簡易檢索 / 詳目顯示

研究生: 蔡昇達
SHENG - DA TSAI
論文名稱: 二氧化碳雷射處理鋯鈦酸鉛鐵電厚膜於不同基材之電性研究
CO2 laser annealing of PZT thick films on different substrates
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 蔡顯榮
Hsien-Lung John Tsai
潘漢昌
Han-Chang Pan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 86
中文關鍵詞: 鋯鈦酸鉛鈣鈦礦結構CO2低溫雷射退火
外文關鍵詞: PZT, perovskite structure, CO2 low laser annealing
相關次數: 點閱:222下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用改良式溶膠-凝膠(Sol-gel)法製備鋯鈦酸鉛(PZT)鐵電厚膜,使用CO2低溫雷射退火製程,因雷射能量密度高,能快速將PZT 厚膜從非晶相結構轉換成具鐵電特性之鈣鈦礦結構。研究首先製備出500℃~650℃四種不同溫度之成相粉末,平均粒徑約150~350nm,搭配改良式Sol-gel法旋鍍於Pt/Ti/SiO2/Si(Pt/Si)及SUS 430不銹鋼二種基材上。
當元件結構為PZT(5μm~15μm)/(Pt/Si)時,以CO2低溫雷射退火條件為雷射能量密度121W/cm2,進行不同時間退火。膜厚不同,吸收雷射能量亦不相同。量測該元件鐵電特性,其殘留極化值(Pr)隨膜厚增加而上升,膜厚15μm試片之Pr值為8.49μC/cm2,其介電常數為1170,且發現漏電流高達6.42×10-6 A/cm2。因此以交叉旋鍍厚膜方式改善製程,以提升其緻密性,同樣雷射參數所測其Pr值為14.19μC/cm2,而漏電流為6.6×10-9A/cm2,符合一般元件漏電流所需求的1×10-7A/cm2以下,其介電常數則提升至1920。故此改良式製程能大幅地提升該元件之電性。
當元件結構為PZT(10μm)/(Pt/Si)試片退火條件改變雷射能量密度為69 W/cm2-90sec,藉由低能量長時間處理,使得該緻密性大幅地提升,且不破壞PZT鐵電結構,所測其Pr值為19.39μC/cm2,可獲得低漏電流2.32×10-9A/cm2。故由此可知,該製程可大幅改善其電
性。另一方面本文選用SUS 430不銹鋼基材,其使用金屬當基材可減少下電極製程,但因金屬基材於高溫時易產生元素擴散行為,進而減低電性,故本實驗先鍍製LSMO薄膜當緩衝層以抑制元素擴散。利用改良式旋鍍法製作,將PZT厚膜(5μm)旋鍍於SUS 430不銹鋼,以適當雷射能量密度為138W/cm2-46sec作熱處理,可測得最佳Pr值為4.51μC/cm2。故以之鍍製不同厚膜(5μm~30μm)於SUS 430不銹鋼,以同樣雷射能量密度138W/cm2不同時間作熱處理,厚膜約30μm所測其Pr值為24.52 μC/cm2。若選用此不銹鋼基材,將可大幅減低成本且降低製程時間而應用廣泛。


In this study, lead zirconate titanate (PZT) ferroelectric thick films are prepared by a modified sol-gel method. The microstructure of the thick film is transformed from the amorphous phase to the perovskite structure by using CO2 laser low temperature annealing. PZT powder calcined at four different temperatures (500℃~650℃), and the average grain size about 150~350nm, and to spin-coat the precursor on Pt/Ti/SiO2/Si and SUS 430 substrate.
The sandwich structures of PZT(5μm~15μm)/(Pt/Si) annealed by applying CO2 laser annealing technique. The remanent polarization, coercive field, dielectric constant and leakage current were measured, was 8.49 μC/cm2 and 1170, 6.42×10-6 A/cm2, respectively. After modifying the process to enhance the performance of pre-pressing, the Pr was 14.19 μC/cm2 and leakage current was 6.6×10-9 A/cm2, conforming the leakage current of the general devices below 1×10-7 A/cm2 , the dielectric constant can promote to 1920. So the modification not only improved the process, but also the electric property of multilayered device.
