簡易檢索 / 詳目顯示

研究生: 郭明豪
Ming-Hao Guo
論文名稱: 準諧振返馳式轉換器研製
Design and Implementation of Quasi-Resonant Flyback Converters
指導教授: 郭明哲
Ming-Tse Kuo
口試委員: 呂錦山
Ching-Shan Leu
黃仲欽
Jonq-Chin Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 122
中文關鍵詞: 功率因數修正器邊界導通模式返馳式轉換器準諧振波谷切換柔性切換
外文關鍵詞: Power Factor Correction, Bundary Conduction Mode, Flyback Converter, Quasi-Resonant, Valley-Switching, Soft -Switching.
相關次數: 點閱:303下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

傳統切換式電源轉換器研製之設計流程複雜,造成研發成本上的增加,且架構採取硬式切換方式,伴隨而來的是產生嚴重的電磁干擾與轉換效率低落等情形。本文原型電路以邊界導通模式升壓型功率因數修正器做為前級穩壓器,降低後級功率開關動態導通損失並減少諧波干擾,且實現零電流導通;後級準諧振返馳式轉換器具有電壓波谷切換特性,降低切換損耗和雜訊,同時保有傳統返馳式轉換器具有電路隔離、拓樸簡單、低成本等特性。
本論文結合實作與理論分析並提供步驟性的電路設計流程,藉由模擬軟體SIMetrix/SIMPLIS建置高擬真電源IC模組,並進行電路模擬且提供各項效率改善方案與分析,以利於使用者了解並設計本文電路架構,縮短系統設計時間;最後實作一90W具功率因數修正之準諧振返馳式交流/直流電源轉換器,其交流輸入電壓範圍90V至265V,最高功率因數達0.99,效率最高可達91.41%,最低待機損耗42mW,其效能符合各項新型節能法規。


In tradition, the designing procedures in developing switch-mode power supplies are complicated and it will cause higher costs. The hard switching mode topologies are also leading to a serious electromagnetic interference and low conversion efficiency. In this thesis, the prototype electrical circuit has an AC/DC pre-regulator which is a boost power factor correction and is operated at boundary conduction mode in the front-end. It can reduce DC/DC conduction loss of power switch, decrease harmonic interference, and accomplish zero current turn-on. There is a DC/DC Quasi-Resonant Flyback converter which owns a voltage valley-switching characteristic. By this characteristic, it can reduce switching loss and noise, and in the mean time, it still keeps the advantages of the conventional Flyback converter like electrical isolating, simple topology, low costs and other characteristics.
This thesis combines the implementation and the theoretical analysis and provides step by step in designing procedures of electrical circuit by simulated software of SIMetrix/SIMPLIS that establishes high simulation of power IC module. It offers the simulation of the circuit, the plan of improving efficiency and the system analysis. In other words, it helps users to comprehend this thesis about electrical circuit structures and designs. It will shorten the time of system designing. Finally, this thesis implemented an AC/DC converter rated at 90W with Quasi-Resonant Flyback Converters and Power Factor Correction, which has wide input voltage range between 90V to 265V, the 99% high power factor, the 91.41% high efficiency and the 42mW low power loss at standby mode. It also satisfied every new type of energy saving regulations.

目錄 中文摘要 I Abstract II 圖目錄 VI 表目錄 XII 符號索引 XIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.3 系統架構 5 1.4 論文大綱 6 第二章 功率因數修正器 8 2.1 功率因數與總諧波失真 8 2.2 功率因數修正器架構 13 2.2.1 被動式功率因數修正器 14 2.2.2 主動式功率因數修正器電路架構 16 2.3 主動式升壓型功因修正器動作原理 19 2.4 主動式功因修正器控制方法 23 2.4.1 連續導通模式(CCM) 24 2.4.2 不連續導通模式(DCM) 28 2.4.3 邊界導通模式(BCM) 30 第三章 準諧振返馳式轉換器 35 3.1 傳統返馳式轉換器轉換器電路原理 35 3.1.1 連續導通模式 36 3.1.2 邊界導通模式 40 3.1.3 不連續導通模式 41 3.2 一次側箝位電路 44 3.3 柔性切換 49 3.3.1 零電流切換準諧振轉換器(ZCS QRC) 52 3.3.2 零電壓切換準諧振轉換器(ZCS QRC) 54 3.4 準諧振型返馳式電源轉換器之操作原理 57 第四章 電路元件設計與耗損分析 66 4.1 本文使用IC介紹 66 4.1.1 提升滿載輸出效率之方法 67 4.1.2 提升輕載與待機時之效率方法 70 4.2 電路參數設計 74 4.2.1 AC/DC級元件設計 75 4.3 功率因數修正之準諧振轉換器耗損分析 84 4.3.1 滿載輸出時之損耗來源及分析 84 4.3.2 待機損耗來源及分析 87 第五章 電路模擬與實驗結果討論 92 5.1. 簡介 92 5.2. 本文電路架構之控制電路模擬 92 5.2.1 AC/DC PFC控制電路模擬 92 5.2.2 DC/DC QR-Flyback控制電路模擬 94 5.3. 實驗波形數據與比較 96 5.3.1 功率因數修正電路實測波形 96 5.3.2 準諧振返馳式轉換器電路實測波形 100 5.4. 實驗結果與比較 105 5.4.1實驗結果 105 5.4.2實驗結果與耗損分析之比較 107 5.4.3實驗結果與模擬分析之比較 112 5.4.4實驗結果與現有文獻比較 113 5.4.5原型電路實體圖 115 第六章 結論與未來展望 116 參考文獻 119

