. (2020)
[40] Zhang, Y., F. Pan, and R. Wu, Study on the performance of FGD gypsum-metakaolin-cement composite cementitious system. Construction and Building Materials. 128: p. 1-11. (2016)
[41] 同花順財經, 2019年全球水泥需求展望 歐美和亞洲穩步增長. https://kknews.cc/zh-tw/finance/q9bngpb.html. (2019)
[42] 黃兆龍, 陳建成, 陳俊村, 卜作嵐材料應用於混凝土管材之永續理念. http://www.tsa-net.tw/new/3.pdf. (2014)
[43] 黃兆龍, 綠色混凝土管材設計理念及實地驗證. http://www.tsa-net.tw/new/2015-3.pdf. (2015)
[44] 中華民國外交部,巴黎協定. 聯合國氣候變化綱要公約(UNFCCC). 條約法律司. https://www.mofa.gov.tw/igo/cp.aspx?n=5BCEFD9636EDFFE4 (2015)
[45] 張進發, 台中火力發電廠.FGD石膏生產過程. (2006)
[46] 林維明, 防蝕工程. 混凝土耐久性檢討. 第六卷第三期.. (1992)
[47] 黃兆龍, 混凝土性質與行為.台北市.詹氏書局 (2007)
[48] 张晓佳, 张高展,孙道胜,刘开伟, 水泥基材料硫酸盐侵蚀机理的研究进展.材料導報 A綜述篇.第32卷第4期 (2018)
[49] 吳佳穎,張大鵬, 水泥對水淬高爐石粉基綠色膠結材漿體與砂漿性質之影響. 臺灣科技大學營建工程系. (2019)
[50] 黃詠基,黃永誌 混凝土受外部硫酸鹽侵蝕之膨脹模擬. 國立中央大學土木工程學系. (2014)

QR CODE