To recrystallize the melt area which laser beam irradiated, the lower laser energy density of 69 W/cm2-90 sec was applied to treat PZT(10 μm)/(Pt/Si), after that, the electric properties were highly improved as Pr and leakage current were 19.39 μC/cm2 and 2.32×10-9 A/cm2,
respectively.
In this study, the PZT coated SUS 430 substrates were use and laser annealed, but at high temperature, the elements inter-diffused between electrode and ferroelectrics. To avoid inter-diffusion phenomenon, LSMO thin films were deposited on substrates. Using the modify coating process, the PZT(5μm) coated on SUS 430 and laser annealed at 138 W/cm2-46 sec, the highest Pr value was 4.51 μC/cm2, after varied the thickness of PZT films to 30 μm, the performance of thick film device was improved,such as Pr value was 24.52 μC/cm2, respectively.

中文摘要…………………………………………………………i 英文摘要…………………………………………………………iii 誌 謝…………………………………………………………v 目 錄…………………………………………………………viii 圖 目 錄…………………………………………………………xii 表 目 錄…………………………………………………………xvi 第一章 前言………………………………………………………1 第二章 文獻回顧………………………………………………………4 2-1鐵電材料………………………………………………………………4 2-1-1鐵電材料定義……………………………………………………4 2-2鋯鈦酸鉛鐵電材料………………………………………………6 2-3不銹鋼基板………………………………………………………8 2-3-1不銹鋼基板相關文獻回顧……………………………………8 2-4薄膜製備方法……………………………………………………11 2-4-1溶膠-凝膠法製備鐵電薄膜……………………………………12 2-4-2溶劑特性的選擇……………………………………………….13 2-4-3薄膜覆膜方式………………………………………………….13 2-4-4低溫焦化熱處理………………………………………………14 2-4-5高溫結晶與緻密化熱處理……………………………………14 2-5鋯鈦酸鉛粉未製備……………………………………………16 2-6改良式溶膠-凝膠法……………………………………………18 2-7雷射退火…………………………………………………………19 2-7-1連續波長雷射退火……………………………………………20 第三章 實驗方法與步驟…………………………………………21 3-1實驗藥品與儀器總表……………………………………………21 3-2實驗流程……………………………………………………24 3-3錳酸鍶鑭2 inch靶材備製………………………………………25 3-4 Sol-gel法製備PZT前置溶液與粉末…………………………26 3-4-1 PZT前置溶液製備………………………………………………26 3-4-2 PZT粉末製備…………………………………………………27 3-5 PZT厚膜試製備..