[1] 鄭大森,「Pspice視窗版Design Center在電力電子上的應用」,全華出版社,91年10月。
[2] “IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, ” IEEE Std 519-1992, April 1993.
[3] J. S. Lai, and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous mode,” IEEE Applied Power Electronics Conference and Exposition, pp. 267-273, May. 1993.
[4] 梁適安,「交換式電源供給器之理論與實務設計」,全華科技圖書出版,民國97年9月。
[5] M. Bildgen, “Resonant converter topologies,” ST Microelectronics, AN658/1194.
[6] S. Singh, G. Bhuvaneswari, and B. Singh, “A power factor corrected two stage switched mode power supply,” IEEE International Conference on Power Electronics, Drives and Energy Systems, pp. 1-6, Dec. 2012.
[7] O. Dranga, G. Chu, C. K. Tse, and Siu-Chung Wong, “Stability Analysis of Two-Stage PFC Power Supplies,” IEEE Power Electronics Specialists Conference, pp. 1-5, June 2006.
[8] M. Orabi, and T. Ninomiya, “Study of alternative regimes to analyze two-stage PFC converter,” IEEE Applied Power Electronics Conference and Exposition, pp.1488-1494, 2004.
[9] P. S. Ninkovic, “A Novel ConstantFrequency Hysteresis Current Control of PFC Converters,” IEEE International Symposium on Industrial Electronics, pp. 1059-1064, 2002.
[10] R. Redl, and B. P. Erisman, “Reducing Distortion in Peak-Current-Controlled Boost Power-Factor Correctors ,” IEEE Applied Power Electronics Conference and Exposition, pp. 576-583, Feb. 1994.
[11] P. Cooke, “Modeling average current mode control of power convertors,” IEEE Applied Power Electronics Conference and Exposition, pp. 256-262, Feb. 2000.
[12] K. Yao, X. Ruan, X. Mao, and Z. Ye, “DCM boost PFC converter with high input PF,” IEEE Applied Power Electronics Conference and Exposition, pp 1405-1412, Feb. 2010.
[13] A. Bianco, C. Adranga, and G. Scappatura, “Enhanced constant-on-time control for DCM/CCM boundary boost PFC pre-regulators: Implementation and performance evaluation,” IEEE Applied Power Electronics Conference and Exposition, pp. 69-75, March 2014.
[14] IEC 1000-3-2, “Electromagnetic compatibility (EMC), Part 3: Limits Section 2: Limits for harmonic currentemissions,” 1995.
[15] 原田耕介,「交換式電源手冊」,全華科技圖書出版,民國96年4月。
[16] 柯柏任,「交錯式LLC串聯諧振轉換器的研製」,碩士論文,國立台北科技大學,台北,2009。
[17] R. L. Steigerwald, “High-Frequency Resonant Transistor DC-DC Converters, ” IEEE Transactions on Industrial Electronics, vol. IE-31, pp. 181-191, May 1984.
[18] M. Aaki, A. Bonsall, and I. Batarseh, “Performance characteristics for the series-parallel resonant converter, ” Southcon Conference Record, pp. 573-577, March 1994.
[19] F. C. Lee, “High-frequency quasi-resonant converter technologies,” IEEE Transactions on Industrial Electronics, vol. IE-31, pp. 181-191, May 1984.
[20] G. A. Karveis, and S.N. Manias, “Analysis and design of a flyback zero-current switched quasi-resonant AC/DC converter,” IEEE Power Electronics Specialists Conference, vo1. 1, pp. 475-480, Jun. 1996.
[21] Y. S. Lee, and G. T. Cheng, “Quasi-Resonant Zero-Current-Switching Bidirectional Converter for Battery Equalization Applications, ”IEEE Transactions on Industrial Electronics, Vol. 21, No. 5, Sep. 2006.