…………………………………………………28 3-5-1薄膜、厚膜旋鍍製程…………………………………………28 3-5-2化學機械研磨(Chemical mechanical Polishing, CMP)………30 3-5-3掀去法(lift-off)製作氧物及金屬上電極……………………31 3-6 CO2低溫雷射退火……………………………………………33 3-7特性量測………………………………………………………34 3-7-1 X-ray繞射分析儀(X-ray Diffractometry, XRD)…………34 3-7-2 掃描式電子顯微鏡(Scanning Electron Eicroscopy,SEM)…34 3-7-3 極化值與電場(P-E)量測……………………………………34 3-7-4 介電常數對頻率曲線量測…………………………………34 第四章 結果與討論…………………………………………………35 4-1 錳酸鍶鑭粉末與靶材X-ray繞射分析…………………………35 4-1-1 薄膜濺鍍參數……………………………………………36 4-2 PZT不同退火溫度粉末分析……………………………………37 4-2-1 PZT不同退火溫度粉末X-ray繞射分析……………………37 4-2-2 PZT不同退火溫度粉末之粒徑分析…………………………38 4-3不同雷射退火參數製備PZT厚膜之分析…………………………41 4-3-1 PZT製備厚膜之X-ray繞射分析………………………………41 4-3-2 PZT製備厚膜之SEM微觀分析…………………………………43 4-3-3 PZT製備厚膜之鐵電特性……………………………………46 4-3-4 PZT製備改良式厚膜之SEM微觀分析…………………………48 4-3-5 PZT製備改良式厚膜之鐵電特性……………………………51 4-3-6 PZT粉末製備厚膜之漏電流量測……………………………54 4-3-7 PZT粉末製備厚膜之介電量測………………………………56 4-4 SUS 430不銹鋼基材雷射退火之最佳參數………………………59 4-4-1錳酸鍶鑭(LSMO)薄膜之X-ray繞射分析………………………59 4-4-2 PZT鍍製SUS 430基材雷射退火之X-ray繞射分析…………62 4-4-3 PZT鍍製SUS 430基材雷射退火之鐵電特性…………………63 4-5 SUS 430基材特性分析………………………………65 4-5-1 PZT不同層數雷射退火之X-ray繞射分析……………………65 4-5-2 PZT製備改良式厚膜之SEM微觀分析…………………………66 4-5-3 PZT製備改良式厚膜之鐵電特性……………………………68 4-5-4 PZT製備改良式厚膜之漏電流………………………………71 4-5-5 PZT粉末製備改良式之介電量測……………………………73 4-6 厚膜試片表面熔融分析…………………………………………75 4-6-1 厚膜表面熔融之X-ray繞射分析……………………………75 4-6-2 厚膜使用不同雷射功率之特性分析…………………………77 第五章 結論……………………………………………………81 參 考 文 獻……………………………………………………83 圖目錄 Fig. 2.1 (a)鈣鈦礦結構示意圖;(b)當溫度低於Tc時,鈣鈦礦中心 離子會產生輕微的偏移…………………………………………4 Fig. 2.2典型鐵電電滯曲線……………………………………5 Fig. 2.3 PZT之相圖……………………………………………7 Fig. 2.4 PZT於室溫下不同濃度之晶格常數…………………7 Fig. 2.5 (a)磁控式濺鍍法、(b)旋鍍法…………………………………12 Fig. 2.6 PZT粉末於不同燒結溫度之XRD繞射分析圖…………17 Fig. 2.7 PZT粉末燒結溫度(A)600℃、(B) 700℃(C) 800℃之SEM與 平均粒徑尺寸圖形……………………………………………17 Fig. 3.1 實驗流程圖…………………………………………24 Fig. 3.2 氧化物法製備 LSMO 靶材流程圖…………………25 Fig. 3.3 PZT前置溶液流程圖…………………………………27 Fig. 3.4 PZT成相粉末製作流程………………………………28 Fig. 3.5鍍製PZT厚膜之流程圖…………………………………30 Fig. 3.6化學機械研磨之示意圖…………………………………31 Fig. 3.7 Lift-off製程製作電極之流程圖……………………32 Fig. 3.8 CO2低溫雷射退火示意圖……………………………33 Fig. 4.1 LSMO粉末經煆燒1050℃/ 2hr靶材燒結1300℃/5hr之X-ray繞射分析圖………35 Fig. 4.2 PZT粉末於不同退火溫度下(a)500℃、(b)550℃、(c)600℃(d)650℃分別持溫30分鐘之X-ray繞射分析圖……………38 Fig. 4.3製備PZT粉末不同退火溫度500℃~ 650℃持溫30分鐘之粒徑分極圖…………………………………………39 Fig. 4.4製備PZT粉末不同退火溫度500℃~ 650℃持溫30分鐘之SEM圖……………………………………………………40 Fig. 4.5 使用500℃~ 650℃退火溫度平均粒徑尺寸關係曲線圖…40 Fig. 4.6 PZT(5 μm)厚膜於(Pt/Si)以不同功率密度持續16sec退火之X-ray繞射分析圖……………………………………………42 Fig. 4.7不同PZT厚膜於(Pt/Si)基材以功率密度121 W/cm2退火 之X-ray繞射分析圖……………………………………………………43 Fig. 4.8傳統鍍膜製程之示意圖……………………………………44 Fig. 4.9以傳統製程旋鍍PZT厚膜(a)~(f) 5 μm、10 μm、15 μm於(Pt/Si)基材,以功率密度121W/cm2分別退火16秒、12秒、8秒之SEM圖……………45 Fig. 4.10以傳統製程旋鍍PZT厚膜(a)5 μm-16sec、(b)10 μm-12sec、(c)15 μm-8sec於(Pt/Si)基材,以功率密度121 W/cm2退火之P-E曲線圖……………………………………………………………47 Fig. 4.11 以傳統製程旋鍍PZT厚膜 (a)5 μm-16sec、(b)10 μm-12sec、(c)15μm-8sec於(Pt/Si)基材,以功率密度121 W/cm2退火之Pr曲線圖………………………………………………………………48 Fig. 4.12 改良交叉式製程鍍膜之示意圖…………………………49 Fig. 4.13 改良交叉式鍍製PZT厚膜(a)~(f) 5 μm、10 μm、15 μm於(Pt/Si)基材,以功率密度121 W/cm2分別退火16秒、12秒、8秒之SEM圖………………………………………………………………50 Fig. 4.14 改良交叉式鍍製PZT厚膜(a)5 μm-16sec、(b)10 μm-12sec、(c)15 μm-8sec於(Pt/Si)基材,以功率密度121 W/cm2之P-E曲線圖………………………………………………………………52 Fig. 4.15改良交叉式鍍製PZT厚膜(a)5 μm-16sec、(b)10 μm-12sec、(c)15 μm-8sec於(Pt/Si)基材,以功率密度121 W/cm2之Pr曲線圖………………………………………………………………53 Fig. 4.16以傳統、改良交叉式旋鍍PZT厚膜於(Pt/Si)基材,以功率 密度121 W/cm2不同時間退火之漏電流密度的變化……………55 Fig. 4.17 以傳統、改良交叉式旋鍍PZT厚膜於(Pt/Si)基材,以功率密度121 W/cm2不同時間退火之介電常數曲線圖……………57 Fig. 4.18 LSMO/SUS 430雷射功率密度(a)225W/cm2 (b)242W/cm2;(c)260W/cm2持續40sec之X-ray繞射分析圖……………………61 Fig. 4.19 LSMO薄膜以不同功率密度持續40秒退火與X-ray繞射峰 強度之關係圖…………………61 Fig. 4.20 PZT (5 μm)厚膜以雷射不同功率密度持續46秒退火之 X-ray繞射分析圖…………………………………………………62 Fig. 4.21 PZT(5 μm)/LSMO(結晶)/SUS 430旋鍍PZT厚膜以不同功率 密度持續46秒退火之鐵電曲線圖…………………………64 Fig. 4.22 PZT(5 μm)/LSMO(結晶)/SUS 430旋鍍PZT厚膜以不同功率密度持續46秒退火之殘留極化值分佈圖………………………65 Fig. 4.23不同PZT厚膜層數試片LSMO(結晶)/SUS 430基材以功率 密度138 W/cm2不同時間退火之X-ray繞射分析圖……………65 Fig. 4.24製備改良式 (a) ~ (f) PZT 10 μm、20 μm、30 μm厚膜於LSMO(結晶)/SUS 430,以功率密度138 W/cm2分別退火40秒、26秒、14秒之SEM圖………………………………………………………67 Fig. 4.25改良交叉式鍍製PZT厚膜5~30 μm厚膜於LSMO(結晶)/SUS 430基材,以功率密度138 W/cm2不同時間之P-E曲線圖…………69 Fig. 4.26製備PZT 5 ~ 30 μm厚膜於LSMO(結晶)/SUS 430基材以功率密度138 W/cm2不同時間之Pr曲線圖…………………………70 Fig. 4.27 PZT厚膜鍍製於LSMO (結晶)/SUS 430基板上以功率密度 138 W/cm2不同厚度退火之漏電流密度的變化…………72 Fig. 4.28 PZT厚膜鍍製於LSMO (結晶)/SUS 430基板上以功率密度138 W/cm2不同厚度退火之介電常數曲線圖……………74 Fig. 4.29 PZT(10 μm) 經功率密度208 W/cm2-10秒退火之X-ray繞射分析圖…………………………………………………………76 Fig. 4.30 PZT(10 μm) 經功率密度69 W/cm2-90秒退火之X-ray繞射分析圖………………………………………76 Fig. 4.31 PZT (10 μm)以功率密度208 W/cm2-10 sec退火之SEM圖……………………79 