[22] W. A. Tabisz, P. M. Gradzki, and F. C. Lee, “Zero-Voltage-Switched quasi-resonant buck and flyback converters-experimental results at 10MHz,” IEEE Trans. on Power Electronics, vol. 4, no.2, Apr. 1989.
[23] W. Y. Choi, J. Kwon, E. H. Kim, J. J. Lee, and B. H. Kwon, “Bridgeless boost rectifier with low conduction losses and reduced diode reverse-recovery problems,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 769–780, Apr. 2007.
[24] F. L. Tofoli, A. A. A. Coelho, L. C. de Freitas, V. J. Farias, and J. B. Vieira Jr. “Proposal of a Soft-Switching Single-Phase Three-Level Rectifier. ” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 107-113, Jan. 2008.
[25] Y. Jang, and M. M. Jovanovic, “Interleaved boost converter with intrinsic voltage-doubler characteristic for -line PFC front end, ” IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1394–1401, July 2007.
[26] 吳義利,「切換式電源轉換器」,文笙書局股份有限公司,2012年。
[27] 宋自恆、林慶仁,「功率因數修正器之原理與常用元件規格」,新電子科技雜誌第217期,2004年。
[28] V. Leonavicius, and M. Duffy, “Comparsion of realization techniques for PFC inductor operating in discontinuous condution mode, ” IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 531-541, May 2004.
[29] C. K. Tse, Y. M. Lai, R. J. Xie, and M. H. L. Chow, “ Application of Duality Principle to Synthesis of Single-Stage Power-Factor-Correction Voltage Regulators, ” International Journal of Circuit Theory and Application, vol. 31, no. 6, pp. 555-570, Jun. 2003.
[30] C. Souvik, K. Rajaganesh, and V. Ramanarayanan, “Impedance Emulation Method for a Single Phase Shunt Active Filter,” IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 907-912, Feb. 2003.
[31] L. Moran, P. Werlinger, J. Dixon, and R. Wallance, “A Series Active Power Filter Which Compensates Current Harmonics and Voltage Unbalance Simultaneously,” IEEE Power Electronics Specialists Conference, pp. 222-227, Jun. 1995.
[32] C. Basso, “How to deal with leakage elements in flyback converters, ” On Semiconductor, AN1679/D
[33] 陳家麟,「具功率因數修正器關閉之主動箝位返馳式轉換器研製」,碩士論文,國立台灣科技大學,台北,2009年。
[34] T. Higashi, H Tsuruta, and M. Nakahara, “Comparison of Noise Characteristics for Resonant and PWM Flyback Converters, ” IEEE Power Electronics Specialists Conference, pp. 689-695, May 1998.
[35] 林冠佑,「零電壓切換之準諧振返馳式轉換器分析與設計」,碩士論文,國立台灣大學,台北,2009年。
[36] G. C. Huang, T. J. Liang, and K. H. Chen, “Losses analysis and low standby losses quasi-resonant flyback converter design, ” IEEE International Symposium on Circuits and Systems, pp. 217-220, May 2012.
[37] LD7790 Data Manual, Leadtrend Technology Corporation, Sep. 2013.
[38] FAN6921 Data Manual, Fairchild Semiconductor Corp., 2010.
[39] UM10444-90W notebook adapter with TEA1753, TEA1703 and TEA1791,Application Note, NXP Semiconductors, April 2011.
[40] How to design a transition mode PFC pre-regulator using the L6564, Application Note, STMicroelectronics, 2011.
[41] 陳秋麟、林振宇、楊大勇,「降低切換式電源之待機功率損失」,崇貿科技公司。
[42] 蔡義傳,「符合最新能效法規的低空載損耗OVP/OCP解決方案」,通嘉科技公司。
[43] M. C. Tsou, T. Lee, and K. Chan, “An innovative solution for flyback converters that offers low standby-power consumption,” Fairchild Semiconductor Corp., Nov. 2010.
[44] 美國能源之星,http://www.energystar.gov/

QR CODE