Fig. 4.32 PZT (10 μm)以功率密度(a)、(b) 69 W/cm2- 60 sec;(c)、(d)69 W/cm2- 90 sec退火之SEM圖………………………79 Fig. 4.33 PZT(10 μm)/(Pt/Si) 經退火不同參數之鐵電曲線圖……………………………………80 Fig. 4.34 PZT(10 μm)/(Pt/Si) 經退火不同參數之漏電流………80 表目錄 Table 2.1 常用不銹鋼之結晶構造、元素含量、電阻率和熱膨脹係數…………………11 Table 2.2 溶膠-凝膠之優缺點……………………………………15 Table 3.1 使用之溶劑細目表………………………………………21 Table 3.2 實驗藥品表………………………………………………22 Table 3.3 儀器設備規格表………………………………………23 Table 3.4 旋鍍薄厚膜參數表……………………………………29 Table 4.1 電極薄膜濺鍍參數………………………………………36 Table 4.2 傳統、改良交叉式旋鍍製程不同PZT膜厚之鐵電特性…53 Table 4.3傳統、改良交叉式旋鍍製程以1kHz量測之介電常數……57 Table 4.4不同基材鍍製PZT厚膜5 μm~15 μm之鐵電特性…………70 Table 4.5不同基材鍍製PZT厚膜5 μm~15 μm之介電常性…………74

1. 汪健民(1995),“強介電陶瓷薄膜專題緒論” ,工業材料,第107期,pp.44~48.
2. D. Damjanovic, P. Muralt, N. Seter, “Ferroelectric device”, IEEE Sensor jounral,
vol. 1, No.3, October 2001.
3. E. Defay, C. Millon, C. Malhaire, and D. Barbier, “PZT thin films integration for
the realization of a high sensitivity pressure microsensor based on a vibrating
membrane”, Sensors and Actuators A 3268 (2002) 1-4.
4. H. Kueppers, T. Leuerer, U. Schnakenberg, W. Mokwa, M. Hoffmann, T. Schneller,
U. Boettger, and R. Waser, “PZT thin films for piezoelectric microactuator
applications”, Sensors and Acturators A 97-98 (2002) 680-684.
5. Y. Miyahara, M. Deshler, T. Fujii, S. Watanabe, and H. Bleuler, “Non-contact
a tomic force microscope with a PZT cantilever used for deflection sensing , direct
oscillation and feedback actuation., Applied Surface Science 188 (2002) 450-455.
6. M. S. Chen, T.B. Wu and J. M. Wu, “Effect of Textured LaNiO3 Electrode on the
Fatigue Improvement of Pb (Zr0.53Ti0.47)O3 Thin Films”, Appl. Phys. Lett., 68[10],
1430-1432 (1996).
7. W. B. Wu, K. H. Wong, C. L. Choy and Y. H. Zhang,“Top-Interface-Controlled
Fatigue of Epitaxial Pb(Zr0.52Ti0.58)O3 Ferroelectric Thin Films on La0.5Sr0.5MnO3
Electrodes”, Appl. Phys. Lett., 77[10], 3441-3443 (2000).
8. I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross and M. Tsukad, “Top-Interface-
Controlled Switching and Fatigue Endurance of (Pb,La)(Zr,Ti)O3 Ferroelectric
capacitors”, Appl. Phys. Lett., 74[6], 3552-3554 (1999).
9. F. Wang and S. Leppavuori, “Properties of epitaxial ferroelectric PbZr0.56Ti0.44O3
heterostructures with La0.5Sr0.5CoO3 metallic qxide electrodes”, J. Appl. Phys.,
vol.82, no.3, 1293-98 (1997).

10. S. M. Yoon, E. Tokumitsu and H. Ishiwara, “Preparation of PbZrxTi1-xO3/
La1-xSrxCoO3 heterostructures using the sol-gel method and their electrical
properties”, Appl. surface science, 117, 447-52 (1997).
11. 葉劉育恩,「鈦鋯酸鉛厚膜應用二氧化碳雷射退火製程之研究」,碩士論文,
國立台灣科技大學,台北(2004)
12. T. Yamamoto, M. Saho and K. Okazaki, “Electrical Properties and Microstructure of Ca Modified PbTiO3 Ceramics”, Jpn. J. Appl. Phys., Vol. 26, pp. 57~63 (1987)
13. Franco Jona, G. Shirane, “Ferroelectric Crystals”, Dover Publications, Inc.,
p11~p14 (1993).
14. Y. H. Xu, “Ferroelectric Materials and Their Applications”, North-Holland, New
York, 102 (1991).
15. A. L. Moulson and I. M. Herbert, “Electroceramics”, Chapman and Hall, New
York, U.S.A. (1990).
16. G. H. Haertling, “Ferroelectric Ceramics: History and Technology”, J. Am. Ceram.
Soc., Vol. 82, No. 4, pp. 797-818 (1999).
17. T. Mitsw and S. Nomura, “Ferroelectrics and related substances, Springer-Verlag,
New York, p.426 (1981).
18. Masaru Oikawa and Kohji Toda, “Preparation of Pb(Zr,Ti)O3 thin film by an electron beam evaporation technique”, Appl. Phys. Lett., 28(8), pp.491~492
(1976).
19. L. Tsakalakos and T. Sands, “Epitaxial ferroelectric (Pb,La)(Zr,Ti)O3 thin film on tainless steel by excimer laser liftoff ”, Appl. Phys. Lett., 76(2), pp.227~229
(1999).
20. Q. Zou, H. E. Ruda and B. G. Yacobi,“Dielectric properties of lead zirconate titanate thin films deposited on metal foils”, Appl. Phys. Lett., 77(7),
pp.1038~1040 (2000).
21. Q. Zou,H. E. Ruda and B. G. Yacobi, “Improved dielectric properties of lead zirconate titanate thin films deposited on metal foils with LaNiO3 buffer layers”
, Appl. Phys. Lett., 78(9), pp.1282~1284 (2001).
22. Jin-Rong Cheng, Wenyi Zhu, Nan Li and L. Eric Cross,“Electrical properties of sol-gel-derived Pb(Zr0.52Ti0.48)O3 thin film on a PbTiO3-coated stainless steel
substrate”, Appl. Phys. Lett., 81(25), pp.4805~4807 (2002).
23. Han-Chang Pan, Chen-Chia Chou and Hsien-Lung Tsai, “Low temperature processing of sol-gel derived La0.5Sr0.5MnO3 buffer electrode and PbZr0.52Ti0.48O3 films using CO2 laser annelaing”, Applied Physics Letters, Vol.83, No.15, (2003).
24. 劉柏亨, “CO2雷射低溫熱處理鋯鈦酸鉛鐵電薄膜於不同基材之電性研究”,
國立台灣科技大學碩士論文, 民國95年7月
25. C. Xiong, Y. Tang, J. Gao, H. Zhu, L. Pi, K. Li, J. Zhu and Y. Zhang, “Magnetoresistivity effect in La0.67Sr0.33MnO3/Pr0.7Sr0.33MnO3/ La0.67Sr0.33MnO3 trilayered films”, American Phys. Soc., vol.59, no.14, 9437-41 (1999).
26. T. Namikawa, K. Kaneta, N. Matsushita, S. Nakagawa and M. Naoe, “Annealing effect on magnetic characteristics on (La,Sr)MnO3 sputter films”, IEEE
Transactions on magnetics, vol.35, no.5, 2850-52 (1999).
27. N. Soyama, K. Maki, S. Mori and K. Ogi, “Preparation of PZT thin films for low
voltage application by sol-gel method”, IEEE, 611-14 (2001).
28. Chia-Fong Chou, Han-Chang Pan and Chen-Chia Chou “Electrical Properties and Microstructures of PbZrTiO3 Thin Films Prepared By Laser Annealing Techniques”, Jpn. J. Appl. Phys. Vol.41, No.11B, part 1, pp.6679~6681 (2002).
29. C. J. Brinker, A. J. Hurd, P. R. Schunk, G. C. Frye, and C. S. Ashley, 「Review of Sol-Gel Thin Film Formation」, J. Non-Cryst. Solids., 147&148, 424-436 (1992).
30. B. A. Tuttle, and R. W. Schwartz, 「Solution Deposition of Ferroelectric Thin
Films」, Mater. Res. Soc., 49-54 (1996).
31. J. A. Fernie,「Sol-Gel:Principles and Applications」, Cera. Indust. Inter.,
17-19(1992).
32. R. A. Lipeles, D. J. Coleman, and M. S. Leung,「Metallorganic Solution Deposition of Ferroelectric PZT Films」, IEEE Trans. Ultrason., Ferroelectr.
Frequency Control, 38, 684-689 (1991).
33. C. Sanchez, and M. In,「Molecular Design of Alkoxide Precursors for the Synthesis of Hybrid Organic-Inorganic Gels」, J. Non-Cryst. Solids., 147&148,
1-12(1992).
34. D. R. Uhlmann, G. Teowee, J. M. Boulton, S. Motakef, and S. C. Lee,「Electrical and Optical Properties of Chemically Derived Ferroelectric Films」, J. Non-Cryst.
Solids., 147-148, 409-423 (1992).
35. D. L. Corker, Q. Zhang, R. W. Whatmore, and C. Perrin, “PZT ‘composite’ ferroelectric thick films, ” Journal of the European Ceramic Society, Vol. 22, pp.
383-390 (2002).
36. J. H. Ma, X. J. Meng, J. L. Sun, T. Lin, F. W. Shi, and J. H. Chu, “Effect of annealing ambient on structure and ferroelectric properties of Pb(Zr0.4Ti0.6)O3 thin films on LaNiO3 coated Si substrates, ” Materials Research Bulletin, Vol. 40, pp.
221-228 (2005).
37. 黃敏儀,“添加微粉於有機金屬塩溶液中製備PZT鐵電厚膜之研究”,國立清
華大學碩士論文,民國87年
38. D.L.Corker,Q.Zhang,R.W.Whatmore,C.Perrin“PZT composite ferroelectric thick films”,Journal of the European Ceramic Society 22, pp.383-390 (2002).
39. B.Matthes, G.Tomandl and G.Werner “Characterization of PZT Thin Film Prepared by a Modified Sol-Gel Method”Journal of the European Ceramic Society
19,pp.1387-1389(1999)
40. D.Xia,M.Liu,Y.Zeng,C.Li“Fabrication and electrical properties of lead zirconate titanate thick films by the new sol-gel method”Materials Science and Engineering
B87, pp.160-163(2001).
41. S. H. Hu, X. J. Meng, G. S. Wang, J. L. Sun, D. X. Li “Preparation and characterization of multi-coating PZT thick films by sol-gel process”Journal of
Crystal Growth,Vol264,pp.307-311(2004).
42. 涂文香, “二氧化碳雷射退火製備鋯鈦酸鉛鐵電厚膜特性研究”, 國立台灣科
技大學碩士論文, 民國95年7月
43. Q.F.Zhou, H.L.W.Chan and C.L.Choy “Nanocrystalline powder and fibres of lead zirconate titanate prepared by the sol-gel process,”Journal of Materials Processing Technology 63,pp.281-285 (1997)

QR CODE